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Abstract— Importance Sampling (IS) and actor-critic are two
methods which have been used to reduce the variance of
gradient estimates in policy gradient optimization methods. We
show how IS can be used with Temporal Difference methods
to estimate a cost function parameter for one policy using
the entire history of system interactions incorporating many
different policies. The resulting algorithm is then applied to
improving gradient estimates in a policy gradient optimization.
The empirical results demonstrate a 20-40× reduction in vari-
ance over the IS estimator for an example queueing problem,
resulting in a similar factor of improvement in convergence for
a gradient search.

I. I NTRODUCTION

Many problems of practical interest can be formulated and,
conceptually, solved optimally using dynamic programming
(cf [1]). However, the practical applicability of the method
to problems with large state spaces is limited due to the
so-called curse of dimensionality. The absence of exact
models for the systems of interest further limits applicability,
through the so-calledcurse of modelling. Approximations
which address both of these difficulties have been studied
extensively over the past decade, and may be divided into
two broad categories: cost function approximation methods
and policy approximation methods.

Cost function approximation methods seek to approximate
the optimal cost-to-go function with a particular parametric
form, such as a linear combination of basis functions. The
parameter vector can be learned from simulation using the
method of Temporal Differences [2]. In policy approxima-
tion, one chooses a particular parameterized policy family,
and seeks to find the parameter value which minimizes the
cost of employing the policy. The minimization is commonly
performed using stochastic gradient methods. The policy
gradient method [3] obtains a noisy estimate of the gradient
of the objective with respect to the policy parameter from
a single simulation trajectory. The actor-critic method [4]
improves this estimate by incorporating cost function approx-
imation: by retaining information from previous simulations,
and constraining the estimates of the cost-to-go function
to a low-dimensional subspace, the variance is reduced
substantially.

Frequently, interaction with the system (or simulation
of the system) is expensive, computationally or otherwise,
hence it is desirable to exploit the limited simulation data
which is available as much as possible. The Importance

Sampling (IS) method of [5], discussed in detail in Section II-
B, provides a means of utilizing information from the entire
history of interactions with the system (using many different
policies) to compute a reduced variance estimate of the
objective gradient. We present an algorithm in Section III
that combines the IS algorithm with a cost function approx-
imation method. By restricting the cost estimates to lie in
a low-dimensional subspace, the variance of the gradient
estimate is reduced substantially. The simulation resultsin
Section IV demonstrate a 20-40× reduction in variance over
the IS estimator for an example queueing problem.

Whereas Konda and Tsitsiklis’ actor-critic method relies
on two time constants, one of which controls the faster adap-
tion rate of the approximation parameter, and the other which
controls the slower adaption rate of the policy parameter,
our method adaptively weights the entire system interaction
history to calculate approximation parameters. This allows
the system designer to trade off the number of interactions
required with the system against computational cost.

II. BACKGROUND

Consider a Markov Decision Process (MDP) with states
s ∈ S and actionsa ∈ A. We assume a randomized policy
parameterized byθ, such that actiona is selected in states
with probability uθ(s, a). If action a is selected in states,
the immediate cost incurred isga(s), and the next state is
drawn from the transition distribution onS, p(·|s, a).

For our purposes, we consider stochastic shortest path
formulations1 in which, under all policies, there is a single
recurrent class of statesT ⊂ S and that these states are cost-
free (ga(s) = 0 ∀ s ∈ T ). Thus the goal of the policy is to
minimize the cost incurred before reaching the terminal set
T . As in [3], we assume that the starting state is drawn from
the probability distribution onS, π̄(·). We denote byJθ(s)
the expected cost-to-go from states using the policy defined
by the parameter vectorθ. Consequently, the objective we
wish to minimize is:

χ(θ) =

∫

S

π̄(s)Jθ(s)ds (1)

We assume that the state is known at each decision step.
We make the common assumptions that∃n < ∞ such that

1Analogous statements can be made for average cost per stage problems
by considering renewal intervals, as per the development in [3].



the probability of terminating withinn steps from any state
and under any policy is uniformly bounded below byǫ >

0, and that the policy distributionuθ(s, a) is differentiable
w.r.t. θ and ∇θuθ(s,a)

uθ(s,a) is bounded.

