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ABSTRACT
Resource management in distributed sensor networks is a
challenging problem. This can be attributed to the funda-
mental tradeoff between the value of information contained
in a distributed set of measurements versus the energy costs
of acquiring the measurements, fusing them into a model of
uncertainty, and transmitting the resulting model. Commu-
nications is commonly the highest contributor among these
costs, typically by orders of magnitude. Failure to consider
this tradeoff can significantly reduce the operational lifetime
of a sensor network. While a variety of methods have been
proposed that treat a subset of these issues, the approaches
are indirect and usually consider at most a single time step.
In the context of target tracking with a distributed sensor
network we propose an approximate dynamic programming
approach which integrates the value of information and the
cost of transmitting data over a rolling time horizon. Specif-
ically, we consider tracking a single target and constrain the
problem such that, at any time, a single sensor, referred to
as the leader node, is activated to both sense and update the
probabilistic model. The issue of selecting which sensor
should be the leader at each time is of primary interest, as it
directly impacts the trade-off between the estimation accu-
racy and the cost of communicating the probabilistic model
from old leader node to new leader node. We formulate this
trade-off as a dynamic program, and use an approximation
based on a linearization of the sensor model about a nomi-
nal trajectory to find a tractable solution. Simulation results
demonstrate that the resulting algorithm can provide similar
estimation performance to that of the common most infor-
mative sensor election method at a fraction of the commu-
nication energy cost.

1. INTRODUCTION

Networks of intelligent sensors have the potential to pro-
vide unique capabilities for monitoring wide geographic ar-
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eas through the intelligent exploitation of local computation
(so called in-network computing) and the judicious use of
inter-sensor communication. In many sensor networks en-
ergy is a dear resource to be conserved so as to prolong the
network’s operational lifetime. Additionally, it is typically
the case that the energy cost of communications is orders
of magnitude greater than the energy cost of local computa-
tion [1,2].

Tracking moving objects is a common application in
which the quantities of interest (i.e. kinematic state) are in-
ferred largely from sensor measurements which are in prox-
imity to the object (e.g. [3]). Consequently, local fusion of
sensor data is sufficient for computing an accurate model
of the object state and associated uncertainty, as captured
by the posterior distribution. This property, combined with
the need to conserve energy, has led to a variety of ap-
proaches [4,5] which effectively designate the responsibility
of computing the model to one sensor node (referred to as
the leader node) in the network. Over time the leader node
changes dynamically as function of the kinematic state of
the object. While there are certain advantages to such ap-
proaches, they come with an additional complexity, namely
the cost of transmitting the model from an old leader node
to a new leader node. This leads to an inevitable tradeoff be-
tween the accuracy of the model, the cost of acquiring mea-
surements, and the cost of propagating the model through
the network. In this paper we examine this tradeoff in the
context of object tracking in distributed sensor networks.
In doing so, we consider the aggregate cost over a rolling
time horizon using an approximate dynamic programming
approach. Our results show that, as compared to pure in-
formation driven approaches, comparable tracking perfor-
mance can be obtained at a fraction of the communication
energy cost.

Specifically, we consider a sensor network consisting
of Ns sensors. The sensing model is assumed to be such
that the measurement provided by the sensor is highly in-
formative in the region close to the node, and uninforma-
tive in regions far from the node. For purposes of address-
ing the primary issue, trading off energy consumption for



accuracy, we restrict ourselves to sensor resource planning
issues associated with tracking a single object. While addi-
tional complexities certainly arise in the multi-object case
(e.g. data association) they do not change the basic problem
formulation or conclusions.

2. PROBLEM STATEMENT

The tracking problem naturally fits into the Bayesian state
estimation formulation, such that the role of the sensor net-
work is to maintain a representation of the probability dis-
tribution of the target state (i.e., position, velocity, etc) con-
ditioned on the measurements. If the energy consumed by
sensing and communication was unconstrained, then the op-
timal solution would be to collect and fuse the measure-
ments provided byall sensors in the network. A scheme
which has been previously proposed [4] is to activate only
a single sensor node (referred to as the leader node) at each
time step, utilizing only this node for sensing, and maintain-
ing the probabilistic model of target state at this sensor. Us-
ing this approach, the energy consumed in sensing is held
constant (as exactly one node will be sensing in any one
time step), and the energy spent on communications is lim-
ited to that due to handing off the probabilistic model from
sensor to sensor. A question which naturally arises is how
to select the leader node at each point in time.

