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Abstract— Importance Sampling (IS) and actor-critic are two Sampling (IS) method of [5], discussed in detail in Sectien |
methods which have been used to reduce the variance of B provides a means of utilizing information from the entire
gradient estimates in policy gradient optimization methods. We history of interactions with the system (using many différe

show how IS can be used with Temporal Difference methods lici t t d d . timat f th
to estimate a cost function parameter for one policy using policies) to compute a reduced variance estimate o e

the entire history of system interactions incorporating many Objective gradient. We present an algorithm in Section IlI
different policies. The resulting algorithm is then applied to that combines the IS algorithm with a cost function approx-

improving gradient estimates in a policy gradient optimization.  jmation method. By restricting the cost estimates to lie in
The empirical results demonstrate a 20-4& reduction in vari- 5 |qw-dimensional subspace, the variance of the gradient
ance over the IS estimator for an example queueing problem, - . . . . .
resulting in a similar factor of improvement in convergence for est|mate is reduced substantially. Th_e S|_mulat!on resalts
a gradient search. Section |V demonstrate a 20-40reduction in variance over
the IS estimator for an example queueing problem.
. INTRODUCTION Whereas Konda and Tsitsiklis’ actor-critic method relies
Many problems of practical interest can be formulated andn two time constants, one of which controls the faster adap-
conceptually, solved optimally using dynamic programmingion rate of the approximation parameter, and the otherhvhic
(cf [1]). However, the practical applicability of the methodcontrols the slower adaption rate of the policy parameter,
to problems with large state spaces is limited due to theur method adaptively weights the entire system interactio
so-called curse of dimensionality. The absence of exact history to calculate approximation parameters. This adlow
models for the systems of interest further limits applitghi the system designer to trade off the number of interactions
through the so-calledurse of modelling. Approximations required with the system against computational cost.
which address both of these difficulties have been studied
extensively over the past decade, and may be divided into
two broad categories: cost function approximation methods Consider a Markov Decision Process (MDP) with states
and policy approximation methods. s € § and actionsz € A. We assume a randomized policy
Cost function approximation methods seek to approximatearameterized by, such that actiom is selected in state
the optimal cost-to-go function with a particular parangetr With probability ug (s, a). If action a is selected in state,
form, such as a linear combination of basis functions. Thée immediate cost incurred ig,(s), and the next state is
parameter vector can be learned from simulation using tfawn from the transition distribution o8, p(-|s, a).
method of Temporal Differences [2]. In policy approxima- For our purposes, we consider stochastic shortest path
tion, one chooses a particular parameterized policy familjormulations in which, under all policies, there is a single
and seeks to find the parameter value which minimizes tiecurrent class of statés C S and that these states are cost-
cost of employing the policy. The minimization is commonlyfree (g.(s) = 0V s € 7). Thus the goal of the policy is to
performed using stochastic gradient methods. The poligpinimize the cost incurred before reaching the terminal set
gradient method [3] obtains a noisy estimate of the gradiefdt- As in [3], we assume that the starting state is drawn from
of the objective with respect to the policy parameter fronthe probability distribution ors, 7(-). We denote byJg(s)
a single simulation trajectory. The actor-critic method [4the expected cost-to-go from stateising the policy defined
improves this estimate by incorporating cost function agpr by the parameter vectd?. Consequently, the objective we
imation: by retaining information from previous simulatiy ~ wish to minimize is:
and constraining the estimates of the cost-to-go function ~
to a low-dimensional subspace, the variance is reduced x(9) :/S“(S)J@(S)ds @)
substantially. . .
Frequently, interaction with the system (or simulatior\NWe alf Sl:r:n € that the state is Fnowr:ﬁat each decrllslﬁntstep.
of the system) is expensive, computationally or otherwise, € make the common assumptions that < oo such tha
hence it is desirable to exploit the limited simulation data 1pn;10g0us statements can be made for average cost per stagenso
which is available as much as possible. The Importandg considering renewal intervals, as per the developmerg]in [
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the probability of terminating withim steps from any state samples{z‘}¥ ; drawn from distributiong(-), is expressed
and under any policy is uniformly bounded below by> by:
0, and that the policy distributiomg (s, a) is differentiable

N .

w.r.t. 8 and Yerelsa) is phounded. ;1 pele) .