A. λ-Least Squares Temporal Difference

λ-Least Squares Temporal Difference (λ-LSTD) provides
a method of approximate policy evaluation with convergence
at a much faster rate than traditional temporal difference
methods [6], [7]. Given a set of basis functions, the cost-
to-go is approximated by:

J̌(s, r) = φ(s)T r (2)

To apply it to a stochastic shortest path problem, we take a
series of independent simulation trajectories and accrue for
the i-th simulation,xi = (si

0, a
i
0, . . . , s

i
ni−1, a

i
ni−1, s

i
ni), the

following quantities:

A(xi) =

ni
−1∑

m=0

zi
m[φ(si

m+1) − φ(si
m)]T

b(xi) =
ni

−1∑

m=0

zi
mg(si

m) (3)

where zi
m =

∑m

k=0 λm−kφ(si
k). We can then combine

N simulation trajectories(x1, . . . , xN ) to give an overall
estimate:

AN =
1

N

N∑

m=1

A(xi)

bN =
1

N

N∑

m=1

b(xi)

rN = −A
−1
N bN (4)

This is equivalent to the method described in [6], except that
the eligibility tracezi is reset after each simulation (which
is natural for a stochastic shortest path problem). Under mild
conditions,2 AN and bN will converge to their expected
values asN → ∞ w.p. 1, hence the parameter vectorrN

also converges. The choice of basis functionsφ(s) is problem
dependent; Section IV provides an example for a queueing
problem.

B. Importance Sampling

Policy gradient methods estimate∇θχ(θ) via a small
number of Monte Carlo simulations under an essentially
fixed policy. The resulting estimate often exhibits high
variance, increasing convergence times while decreasing
the utility of the resulting policy. Peshkin and Shelton [5]
suggest an Importance Sampling (IS) approach, using sample
trajectories undervaried policies, as a means of incorporating
previous simulations and, consequently, reducing the vari-
ance. The importance sampling estimate ofE{f(x)}, using

2The trajectories{xi} are i.i.d., the per-stage costs are bounded and the
usual termination assumption of stochastic shortest path problems are met
(i.e. A(xi) andb(xi) have finite variance).

samples{xi}N
i=1 drawn from distributionq(·), is expressed

by:

f̂ =
1

N

N∑

i=1

pθ(xi)

q(xi)
f(xi)

f̃ =

1
N

∑N

i=1
pθ(xi)
q(xi) f(xi)

1
N

∑N

i=1
pθ(xi)
q(xi)

(5)

The estimatef̂ is unbiased, provided thatq(x) > 0 ∀ x :
pθ(x) > 0, and converges to the true value as the number
of samples increases. The normalized estimatef̃ reduces
the variance inf̂ at the expense of inducing a bias (which
vanishes asymptotically). Samples corresponding to many
different parameter values{θi, i ∈ {1, . . . , N}} may be
admitted by treating them as collectively belonging to the
mixture densityq(x) = 1

N

∑N

i=1 pθi
(x), wherepθi

(x) is the
likelihood of trajectoryx under the policy defined by thei-
th parameterθi. In a stochastic shortest path problem, each
simulation trajectory forms an independent sample, starting
at an independently drawn initial states0 ∼ π̄(·), and ending
with sn ∈ T . The likelihood of obtaining a given trajectory
x = (s0, a0, . . . , sn−1, an−1, sn) may be calculated as:

pθ(x) =

[
p(s0)

n∏

i=1

p(si|si−1, ai−1)

]
·

[
n−1∏

i=0

uθ(si, ai)

]

(6)

where only the second term in brackets has dependence on
the policy parameter vectorθ. Consequently, in calculating
the ratiosp(·)

q(·) to estimate the cost at parameter valueθ, the
transition probabilities cancel leaving:

pθ(x)

q(x)
=

∏n−1
i=0 uθ(si, ai)

1
N

∑N

j=0

∏n−1
i=0 uθj

(si, ai)
(7)

In order to estimate the gradient of the objective, one can
use a simple estimate of the cost along a trajectory,Ĵ(x) =∑n

k=0 gak
(sk). Noting thatE{Ĵ(x)|s0 ∼ π̄(·)} = χ(θ), we

then have:3

∇θχ(θ) =

∫
∇θpθ(x)Ĵ(x)dx

=

∫
pθ(x)

∇θpθ(x)

pθ(x)
Ĵ(x)dx (8)

Assuming that∇θpθ(x)
pθ(x) is bounded, we apply Eq. (5) to

obtain

∇̂θχ(θ, {xi}N
i=1) =

1

N

N∑

i=1

∇θpθ(xi)

q(xi)
Ĵ(xi) (9)

3Note that the random variable to which the variable of integration in
Eq. (8) corresponds may be discrete or mixed, depending on the state
and action spaces. Furthermore, it is of variable dimension, depending
on the length of the trajectory. For the sake of clarity we usenormal
Riemann integration notation; the ideas may be made precise using measure
theoretic notation, replacing the importance sampling weights with the
Radon-Nikodym derivatives.