2.1. Object dynamics and sensor models

In order to be concrete we consider specific object dynam-
ics and sensor measurement models. However, we empha-
size that the underlying principles have general applicabil-
ity. Denotingxk as the target state at timek, we assume
that target dynamics evolve according to a linear Gaussian
model:

xk+1 = Fxk + wk (1)

wherewk ∼ N{wk;0,Q}1 is a white Gaussian noise pro-
cess, andF andQ are known matrices. For the simula-
tions in this paper, we track position and velocity in two
dimensions (xk = [px vx py vy]T ), where velocity is mod-
elled as a random walk with constant diffusion strengthq
(independently in each dimension), and position is the inte-
gral of velocity. Denoting the measurement taken by sensor
u ∈ {1 : Ns} (whereNs is the number of sensors) at time
k aszu

k , a nonlinear measurement model is assumed:

zu
k = h(xk, u) + vu

k (2)

wherevu
k ∼ N{vu

k ;0,Ru} is a white Gaussian noise pro-
cess, independent ofwk ∀ k and ofvj

k, j 6= u ∀ k. Ru is

1We use the notationwk ∼ N{wk;0,Q} as short-hand forp(wk) =

N{wk;0,Q}, where N{x; µ,P} = |2πP|−
1
2 exp{−0.5(x −

µ)T P−1(x− µ)}.

a known matrix andh(·, u) is a known, vector-valued func-
tion for eachu. For the simulations in this paper, we set the
measurement model to a quasi-range measurement:

h(xk, u) =
a

||Lxk − lu||22 + b
(3)

whereL is the matrix which extracts the position of the tar-
get from the target state (such thatLxk is the location of the
target), andlu is the location of theu-th sensor. The con-
stantsa andb can be tuned to model the signal-to-noise ratio
of the sensor, and the fall-off in the region close to the sensor
(allowing a saturation effect to be approximated). The mea-
surement has additive Gaussian noise as per Eq. (2), with
variancer. The information provided by the measurement
reduces as the range increases due to the nonlinearity.

The measurement functionh(·, u) has sufficient
smoothness that, in a small vicinity around a nominal point
x0, it can be approximated by a first-order Taylor series as

zu
k ≈ h(x0, u) + Hu(x0)(xk − x0) + vu

k (4)

Hu(x0) = ∇xh(x, u)|x=x0

=
−2a

(||Lx0 − lu||22 + b)2
(Lx0 − lu)T L (5)

where Eq. (5) is specific to Eq. (3) and will be used in the
simulations presented in Section 4.

2.2. Estimation

Underlying a typical sensor network appication is the idea
of coordinating many sensors with limited local sensing ca-
pability to provide surveillance of a larger region. Because
sensors focus on their local region, the nonlinearity in a
measurement model such as the quasi-range measurement
of Eq. (3) is significant, and substantial multimodality can
result. Accordingly, we utilize a particle filter approxima-
tion for the dynamic state estimation, whereby the Probabil-
ity Density Function (PDF) of target statexk conditioned on
measurements received up to and including timek, z0:k, is
approximated through a set ofNp weighted samples:

p(xk|z0:k) ≈
Np∑
i=1

wi
kδ(xk − xi

k) (6)

We utilize an approximate Sequential Importance Sampling
(SIS) algorithm [6] to representp(xk+1|z0:k+1) at each
step. Under this algorithm, for each previous samplexi

k,
we draw a new sample at the next time step,xk+1, from
the distributionq(xk+1|xi

k,zk+1) which results from the
linearization of the measurement model forzk+1 (Eq. (2))
about the pointFxi

k. This distribution can be obtained
using the extended Kalman filter equations: the Dirac delta
functionδ(xk − xi

k) at timek will diffuse to give:

p(xk+1|xi
k) = N (xk+1;Fxi

k;Q) (7)