ug(s,a) f = N Z qe(;l)) f(I )
A. \-Least Squares Temporal Difference i:}v o

1 z" i
A-Least Squares Temporal Differencel(STD) provides Fe N Dic1 pqe(xi) f(x") )
a method of approximate policy evaluation with convergence % ZN L Pe((“ii))
1= q(x?

at a much faster rate than traditional temporal difference
methods [6], [7]. Given a set of basis functions, the costrhe estimatef is unbiased, provided that(z) > 0V z :
to-go is approximated by: pe(z) > 0, and converges to the true value as the number
7 f samples increases. The normalized estimatesduces
J(s,7) = ¢(s)" 2) ° _ ! 12ed . :
(s,7) = @s)"r 2) the variance inf at the expense of inducing a bias (which
To apply it to a stochastic shortest path problem, we take\&nishes asymptotically). Samples corresponding to many

series of independent simulation trajectories and acavue fdifferent parameter value§d;, ¢ € {1,...,N}} may be
the i-th simulation,z® = (s, af,...,s’, ,,al. |, s'.), the admitted by treating them as collectively belonging to the
following quantities: mixture densityg(z) = + Zf\ilpgi (x), wherepg, (z) is the

likelihood of trajectoryx under the policy defined by the

n'—1 .
N i i _ i T th paramete®;. In a stochastic shortest path problem, each
Afa) = 2—:0 Zm[ @5 41) = Blsm)] simulation trajectory forms an independent sample, sigurti
:::1 at an independently drawn initial statg ~ 7(-), and ending
N i i with s, € 7. The likelihood of obtaining a given trajectory
b(a") = — Zm9(5m) (3) x = (80,00, -,81—-1,0n—1, S,) May be calculated as:
where zi, = 7" A" F@(si). We can then combine " nt
N simulation trajectoriegz!,...,z") to give an overall po(x) = p(SO)HP(si‘SFl’aFl) ' H“G(Si’“i)
estimate: =1 =0 ©)
1 N
Ay =— Z A(zh) where only the second term in brackets has dependence on
m=1 the policy parameter vect@. Consequently, in calculating
1 & A the ratios@ to estimate the cost at parameter vafyehe
by = i mz_l b(z") transition probabilities cancel leaving:
P n—1
rN = _A;Vle (4) pg(iE) _ Hi:o ue(sivai) @

x) LyWN n—1 .
This is equivalent to the method described in [6], except tha (@) ~ Lj=01lizo vo;(si,a:)
the eligibility tracez" is reset after each simulation (which|n order to estimate the gradient of the objective, one can
is natural for a stochastic shortest path problem). Undét miyse a simple estimate of the cost along a trajectdfy,) =
conditions?> Ay and by will converge to their expected Sr_o Gay (sk). Noting thatE{J (z)|so ~ 7(-)} = x(8), we
values asN — oo w.p. 1, hence the parameter vectay  then have3
also converges. The choice of basis functigts) is problem

dependent; Section IV provides an example for a queueing Vox(0) = /V,,pg(x)j(x)dm
problem. S
_ 6pe(T) »
B. Importance Sampling = /po(fl?)po(m)J(I)dl’ (8)

Policy gradient methods estimaf@yy(6) via a small , Vope(z) :
number of Monte Carlo simulations under an essentiall}SSUMIng that=""== is bounded, we apply Eq. (5) to
fixed policy. The resulting estimate often exhibits high®Ptain

variance, increasing convergence times while decreasing - A 1 X Vope(a') », .

the utility of the resulting policy. Peshkin and Shelton [5] Vox(0,{z'}N ) = i Z ———J(z") 9)
suggest an Importance Sampling (IS) approach, using sample i=1 q(z?)

trajectories undevaried policies, as a means of incorporating

previous simulations and, consequently, reducing the- vari 3Note that the random variable to which the variable of iraéign in

. . - . Eqg. (8) corresponds may be discrete or mixed, depending ontéte s
ance. The Importance sampllng eSt'matd&{ff(I)}’ UsiNg  gng action spaces. Furthermore, it is of variable dimensi@pexding

on the length of the trajectory. For the sake of clarity we usemal

2The trajectoriesz*} are i.i.d., the per-stage costs are bounded and thRiemann integration notation; the ideas may be made precisg osasure

usual termination assumption of stochastic shortest pathlgms are met theoretic notation, replacing the importance sampling wsighith the
(i.e. A(z?) andb(z?) have finite variance). Radon-Nikodym derivatives.