We estimate the corresponding cost similarly:

χ̂(θ, {xi}N
i=1) =

1

N

N∑

i=1

pθ(xi)

q(xi)
Ĵ(xi) (10)

III. I MPORTANCESAMPLING ACTOR-CRITIC

The method described in the previous section applies IS
to a simple trajectory-based cost estimatorĴ(x) to estimate
the objective for different parameter values. The algorithm
developed below, referred to as Importance Sampling Actor-
Critic (ISAC), uses a cost function approximation method
to constrain these estimates to a low-dimensional subspace,
reducing the variance of the resulting estimates.

While the recursive forms of the TD(λ) method [2] and
λ-LSPE [6] algorithms are convenient for online processing,
they do not allow IS to be applied to evaluate the cost of one
policy using simulations from other policies. However, the
structure of theλ-LSTD estimator does provide a form which
allows the quantities being accrued to be broken up into a
mean of independent samples, so that IS can be applied. We
outline how this can be done in Section III-A, and apply the
result to policy gradient estimation in Section III-B.

A. Importance Sampling Least Squares Temporal Difference

Suppose we want to useλ-LSTD to estimate the cost of the
policy resulting from parameterθ. Eq. (4) provides a means
of taking a sequence ofN i.i.d. trajectories and estimating the
quantitiesAθ = E{A(x)} andbθ = E{b(x)}, and hence the
cost function approximation parameterrθ = A

−1
θ

bθ. Using
Eq. (5), we may also obtain unbiased estimates of these
quantities, using simulations from different policies through
importance sampling:

Âθ({xi}N
i=1) =

1

N

N∑

i=1

pθ(xi)

q(xi)
A(xi)

b̂θ({xi}N
i=1) =

1

N

N∑

i=1

pθ(xi)

q(xi)
b(xi) (11)

Since the probability weights are the only variables which
depend on the parameter vector, we can estimate the gradi-
ents of these quantities as:4

∇̂θAθ({xi}N
i=1) =

1

N

N∑

i=1

∇θpθ(xi)

q(xi)
A(xi)

∇̂θbθ({xi}N
i=1) =

1

N

N∑

i=1

∇θpθ(xi)

q(xi)
b(xi) (12)

B. Application to Actor-Critic

If we use an estimate of the expected cost of a simulation
J̃(θ, x), which depends on the value of the policy parameter,
the gradient of the expected cost in Eq. (8) becomes

∇θχ(θ) =

∫
∇θpθ(x)J̃(θ, x)dx +

∫
pθ(x)∇θJ̃(θ, x)dx

(13)

4In general, the gradient of the matrix̂Aθ w.r.t. the vectorθ is a tensor;
we will treat it as a collection of matrices, each member of whichis the
derivative ofÂθ with respect to a different component ofθ.

Noting that if J̃ is not a functionθ, then the second term in
Eq. (13) is zero, we see that Eq. (13) is a generalization of
Eq. (8). Now consider an alternative form of cost estimator,
based on theλ-LSTD algorithm. The cost of a simulation
trajectoryx = (s0, a0, . . . , sn−1, an−1, sn) is estimated as:

J̃(θ, x) = φ(s0)
T rθ (14)

where from Eq. (11)rθ = −A
−1
θ

bθ. Using this estimator,
only the starting state of the trajectory is used for the cost
estimate: the impact of the policy parameter on the cost is
taken into account through the second term in Eq. (13). Since
the cost estimate depends only on the starting state, Eq. (13)
may be rewritten as:

∇θχ(θ) = ∇θ

∫
π̄(s0)J̃(θ, s0)ds0

=

∫
π̄(s0)∇θJ̃(θ, s0)ds0 (15)

Because the distribution of starting state is not a function
of the policy parameter, the first term in Eq. (13) is zero.
Evaluation of Eq. (15) requires the gradient ofJ̃(θ, s0):

∇θJ̃(θ, s0) = φ(s0)
T∇θrθ

= −φ(s0)
T∇θ[A−1

θ
bθ] (16)

= φ(s0)
T {A−1

θ
[∇θAθ]A−1

θ
bθ − A

−1
θ

∇θbθ}
(17)