To calculate the same distribution at the next time step,
p(xk+1|z0:k+1), we utilize an approximate Sequential
Importance Sampling (SIS) algorithm [6] with resampling
at each step. Under this algorithm, for each previous
samplexi

k, we draw a new sample at the next time step,
xk+1, from the distribution q(xk+1|xi

k,zk+1) which
results from the linearization of the measurement model
for zk+1 (Eq. (2)) about the pointFxi

k, as described in
Eq. (4). This distribution can be obtained using the
extended Kalman filter equations: the Dirac delta function
δ(xk − xi

k) at timek will diffuse to give:

p(xk+1|xi
k) = N (xk+1;Fxi

k;Q) (8)

at time(k + 1). This distribution can be updated using the
extended Kalman filter update equation [7] to obtain:

q(xk+1|xi
k,zk+1) = N (xk+1; x̂

i
k+1,P

i
k+1) (9)

where

x̂i
k+1 = Fxi

k + Ki
k+1[zk+1 − h(Fxi

k, u)] (10)

Pi
k+1 = Q−Ki

k+1H
u(Fxi

k)Q (11)

Ki
k+1 = Q{Hu(Fxi

k)}T ·
· [Hu(Fxi

k)Q{Hu(Fxi
k)}T + Ru]−1(12)

A new particlexi
k+1 is drawn from the distribution in

Eq. (9), and weighted bywi
k+1, calculated by

wi
k+1 = cwi

k

p(zk+1|xi
k+1)p(xi

k+1|xi
k)

q(xi
k+1|xi

k,zk+1)
(13)

where c is the normalization constant
necessary to ensure that

∑Np

i=1 wi
k+1 = 1, and

p(zk+1|xi
k+1) = N{zk+1;h(xi

k+1, u),Ru}. The
resulting approximation for the distribution ofxk+1

conditioned on the measurementsz0:k+1 is:

p(xk+1|z0:k+1) ≈
Np∑
i=1

wi
k+1δ(xk+1 − xi

k+1) (14)

At any point time, a Gaussian representation can be
moment-matched to the particle distribution by calculating
the mean and covariance:

µk =
Np∑
i=1

wi
kxi

k, Pk =
Np∑
i=1

wi
k(xi

k − µk)(xi
k − µk)T

(15)

2.3. Communications

We assume that any sensor node can communicate with any
other sensor node in the network, and that the cost of com-
munications is known at every sensor node (although in

practice this will only be required within a small region
around each node). In our simulations, the cost of direct
communication between two nodes is modelled as being
proportional to the square distance between the two sensors:

C̃ij ∝ ||li − lj ||22 (16)

Communications between distant nodes can be performed
more efficiently using a multi-hop scheme, in which several
sensors relay the message from source to destination. Hence
we model the cost of communicating between nodesi and
j, Cij , as the length of the shortest path betweeni andj,
using the distances from Eq. (16) as arc lengths:

Cij =
n∑

k=1

C̃ik−1ik
(17)

where{i0, . . . , in} is the shortest path from nodei = i0 to
nodej = in. The shortest path distances can be calculated
using any shortest path algorithm, such as deterministic dy-
namic programming or label correcting methods [8]. We
assume that the complexity of the probabilistic model (i.e.,
the number of bits required for transmission) is fixed, such
that the energy required to communicate the model from
nodei to nodej is directly proportional toCij .

2.4. Sensor management

The role of the sensor manager in a sensor network track-
ing problem is to trade off estimation performance against
energy consumed in obtaining that performance. When the
problem is constrained such that a single node is activated at
any one time, the decision becomes one of when to transfer
control from sensor to sensor, trading off the gain in esti-
mation performance which results against the cost of the
communications energy which is spent in transmitting the
probabilistic model to the new leader node. The first task
in optimizing the estimation performance of a system is to
decide upon an objective function which measures that per-
formance. Recent research [9, 10] has demonstrated the ef-
fectiveness of conditional entropy as an objective function.
A common sensor management algorithm (e.g. [4]) is to se-
lect as the new leader node the sensor whose measurement
minimizes the expected posterior entropy:

uk = arg min
u

H(xk|z0:k−1,z
u
k) (18)

The conditioning in Eq. (18) is on thevalueof the previous
measurementsz0:k−1, and on therandom variablecorre-
sponding to the new measurementzu

k , implying marginal-
ization over all possible values of the measurement. The
mutual information between the target statexk and mea-
surementzu

k conditioned on the previous measurement his-
tory is defined as [11]:

I(xk;zu
k |z0:k−1) = H(zu

k |z0:k−1)−H(zu
k |xk) (19)

= H(xk|z0:k−1)−H(xk|z0:k−1,z
u
k) (20)



Since the first term in Eq. (20) is independent of the con-
trol decision (u), it is clear that minimization of expected
conditional entropy is equivalent to maximization of mu-
tual information [12]. Sensor management strategies which
select the action that minimizes the conditional entropy or
that maximizes the mutual information over the next time
step are sometimes referred to asgreedyor myopic, as they
only consider information which is obtainable in the next
time step. Situations commonly arise (e.g., [13]) in which
alternative strategies have poorer performance in the next
time step but better performance over several time steps.