We estimate the corresponding cost similarly: Noting that if J is not a functiond, then the second term in
Eq. (13) is zero, we see that Eq. (13) is a generalization of

N i
(0, {z N )) = 1 Z pe(? )j(xi) (10) Ed. (8). Now consider an alternative form of cost estimator,
N = q(a") based on the\-LSTD algorithm. The cost of a simulation
[1l. | MPORTANCE SAMPLING ACTOR-CRITIC trajectoryz = (s0,ao, - - -, $n—1,an-1, 5n) is estimated as:
The method described in the previous section applies 1S J(&x) = ¢(s0) ' re (14)

to a simple trajectory-based cost estimafqéw) to estimate _ 1 . . :

the objective for different parameter values. The algamith Whlerfhfror? Eq' (1t1)':0 _f t;Af{’ l_)g.tUSIn_g thlSdefSter:ﬁtOI', "

developed below, referred to as Importance Sampling Actof'y e starting state of the trajectory 1S used for the cos
stimate: the impact of the policy parameter on the cost is

Critic (ISAC), uses a cost function approximation method . . i
to constrain these estimates to a low-dimensional subspa%%ken into account through the second term in Eq. (13). Since

reducing the variance of the resulting estimates. e cost estimate depends only on the starting state, EJy. (13
While the recursive forms of the TRJ method [2] and M2 be rewritten as:

A-LSPE [6] algorithms are convenient for online processing, . /, =

they do not allow IS to be applied to evaluate the cost of one Vox(0) = Ve [ 7(s0)J(8,50)ds0

policy using simulations from other policies. However, the [ v..j(0 d 15

structure of the\-LSTD estimator does provide a form which = | m(50)VeJ (8, 50)dso (15)

allows thg quantities being accrued to be broken UD,'nto Because the distribution of starting state is not a function
mean of independent samples, so that IS can be applied. the policy parameter, the first term in Eq. (13) is zero.

outline how this can be done in Section IlI-A, and apply theEvaIuation of Eq. (15) requires the gradienti](fe 50):
result to policy gradient estimation in Section IlI-B. ~ ’
VoJ(0,50) = ¢(s0)" Vere

A. Importance Sampling Least Squares Temporal Difference

_ T -1
Suppose we want to useLSTD to estimate the cost of the - (b(SOT) vfl[A9 bo] » » (16)
policy resulting from paramete?. Eq. (4) provides a means =¢(s0) {Ag [VeAs]Ag bo — Ay Vobg}
of taking a sequence d¥ i.i.d. trajectories and estimating the (17)

quantitiesAy = E{A(z)} andbe = E{b(x)}, and hence the Eq. (17) should be read as meaning that tth element

cost function approximation parametes = A, 'bg. Using  of VeJ(8,50) is the RHS evaluated with gradients taken
Eq. (5), we may also obtain unbiased estimates of theg@rt. thei-th term of 6. The gradient estimate can then be
quantities, using simulations from different policiesahgh  evaluated as: (where all estimates are functions of the lsamp

importance sampling: {z1} )
Ao({2'}) = iip"(x-i)A(xi) o 1
=1 N P q(z?) Vox(0,{z'}iL,) = [Nz¢(56)T] :
N i /51 I A=
bo({a' L) = fVE_; : ;(f;f))b(w”) (11) {A5'V0A0A5 00 — Ay Voby | (18)

Since the probability weights are the only variables whiciVhile the individual estimates foke, @e_, be andV/g\bg_
depend on the parameter vector, we can estimate the gradie unbiased, the nonlinear composition in Eq. (18) will be

ents of these quantities &s: biased. However, as the number of samplMésgrows, the

N oo , individual estimates converge to the respective true param
VoAy({z'}Y,) = 72 BPGE )A(xz) valu'es, hence the gradlent estlmatg will be.a_symptotlcally
—~  q(2) unbiased. The cost itself can be estimated similarly:
N ; N
e : 1 Vng(IZ) ;i ; 1 ; N 7
iI\N _ % ~ 7 ) —
Vobe({z'}il1) = 2 ) b(z')  (12) X0, {z"}L) = | & E_ﬂ ¢(s0)" | Ag'be  (19)
B. Application to Actor-Critic C. Remarks