Eq. (17) should be read as meaning that thei-th element
of ∇θJ̃(θ, s0) is the RHS evaluated with gradients taken
w.r.t. the i-th term of θ. The gradient estimate can then be
evaluated as: (where all estimates are functions of the sample
{xi}N

i=1)

∇̂θχ(θ, {xi}N
i=1) =

[
1

N

N∑

i=1

φ(si
0)

T

]
·

{
Â

−1
θ

∇̂θAθÂ
−1
θ

b̂θ − Â
−1
θ

∇̂θbθ

}
(18)

While the individual estimates for̂Aθ, ∇̂θAθ, b̂θ and∇̂θbθ

are unbiased, the nonlinear composition in Eq. (18) will be
biased. However, as the number of samplesN grows, the
individual estimates converge to the respective true parameter
values, hence the gradient estimate will be asymptotically
unbiased. The cost itself can be estimated similarly:

χ̂(θ, {xi}N
i=1) =

[
1

N

N∑

i=1

φ(si
0)

T

]
Â

−1
θ

b̂θ (19)

C. Remarks

The form of the actor-critic algorithm of [4] provides
insight into a subspace which the basis functions must
span for the purpose of obtaining the gradient estimate. An
analogous insight for the ISAC estimator is not obvious, and
remains an open question. However, the empirical results in
the following section demonstrate the dramatic improvement
in convergence which can be achieved using a well-chosen
low-dimensional cost estimate, as well as the bias which can
result from a poor choice of basis functions.



The approximation architecture is primarily employed in
ISAC to estimate the cost from the starting state to the end of
the simulation. Therefore, it is intuitively desirable to select
the approximation parameter which minimizes the difference
between the true cost and the approximate cost according
to a norm weighted by the distribution of starting states.
Convergence bounds for temporal difference algorithms [2]
(includingλ-LSTD) are in terms of theL2 norm weighted by
the steady state distribution. Accordingly, if the distribution
of starting state is vastly different from the steady state
distribution, then the error in the resulting cost estimatemay
be large.

A practical issue which affects the IS and ISAC algorithms
alike is computational complexity, due to the growing history
of system interactions over which the estimates are calcu-
lated. In practice, one would commonly retain a subset of
past interactions; in the experiments to follow, we retain the
most recent 10,000 simulations. Selection of this memory
length effectively allows the system designer to trade off
the number of interactions required with the system against
computational cost.

IV. EXPERIMENTAL RESULTS

We compare the performance of the algorithm presented
in Section III was compared to the IS estimator discussed
in Section II-B for a queueing problem. So that we might
compare performance to the optimal solution, the problem
was chosen to have a small enough size such that the
actual cost-to-go function can be calculated. The state in
the problem corresponds to the length of a queue,s ∈
{0, . . . , B}, whereB = 100. The controla ∈ {0, 1} affects
the probability that the queue length is reduced:

P (sk = y|sk−1 = x, ak−1 = a) =




1, y = x = 0

1 − βa, y = x > 0

βa, y = x − 1 ≥ 0

0, otherwise

(20)

whereβ0 = 0.2, and β1 = 0.5. The initial state is drawn
from a modified geometric distribution:

P (s0 = x) =





0, x = 0

(1 − ω)x−1ω, 1 ≤ x < B∑∞

y=B (1 − ω)y−1ω, x = B

(21)

where ω = 0.03. The cost per stage is given byga(s) =
s + aη, whereη = 35. The stochastic shortest path problem
terminates when the queue is emptied (s = 0). A reason-
able parameterized policy family for this problem is a soft
threshold function:

uθ(s, a = 1) =
exp[0.1(s − θ)]

1 + exp[0.1(s − θ)]
(22)
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Fig. 1. Expected cost from starting state to termination as a function ofθ.
Upper figure shows the true cost, and costs estimated from a single set of
10,000 simulations using the ISAC and normalized IS estimators. Lower plot
shows the 1-σ confidence bounds for estimates using 10,000 simulations,
estimated using 400 sets of 10,000 simulations.

For any givenθ, the true cost of the policy can be found by
solving Bellman’s equation: [1]

Jθ(s) =
∑

a

uθ(s, a)ga(s) +
∑

a,y

uθ(s, a)P (y|s, a)Jθ(y),

s ∈ {1, . . . , B} (23)

whereJθ(0) = 0. The valueJθ(s) is the expected cost to
reach termination from states using the policy defined by
the parameterθ. From Eq. (1), the quantity which we seek to
minimize is the expected cost to reach termination when the
starting state is drawn from the initial distribution in Eq.(21),
χ(θ) =

∑
s P (s0 = s)Jθ(s). We use the valueλ = 1 in the

LSTD algorithm, and feature vectorsφ(s) = [s s2 s3]T .