3. DYNAMIC PROGRAMMING SENSOR
MANAGEMENT ALGORITHM

As discussed in Section 2.4, the estimation performance ob-
tained using the minimum expected posterior entropy al-
gorithm Eq. (18) is potentially inferior to the performance
achievable by an algorithm which plans over multiple time
steps. In practice, this difference is often small when infor-
mation is the sole contributor to the objective function. This
situation changes greatly when other elements such as com-
munication cost are incorporated into the objective. While
a particular leader node transition may lead to improved es-
timation performance over many time steps, the communi-
cation cost may be large, hence the cost of the transmission
must be considered in comparison with the time-aggregated
estimation gain which will result. Accordingly, it is neces-
sary to consider several time steps when selecting the leader
node.

One way of incorporating both estimation performance
and communication cost into an optimization procedure is
to optimize one of the quantities subject to a constraint on
the other. In the development which follows, we choose
to maximize the information obtained from the measure-
ments made by the leader node subject to a constraint on
the expected communication cost incurred by transmitting
the model when the leader node changes. This can be for-
mulated as a dynamic program. Similarly to imperfect state
information problems [8], thedynamic programmingstate
is the PDF oftarget state conditioned on previous controls
and measurements. Throughout the following we make the
definition

Xk , p(xk|u0:k−1,z0:k−1) (21)

and we treatXk as the dynamic programming state.2 Fol-
lowing the discussion in Section 2.4, we utilize mutual in-
formation as our objective, and define

g(Xk, uk) = −I(xk;zuk

k |u0:k−1,z0:k−1) (22)

2Note that in contrast to the convention of [8], the measurement at time
k, zk, is received after the control at timek, uk, has been applied, and the
distributionp(zk|xk, uk) depends upon the value of the control applied
at timek.

so that−g(Xk, uk) is the expected single-stage reward. The
dynamic program for minimizing Eq. (22) over theN -step
rolling horizon{k : k + N − 1} subject to a communica-
tion constraint can be described by the following recursive
reward-to-go function:

Jl(Xl) = max
ul

{
− g(Xl, ul)

+ E
zl|Xl,ul

Jl+1(Xl, ul,zl)
}
,

l ∈ {k : k + N − 1}
Jk+N (Xk+N ) = 0 (23)

subject to the communication constraint:

E

{
k+N−1∑

l=k

Cul−1ul

}
≤ Cmax (24)

The arguments ofJl+1 in Eq. (23) collectively defineXl+1

through the following expression:

Xl+1 , p(xl+1|u0:l−1,z0:l−1, ul,zl) (25)

which is calculated fromXl and(ul,zl) using the recursive
Bayes update described in Section 2.2 (ul is not a random
variable, but rather a parameter which indexes the proba-
bilistic model which relates the measurementzl to the state
xl).

The expectation in the communication constraint of
Eq. (24) is over the values of future measurements, noting
that the future control decisionsul depend on the values of
the measurements received in the interim. To address the
inequality constraint, we introduce a dual variable (i.e., a
Lagrange multiplier)λ and solve the related problem

Jk(Xk) = max
λ≥0

J̃k(Xl, λ) (26)

J̃l(Xl, λ) = min
ul

{
g(Xl, ul)

+ E
zl|Xl,ul

J̃l+1(Xl, ul,zl, λ)
}
,

l ∈ {k : k + N − 1}

J̃k+N (Xk+N , λ) = λ

{
k+N−1∑

l=k

Cul−1ul
− Cmax

}
(27)

where we have changed Eq. (23) to an equivalent minimiza-
tion to align the above expression with the convention. For
the above expression to be valid in its current form, the dy-
namic programming stateXl must be redefined to incorpo-
rate the history of controls,uk−1:l, such that the required
variables are present in the argument ofJ̃k+N (Xk+N , λ).
Equivalently, we redefine the dynamic programming state
to explicitly include the most recently applied control, and
redistribute the elements of the sum throughout the cost
function recursion, so that the cost of control decisions is



modelled within the per-stage cost wherever possible, rather
than through the cost-to-go function:

