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ABSTRACT

Modern sensors are able to rapidly change mode of operation and steer between physically separated objects.
While control of such sensors over a rolling planning horizon can be formulated as a dynamic program, the
optimal solution is inevitably intractable. In this paper, we consider the control problem under a restricted
family of policies and show that the essential sensor control trade-offs are still captured. The advantage of this
approach is that one can obtain the optimal policy within the restricted class in a tractable fashion, in this case
by using the auction algorithm. The approach is well-suited for problems in which a single sensor (or group
of sensors) is being used to track many targets using a heterogeneous sensor model, i.e., where the quality of
observations varies with object state, such as due to obscuration. Our algorithm efficiently weighs the rewards
achievable by observing each target at each time to find the best sensor plan within the restricted set. We extend
this approach using a roll-out algorithm, to handle additional cases such as when observations take different
amounts of time to complete.

1. INTRODUCTION

Agile sensors such as phased array radars are able to rapidly share resources between tasks to support a large
number of simultaneous estimation problems. The ability to exploit this potential is limited by the computational
complexity of the stochastic control algorithms which result from attempting to optimize system performance.

In this paper, we consider a problem in which a single sensor is used to observe multiple processes which are
evolving independently. At each time, only one process may be observed, hence the sensor resource manager
task is to determine which process to observe at each time. Our method corresponds to the optimal solution of
the optimization problem over a constrained set of policies. The structure of the constrained problem is such
that the combinatorial optimization can be solved using efficient network flow optimization methods, allowing
planning to be conducted over a long planning horizon at low computational cost.

In Section 2, we describe the basic formulation upon which we build our method. The method is described
in Section 3, and compared briefly to existing strategies. The results of computational simulations are examined
in Section 4.

2. BACKGROUND AND FORMULATION

In this section we describe a mathematical formulation for the problem of sensor management for tracking
multiple independent objects. The model provides the basis for construction our algorithm, as described in
Section 3.
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2.1. Estimation problem

We denote by xi
k the state of process i ∈ {1, . . . , N} at time k. The goal of the system is to estimate each of

these states with the best accuracy possible, according to some performance objective to be defined later. The
state of each process may be:

1. continuous (e.g., the position and velocity of an object which is being tracked),

2. discrete (e.g., the class of an object which is being identified), or

3. mixed (e.g., the combination of the two).

The state of each process evolves independently of other process according to the dynamics equation:

xi
k+1 = f(xi

k,wi
k) (1)

where wi
k is independent of wj

l for all (k, i) �= (l, j), and wi
k ∼ pwi

k
(wi

k). The process dynamics in Eq. (1)
induces a transition Probability Density Function (PDF) pxi

k+1|xi
k
(xi

k+1|xi
k). Accordingly, if the joint PDF of

{x1
k, . . . ,xN

k } is:
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pxj
k
(xj
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then the joint PDF at the following time will become:
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We assume that, if we choose to observe process i at time k, the resulting observation zk will depend only
on the state of process i:

pzk|x1
k,...,xN

k
(zk|x1

k, . . . ,xN
k ) = pzk|xi

k
(zk|xi

k) (5)

This effectively excludes joint observation processes (e.g. data association). Under these assumptions, the joint
PDF of {x1, . . . ,xN} conditioned on the observation of xi

k, zk, can be expressed as:

px1
k,...,xN

k |zk
(x1

k, . . . ,xN
k |zk) = pxi

k|zk
(xi

k|zk)
N∏

j=1
j �=i

pxj
k
(xj
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where pxi
k|zk

(xi
k|zk) is calculated from pxi

k
(xi

k) and pzk|xi
k
(zk|xi

k) using Bayes’ rule.

2.2. Stochastic control problem

The sensor resource management problem which we address in this paper is that of selecting at each time
(k) which process uk ∈ {1, . . . , N} to observe. This is a stochastic control problem,1 because the value of the
measurement resulting from a particular choice of control is non-deterministic. The decision state of the dynamic
program is the joint PDF of the process states conditioned on previously received observations; the PDF can be
represented as a product of the marginal process state PDFs as discussed in Section 2.1. We define the shorthand
Xk � px1:N

k |z0:k−1
(x1:N

k |z0:k−1) to denote this decision state.
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We select as the per-stage reward the mutual information between the state of the process which we choose
to observe, xuk

k and the resulting observation, zk, defined as the expected reduction of entropy in the state of
the observed process due to the new observation:2

g(Xk, uk) = I(x1:N
k ;zk|z0:k−1) = I(xuk

k ;zk|z0:k−1)

� H(xuk

k |z0:k−1) − H(xuk

k |z0:k−1,zk) (7)

Although not explicit in our notation in Eq. (7), we condition on the value of the past measurements, z0:k−1

(which have already been realized), and on the random variable corresponding to the new measurement zk (which
has not yet been realized). Note that, when conditioning on a random variable, we must take an expectation
over the possible values that the measurement may ultimately assume.