A. Cost function estimates

In order to give a qualitative comparison of the rela-
tive merit of the two approximations, the cost estimates
of Eq. (10) and Eq. (19) were evaluated for a range of
values ofθ with simulations computed using random policy
parameter values,θ ∼ U(0, 100). The upper plot in Fig. 1
compares the true cost to the cost estimates obtained using
the two methods with a single set of 10,000 simulations.
The gradient estimators of Eq. (9) and Eq. (18) correspond
to calculating the derivative of the respective curves in Fig. 1,
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Fig. 2. Convergence of gradient search algorithms. Upper plot shows mean
and standard deviation of the true cost achieved after different numbers
of gradient steps using the ISAC and IS gradient estimates with step size
τ = 0.05. Lower plot shows the same data for ISAC alongside results using
IS gradient estimate with step sizeτ = 0.0025. Some lower error bounds
fall below the optimal cost due to skewness in the distributions.

hence the diagram allows one to anticipate the behavior
of a gradient optimization procedure to some degree. The
large variability of the IS estimate demonstrates that gradient
estimates combining this number of simulations will still
have a large variance. While there are still fluctuations in
the ISAC estimate (and some local minima), their variance
is reduced substantially. The lower plot in Fig. 1 shows
the 1-σ confidence bounds for the estimates obtained from
10,000 simulations (the confidence bounds were estimated
using 400 different sets of 10,000 simulations). The reduction
in the standard deviation of the ISAC estimator over the
normalized IS estimator is a factor of between four and
six, corresponding to a reduction in variance by a factor of
between 20 and 40.

B. Gradient search

To compare the performance of the gradient search proce-
dures, we tested the two algorithms from the same starting
point for 150 random values ofθ0 ∼ U(0, 100). In each gra-
dient iteration, we performed 100 Monte Carlo simulations
using the current policy parameterθk, calculated the gradient
using the respective estimate (Eq. (9) and Eq. (18)), and
implemented the gradient stepθk+1 = θk − τ∇̂χ. Gradient
estimates were calculated using a sliding window of the
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Fig. 3. Approximation of objective function resulting from different choices
of basis functions.

last 10,000 simulations. The behavior of the algorithms is
illustrated in Fig. 2. The upper plot shows the mean and stan-
dard deviation of the true costs of the policies after different
numbers of gradient steps, with step sizeτ = 0.05. The plot
illustrates that the ISAC method consistently converges to
the optimal solution, while the IS method oscillates between
apparent local minima. The lower plot shows the same data
for ISAC alongside results using IS gradient estimate with
step sizeτ = 0.0025. With the smaller step size, the IS
estimator exhibits slow convergence towards the minimum,
but a far greater number of steps is required to achieve the
same degree of convergence as ISAC.

C. Impact of approximation architecture

The ISAC method discussed in Section III-B effectively
optimizes the functioňχ(θ) = E{φ(s0)

T }rθ, whererθ is
the approximation architecture parameter vector suppliedby
the λ-LSTD algorithm. If λ = 1, the LSTD algorithm will
converge to the weighted projection of the true cost function
onto the approximation architecture subspace. The approxi-
mationsχ̌(θ) resulting from these projections are shown for
different selections of approximation architecture in Fig. 3,
demonstrating the importance of choosing an approximation
architecture which provides sensitivity to variations in the
cost due to the changing parameter vector. In this problem,
a quadratic cost approximation visually appears to providea
good fit to the true cost (i.e., Jθ(s) is well-approximated by
r · s2 for most policies), yet the resulting approximation of
χ(θ) loses much of the true structure. Comparatively, a linear
cost approximation visually seems poorer, but the resulting
approximation is reasonable.

V. CONCLUSIONS

This paper has shown how importance sampling can be
applied to estimate the parameter of a cost function approx-
imation architecture usingλ-LSTD, and how the resulting
algorithm can be applied to improve gradient estimates in a
policy gradient optimization by restricting cost estimates to a



low-dimensional subspace. Our empirical results demonstrate
the utility of the proposed method in several ways: analysis
of the cost function showed that the proposed method results
in a significantly better approximation, while gradient imple-
mentations were able to use much larger step sizes, resulting
in significantly faster convergence behavior.
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