If we use an estimate of the expected cost of a simulation The form of the actor-critic algorithm of [4] provides

J(8, ), which depends on the value of the policy parametefpsight into a subspace which the basis functions must
the gradient of the expected cost in Eq. (8) becomes  gpan for the purpose of obtaining the gradient estimate. An
0 0.2\ F0 analogous insight for the ISAC estimator is not obvious, and

Vex(0) = | Vepo(z)J(0,x)dz + [ pe(x)VeJ (0, x)dr  emains an open question. However, the empirical results in

(13)  the following section demonstrate the dramatic improvemen
4 ) _A ) in convergence which can be achieved using a well-chosen
In general, the gradient of the matrg w.r.t. the vector@ is a tensor; | di . | . I he bi hich

we will treat it as a collection of matrices, each member of whlhe ow-dimensional cost e.St'mate' a_s we qs the bias which can

derivative of Ay with respect to a different component 6f result from a poor choice of basis functions.



The approximation architecture is primarily employed in Cost approximation using 10,000 simulations
4800r

ISAC to estimate the cost from the starting state to the end of )

the simulation. Therefore, it is intuitively desirable telect 4600r f(SAC 1

the approximation parameter which minimizes the diffeeenc ~ _ 4400 — — - IS normalized I

between the true cost and the approximate cost according g 4200F

to a norm weighted by the distribution of starting states. § a000b

Convergence bounds for temporal difference algorithms [2] g 2800k

(including \-LSTD) are in terms of thé., norm weighted by u

the steady state distribution. Accordingly, if the distition 3600y

of starting state is vastly different from the steady state 3400p

distribution, then the error in the resulting cost estinratey 3200 : : : : :

be large. 0 20 40 . 60 80 100
A practical issue which affects the IS and ISAC algorithms

alike is computational complexity, due to the growing higto Cost approximation confidence regions

of system interactions over which the estimates are calcu- #8007 %(©)

lated. In practice, one would commonly retain a subset of 4600r ISAC y

past interactions; in the experiments to follow, we rethia t 4400r| — — ~ IS normalized e

. ; ) i s == IS lized
most recent 10,000 simulations. Selection of this memory & 4200 Lrnormene
length effectively allows the system designer to trade off & 4000} -
the number of interactions required with the system against & 3800k
computational cost. - L~
3600f v —~
< e
3400+ ST
IV. EXPERIMENTAL RESULTS 3200 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100
We compare the performance of the algorithm presented 0

in Section Ill was compared to the IS estimator discussed 1 Expected cost f arting state 1o terminati don of 6

. . . . 1g. 1. Xpected cost from starting state to termination asation of6.

in Section II-B for a queueing pr_Oblem' S(_) that we mlghﬁpper figure shows the true cost, and costs estimated fromgtesset of
compare performance to the optimal solution, the problenn,000 simulations using the ISAC and normalized IS estimatanser plot
was chosen to have a small enough size such that thows the 1> confidence bounds for estimates using 10,000 simulations,
actual cost-to-go function can be calculated. The state fifimated using 400 sets of 10,000 simulations.

the problem corresponds to the length of a queues
{0,..., B}, whereB = 100. The controla € {0, 1} affects

the probability that the queue length is reduced: For any giverd, the true cost of the policy can be found by

solving Bellman’s equation: [1]

P(sk = ylsk-1 = z,a5-1 = a) = To(s) =D _ua(s,a)ga(s) + > ua(s,a)Plyls,a) J(y),
]-7 Yy=x = 0 a a,y
1_5@7 y=x>0 (20) SE{].,...,B} (23)
Bas y=z-120 where Jy(0) = 0. The valueJy(s) is the expected cost to
0, otherwise reach termination from state using the policy defined by

the parametef. From Eq. (1), the quantity which we seek to
where 5, = 0.2, and 8; = 0.5. The initial state is drawn minimize is the expected cost to reach termination when the

from a modified geometric distribution: starting state is drawn from the initial distribution in §g1),
x(0) =>", P(so = 5)Jo(s). We use the value. = 1 in the
0, =0 LSTD algorithm, and feature vectorgs) = [s s? s%]7.
P(sp =) =1 (1 —w)* lw, 1<z< B (21)