We denote by µk(·) a control policy for time k, i.e., a mapping from decision state to control value, such that
uk = µk(Xk) is the control which we would apply at time k if the decision state was Xk. At time k, we seek to
find the series of control policies (µk, . . . , µk+M−1) which will maximize the reward over the next M time steps:

(µ∗
k, . . . , µ∗

k+M−1) = arg max
µk,...,µk+M−1

E

[
k+M−1∑

l=k

g(Xl, µl(Xl))

]
(8)

Conceptually, the dynamic program in Eq. (8) can be solved using M steps of value iteration.1 However, this
requires us to store and evaluate reward-to-go functions for every value of the decision state Xk, i.e., every
possible PDF of joint object state. In this problem, no finite parameterization of the reward-to-go function
is known, hence the method cannot be applied. The high dimensionality of the space of decision states also
precludes approximate methods involving discretization (as one would need to discretize the space of PDFs of
joint object state).

2.2.1. Open Loop Feedback Control

Open Loop Feedback Control (OLFC) is a commonly used suboptimal control method in which the controller
designs at time k an open loop plan for the next M steps, (uk, . . . , uk+M−1), assuming that no further information
(i.e., observations) will become available during execution of the plan. After m < M steps of the plan have
been executed and observations have become available, they are incorporated and an updated plan is generated.
Typically m = 1, in which case the plan is regenerated after each new observation is received.

The equation which the OLFC must solve at time k is:

(u∗
k, . . . , u∗

k+M−1) = arg max
uk,...,uk+M−1

E

[
k+M−1∑

l=k

g(Xl, ul)

]
(9)

While simpler than Eq. (8), this equation is still a hard combinatorial optimization problem because the decision
states Xl at later times depend upon the choice of controls at earlier times (i.e., the decisions between different
times are coupled). Since each control choice ul ∈ {1, . . . , N} (corresponding to observing one of the N processes),
the number of possible combinations which must be considered is NM . Furthermore, for most dynamics and
observation models (linear Gaussian models are one of the few exceptions), the computational cost of evaluating
the expected value of the reward for a particular choice of (uk, . . . , uk+M−1) is also exponential in M .

3. PROPOSED APPROACH

In this paper, we propose solving the OLFC in Eq. (9) within a restricted class of open loop plans, in which
each process can only be observed once during the M -step planning horizon. We expect that this will not be
overly restrictive if the planning horizon M is small compared to the number of processes N (i.e., N � M). For
example, if we are using a single sensor to track many objects, and we can only observe one object at any one
time, the optimal solution is likely to involve observing each object once, and then waiting for the uncertainty
in the estimate of that object to grow again before observing it a second time, rather than continually observing
the same object.
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Figure 1. Example of operation of auction-based assignment algorithm from simulation
in Section 4. Each “strip” in the diagram corresponds to the reward for observing a
particular object at different times over the 10-step planning horizon (assuming that it is
only observed once within the horizon). The role of the auction algorithm is to pick one
unique object to observe at each time in the planning horizon in order to maximize the
sum of the rewards gained. The solution is shown as black dots.

This approach averts the complexity of both the combinatorial optimization (which can be solved using the
efficient auction algorithm3) and the estimation of rewards (since objects are independent and each object is
only observed once, the reward of an M -measurement sequence can be decomposed into the sum of rewards of
M single measurements).

3.1. Auction-based formulation

The restricted OLFC we seek to solve is a form for which the combinatorial complexity can be avoided using a
well-known efficient solution. One can gain an intuition for the resulting algorithm from the diagram in Fig. 1.
Each “strip” in the diagram corresponds to the reward for measuring a particular object at different times
over the 10-step planning horizon (assuming that the object is only observed once in the horizon). The role
of the auction algorithm is to pick one unique object to observe at each time in the planning horizon in order
to maximize the sum of the rewards gained. The solution is shown as black dots. The rewards shown in the
diagram correspond to a sample taken from the simulation discussed in Section 4.