Xk , (p(xk|u0:k−1,z0:k−1), uk−1) (28)

J̃l(Xl, λ) = min
ul

{
g(Xl, ul) + λCul−1ul

+ E
zl|Xl,ul

J̃l+1(Xl, ul,zl, λ)
}
,

l ∈ {k : k + N − 1}
J̃k+N (Xk+N , λ) = −λCmax (29)

The optimization of Eq. (26) provides a lower bound
to the minimum value of the original constrained problem;
the presence of a duality gap is possible as the optimization
space is discrete. The size of the duality gap is

λ E

{
k+N−1∑

l=k

Cul−1ul
− Cmax

}
(30)

If it happens that the optimal solution produced by the dual
problem of Eq. (26) satisfies complementary slackness, i.e.,
that the duality gap of Eq. (30) evaluates to zero, then the so-
lution produced by the optimal value of Eq. (26) is also the
optimal solution of the original constrained problem. This
can occur in one of two ways: either the Lagrange multi-
plier λ is zero, such that the solution of the unconstrained
problem satisfies the communication constraint, or the solu-
tion yields a result for which the communications constraint
is tight. If a duality gap exists, a better solution may exist
satisfying the communication constraint; however, the solu-
tion returned would be optimal if the maximum communi-
cation costCmax was reduced to make the communication
constraint tight. The problem in Eq. (26) is the Lagrangian
relaxation of the original constrained optimization, which is
a common approximation method for discrete optimization
problems.

The formulation of the energy constraint using a La-
grange multiplier is similar to [14], although in this case
the dual problem does not have an easy solution for a given
value ofλ. In practice, we set the dual variableλ to a fixed
value, and view the above development as motivation for
using a linear combination of the information reward and
communication cost as our overall objective. The algorithm
could be made more robust by dynamically adjusting the
dual variable: if the communication constraint is being met
with excess, then the value could be lowered, and if it is
being exceeded then the value could be raised.

4. SIMULATION RESULTS

The model presented in Section 2.1 was simulated for100
Monte Carlo trials using20 sensors positioned randomly
according to a uniform distribution inside a100×100
region. Each trial used a different sensor layout; sensor

layouts which were obviously degenerate, such as layouts
where sensors were clustered in one portion of the region,
were qualitatively eliminated. The initial position of the
target is in one corner of the region, and the velocity is2
units per second in each dimension, moving into the region.
The simulation ends when the object leaves the100×100
region or after200 time steps, which ever occurs sooner.
The sample time wasT = 0.25 sec, diffusion strength was
q = 10−2, and the measurement model parameters were
a = 2000, b = 100 andr = 1. The planning horizon was
set toN = 30 time steps.
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Fig. 1. Scatter plot of average position entropy (y-axis) ver-
sus accrued communication cost (x-axis) for dynamic pro-
gramming method withλ set to10−3 and 10−4, greedy
maximum mutual information method, and minimum ex-
pected square distance method.

The simulation results are detailed in Fig. 1
which shows the average position entropy versus the
communication cost accrued for each simulation, for the
approximate dynamic programming algorithm described
with λ set to10−3 and 10−4, and the greedy maximum
mutual information and heuristic minimum expected
square distance algorithms described in Section 2.4. The
scatter plots demonstrate that the dynamic programming
method achieves similar position entropy to the other
methods for a substantially reduced communication cost.
The dynamic programming method achieves similar



entropy performance to the maximum mutual information
algorithm for a fraction of the communication cost, and
significantly better entropy performance than the minimum
expected square distance heuristic, again for a substantially
lower communication cost.

5. CONCLUSION AND FUTURE WORK

The analysis in Section 3 demonstrates that dynamic pro-
gramming provides a principled approach to the problem
of sensor management in an energy-constrained sensor net-
work. The simulation results in Section 4 demonstrate that
approximations based on dynamic programming are able
to provide similar entropy to that achieved using simple
heuristics which consider estimation performance alone, for
a fraction of the communication cost.

The approach constrains the problem such that a sin-
gle node senses and maintains the probabilistic model at
each point in time. Relaxing these constraints is the sub-
ject of future work. Extending the dynamic programming
formulation to allow simultaneous utilization of multiple
sensors when necessary, and distributing the probabilistic
model across multiple sensors is of particular interest.
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