We seek to solve the restricted OLFC:

(u∗
k, . . . , u∗

k+M−1) = arg max
uk,...,uk+M−1

E

[
k+M−1∑

l=k

g(Xl, ul)

]

s.t. ul �= ul′ ∀ l �= l′ (10)

Since the PDF of each process state evolves according to Eq. (4) unless it is observed, the l-th term in the sum
of Eq. (10) is:

g(Xl, ul) = I(xul

l ;zl|z0:l−1) = I(xul

l ;zl|z0:k−1) (11)

where the second equality is due to the fact that no information has been received about process ul since the start
of the planning horizon (k). Thus we can define gul

l = I(xul

l ;zl|z0:k−1), and Eq. (10) can be written equivalently
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as:

(u∗
k, . . . , u∗

k+M−1) = arg max
uk,...,uk+M−1

[
k+M−1∑

l=k

gul

l

]

s.t. ul �= ul′ ∀ l �= l′ (12)

The Linear Programming (LP) relaxation of the optimization problem in Eq. (12) can be written by converting
the control variables ul to flags ui

l (ui
l = 1 if ul = i and zero otherwise):

max
M∑

l=1

N∑

i=1

ui
lg

i
l

s.t. ui
l ≥ 0 ∀ i, l

N∑

i=1

ui
l ≤ 1 ∀ l

M∑

l=1

ui
l ≤ 1 ∀ i (13)

Since the constraints in this problem are unimodular, one can always find an optimal solution with integer
components, thus one can always find an optimal solution of Eq. (13) corresponding to the optimal solution of
Eq. (12). An ε-optimal integer solution to the LP in Eq. (13) can be found efficiently using the asymmetric
auction algorithm.3

3.1.1. Multiple sensors

An extension of this basic problem structure is one involving multiple sensors. In this case, we break each time
step into sub-steps, each of which corresponds to a different sensor. The structure of the problem is then identical
to that in Eq. (13): each process can be observed a total of once in the planning horizon, and each sensor can
observe a single process at each time.

3.1.2. Multiple sensing modes

Another extension of the structure involves a sensor with multiple modes, each of which measures the selected
process through a different observation model. In this case, the problem is no longer an assignment problem,
although it remains a network flow problem, and hence it remains solvable using efficient methods.

3.2. Roll-out

Roll-out methods use a one-step (or longer) lookahead in combination with the reward-to-go corresponding to a
heuristic “base” policy. Denoting by Jπ

l (Xl) the reward-to-go of the base policy π starting from state Xl at time
l, the roll-out policy µr

k would select at time k and state Xk the action

µr
k(Xk) = arg max

uk

{
g(Xk, uk) + E

Xk+1|Xk,uk

Jπ
k+1(Xk+1)

}
(14)

The algorithm described in Section 3.1 can be used as a base policy in a roll-out in order to obtain an
improved policy. The structure of the resulting algorithm is:

• For each choice of control at time k (uk):

– Simulate a number of measurements which could result from applying uk

– For each measurement value:

∗ Calculate the probabilistic state which follows Xk after incorporating the new measurement
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∗ Run the auction algorithm commencing from this updated state

– Evaluate the reward of the action uk as the average over the rewards resulting from each of the
simulated measurement values

• Select the action with the highest reward

An alternative version of algorithm uses the auction method a single time for each choice of control, using
reward values conditioned on the control choice (avoiding the process of simulating measurement values). The
former corresponds to a closed loop stochastic control roll-out based on the open loop base policy produced by
the auction method, while the latter corresponds to an open loop roll-out of the same base policy (resulting in
a computational saving).

This algorithm has several advantages over using the auction-based method in Section 3.1 directly. Firstly,
the limitation of only allowing each process to be observed once in the planning horizon is mitigated to some
extent. The roll-out algorithm considers observing each process at the current time step, and then uses the
auction method to construct a plan to use following that observation. In this way, the auction is able to observe,
another time, the process being considered for observation in the first lookahead step. Since this procedure is
repeated at each time step, the actual control applied by the roll-out method may be to observe the same process
sequentially for an arbitrarily long period (in the unlikely case in which this appears to be the best action).

Another advantage of this method is that it could be used to evaluate the benefit of observations that
take different durations to complete. For example, one could use a roll-out to compare the benefit of taking
observations of different durations at the current time step by evaluating the reward of an m-step duration
observation, and adding it to the reward obtained by the auction method over the following (M − m) steps (all
tasks must have fixed duration in the auction).

3.3. Comparison to greedy method

Sensor management with information theoretic criteria is often performed using a greedy heuristic method, in
which the action taken at time k is the one which yields the largest instantaneous reward at time k. While such
a method is able to yield action sequences which observe the same object multiple times in the planning horizon,
its selection of actions is ignorant of upcoming observations, hence it cannot capture trade-offs such as the desire
to observe an object with a lesser observation at the current time if it will be unobservable in the future.

Interestingly, however, the following analysis shows that the measurement sequence produced by the greedy
method is guaranteed to be within a factor of two of the optimal sequence. The analysis is related to recent work
by Krause and Guestrin,4 which deals with the problem of selecting the best K-element subset of observations,
rather than the problem of concern for this paper, i.e., selecting the best observation at each time, where at each
stage we choose from a different set of observations.

To commence, note that, if measurements are conditionally independent conditioned on the state x (which
we take as being the joint state of all processes over all time), then the mutual information between a given
measurement and the state is reduced when conditioning on additional measurements is introduced; this property
is referred to as submodularity. Denoting by zα and zβ the sets of measurements corresponding to action choice
sets α and β, this can be formalized as:

I(x; za|zα, zβ) = H(za|zα, zβ) − H(za|x) (15)
≤ H(za|zα) − H(za|x) (16)
= I(x; za|zα) (17)

where the inequality in Eq. (16) is the well-known fact that conditioning (on a random variable) reduces entropy.2

Subsequently, we define the greedy algorithm as choosing at stage i the observation:

gi = arg max
g

I(x; zg
i |zg1

1 , . . . , z
gi−1
i−1 ) (18)
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Consider the optimal observation sequence {zo1
1 , . . . , zoM

M } (or, for that matter, any other observation se-
quence). Since our reward function is increasing:

I(x; zo1
1 , . . . , zoM

M ) ≤ I(x; zo1
1 , . . . , zoM

M , zg1
1 , . . . , zgM

M ) (19)

Using the mutual information chain rule:2

=
M∑

i=1

[
I(x; zgi

i |zg1
1 , . . . , z

gi−1
i−1 , zo1

1 , . . . , z
oi−1
i−1 )

+ I(x; zoi
i |zg1

1 , . . . , zgi

i−1, z
o1
1 , . . . , z

oi−1
i−1 )

]
(20)

By submodularity, we can remove any subset of the conditionings that we desire:

≤
M∑

i=1

[
I(x; zgi

i |zg1
1 , . . . , z

gi−1
i−1 ) + I(x; zoi

i |zg1
1 , . . . , z

gi−1
i−1 )

]
(21)

Finally, by definition of gi:

≤ 2
M∑

i=1

I(x; zgi

i |zg1
1 , . . . , z

gi−1
i−1 ) (22)

= 2I(x; zg1
1 , . . . , zgM

M ) (23)

This result is surprising, especially since it is applicable to time-varying models. To our knowledge, this is the
first presentation of this bound.

Thus we compare the performance of our auction approach to the greedy method, bearing in mind that the
optimal open loop performance can be no better than twice that of the greedy algorithm.

3.4. Comparison to existing methods
Krishnamurthy and Evans5,6 studied a similar problem to that examined here, finding an optimal solution to
the problem of tracking multiple independent objects using a Hidden Markov model. The key assumption which
we seek to avoid here is that the information state of unobserved objects does not change between time steps. In
our model, the dynamic evolution of unobserved objects can change the observation characteristics dramatically,
hence such an assumption is inappropriate. The other advantage of our approach is that it does not rely on
conventional POMDP solution methods, for which computational complexity severely limits the number of states
in the underlying estimation problem.

Castañon7 also studied a similar problem, involving classification of a large number of independent objects.
This work formulates the resource management problem as a constrained dynamic program, and solves the
Lagrangian relaxation optimally. The formulation naturally allows for tasks which require different durations
to complete. While our method provides a heuristic method for addressing circumstances in which observations
require different durations to complete, the major difference in our work is the ability to address large state
spaces (not requiring solution of POMDPs) and time varying observation models.

The problem in question is also similar to that studied by Kreutcher, et al ,8 although our method has included
a reward-to-go corresponding to the solution of an optimization problem, rather than a heuristic approach.

4. SIMULATION RESULTS

The approach described in Section 3 was tested on a tracking scenario in which a single sensor is used to
simultaneously track N objects, where N is set to 20 and 40 in different tests. The state object i at time k, xi

k,
consists of position and velocity in two dimensions. The state evolves according to a linear Gaussian model:

xi
k+1 = Fxi

k + wi
k (24)
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Figure 2. Example of randomly generated detection map. The color intensity indicates
the probability of detection at each x and y position in the region.

where wi
k ∼ N{wi

k;0,Q} is a white Gaussian noise process. F and Q are set as:

F =

⎡

⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤

⎥⎥⎦ ; Q = q

⎡

⎢⎢⎢⎣

T 3

3
T 2

2 0 0
T 2

2 T 0 0
0 0 T 3

3
T 2

2

0 0 T 2

2 T

⎤

⎥⎥⎥⎦ (25)

The diffusion strength q is set to 0.01. The sensor can be used to observe any one of the N objects in each time
step. The measurement obtained from observing object uk with the sensor consists of a detection flag dk ∈ {0, 1}
and, if dk = 1, a linear Gaussian measurement of the position, zk:

zk = Hxuk

k + vk (26)

where vk ∼ N{vk;0,R} is a white Gaussian noise process. H and R are set as:

H =
[

1 0 0 0
0 0 1 0

]
; R =

[
5 0
0 5

]
(27)

The probability of detection Pdk|xk
(1|xk) is a function of object position. The function is randomly generated

for each Monte Carlo simulation; an example of the function is illustrated in Fig. 2. The function may be viewed
as an obscuration map, e.g. due to foliage.

The performance over 200 Monte Carlo runs is illustrated in Fig. 3 for N = 20 objects, and in Fig. 4 for
N = 40 objects. The point with a planning horizon of zero corresponds to a raster, in which objects are observed
sequentially. With a planning horizon of one, the auction-based algorithm corresponds to greedy selection. The
performance is measured as the average (over the 200 simulations) total change in entropy due to incorporating
chosen measurements over all time.

The diagrams demonstrate that, with the right choice of planning horizon, the auction method is able to
improve performance over the greedy method. While the improvement is only nominal, this is not unexpected
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Figure 3. Performance tracking N = 20 objects. Performance is measured as the average
(over the 200 simulations) total change in entropy due to incorporating chosen measure-
ments over all time. The point with a planning horizon of zero corresponds to observing
objects sequentially; with a planning horizon of one the auction-based method is equiv-
alent to greedy selection. Error bars indicate 1-σ confidence bounds for the estimate of
average total reward.
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Figure 4. Performance tracking N = 40 objects.
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considering the analysis in Section 3.3, which establishes a bound for the performance of the greedy algorithm
versus the optimal method.

The reduction in performance for larger planning horizons is a consequence of the restriction to observe each
object at most once in the horizon. If the planning horizon is on the order of the number of objects, we are then,
in effect, enforcing that each object must be observed once. As illustrated in Fig. 1, in this scenario, there will
often be objects receiving low reward values throughout the planning interval, hence by forcing the controller to
observe each object, we are forcing it to (at some stage) take observations of little value. Using this insight, we
would expect that the optimal choice of planning horizon is related to the number of objects we expect to be
clearly observable at some stage in the horizon. Fig. 4 demonstrates that the sensitivity to the planning horizon
length is reduced in scenarios involving more objects.

Results utilizing the roll-out method described in Section 3.2 are pending at the time of publication.

5. CONCLUSION

The formulation in Section 3 demonstrates that the sensor resource management problem involving many objects
can be solved suboptimally using an efficient auction algorithm. The simulation results demonstrate that the
resulting strategy can improve performance over the greedy method, which itself possesses an open loop perfor-
mance guarantee. The method can be extended to accommodate additional problem structure including multiple
sensors, multiple sensor modes and sensing actions requiring different numbers of time steps to complete.

While the model is based around assumptions of independent process evolution and independent observations
(precluding data association), it may be possible to apply the algorithm to scenarios in which the assumptions
are not met; this is a topic of future study.

The greatest limitation of the auction-based heuristic method is the restriction that each process can only be
observed once during the planning horizon. We are currently examining extensions which combine the strengths
of the greedy selection and the auction method in a modified auction algorithm which is able to select multiple
observations of each process in the planning horizon in a greedy manner while still capturing the trade-off between
processes that enables the auction-based method to outperform the purely greedy approach.
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