T o1 B A. Cost function estimates
— —w w, T = ) o _
y=> In order to give a qualitative comparison of the rela-

wherew = 0.03. The cost per stage is given ly(s) = tive merit of the two approximations, the cost estimates

s + an, wheren = 35. The stochastic shortest path problenf’ EG. (10) and Eq. (19) were evaluated for a range of
terminates when the queue is emptied=¢ 0). A reason- values off with simulations computed using random policy

able parameterized policy family for this problem is a sofParameter valuesj ~ U(0,100). The upper plot in Fig. 1
threshold function: compares the true cost to the cost estimates obtained using

the two methods with a single set of 10,000 simulations.
The gradient estimators of Eq. (9) and Eq. (18) correspond

_ - exp[0.1(s — 6)]
ug(s,a =1) to calculating the derivative of the respective curves m Ej

1+ exp[0.1(s — 0)]

(22)



Convergence of gradient search Approximations ofx(6) induced by basis function selections

4600r 4800r
A ISAC X(6)
4400 o IS 4600} _ T .
Optimal cost os)=1[s §s3] »/
. 4200} aaooll T 7 —qs)=¢ v
g == @s)=s /
g 4000j 4200t
= Lol _
38001 4000}
ZiZ-AZ A, vy
36001 ] SHHHHTTEE ﬁﬁﬁﬁﬂ’f””’m”” 3800+
3400 : : : : : : : ;
0 50 100 150 200 250 300 350 400 3600f
Step number
3400 , : - ,
Convergence of gradient search 0 20 40 60 80 100
4100r 0
A ISAC
400011 - o s . I Fig. 3. Approximation of objective function resulting froriffdrent choices
3900l [ 1T+ Optimal cost of basis functions.
g 380081,1 PP
() p . . . . .
2 3700} “Azz,z 1] last 10,000 simulations. The behavior of the algorithms is
a600lLbL 1444 AT ] illustrated in Fig. 2. The upper plot shows the mean and stan-
B o AL A A - . .. .
TIITTITT Margatans dard deviation of the true costs of the policies after défer
e numbers of gradient steps, with step size- 0.05. The plot
3400 \ s \ \ \ \ \ \ illustrates that the ISAC method consistently converges to
0 50 100 150 200 250 300 350 400

the optimal solution, while the IS method oscillates betwvee
apparent local minima. The lower plot shows the same data
Fig. 2. Convergence of gradient search algorithms. Uppershlows mean for ISAC alongside results using IS gradient estimate with
and standard deviation of the true cost achieved afterrdiftenumbers Step sizer = 0.0025. With the smaller step size, the IS
of gradient steps using the ISAC and IS gradient estimat_ds; stép size ) estimator exhibits slow convergence towards the minimum,
7 = 0.05. Lower plot shows the same data for ISAC alongside resultgusi but a far greater number of steps is required to achieve the

IS gradient estimate with step size= 0.0025. Some lower error bounds
fall below the optimal cost due to skewness in the distrimsio same degree of convergence as ISAC.

Step number

C. Impact of approximation architecture

hence the diagram allows one to anticipate the behavior The ISAC method discussed in Section 1lI-B effectively
of a gradient optimization procedure to some degree. Thgptimizes the functiony(9) = E{¢(s0)” }re, Wherer, is
large variability of the IS estimate demonstrates thatigratd the approximation architecture parameter vector supjidied
estimates combining this number of simulations will stillthe \-LSTD algorithm. If A = 1, the LSTD algorithm will
have a large variance. While there are still fluctuations igonverge to the weighted projection of the true cost fumctio
the ISAC estimate (and some local minima), their variancento the approximation architecture subspace. The approxi
is reduced substantially. The lower plot in Fig. 1 showsnationsy(¢) resulting from these projections are shown for
the 1o confidence bounds for the estimates obtained fromifferent selections of approximation architecture in.Fg
10,000 simulations (the confidence bounds were estimat@émonstrating the importance of choosing an approximation
using 400 different sets of 10,000 simulations). The rédact architecture which provides sensitivity to variations et

in the standard deviation of the ISAC estimator over theost due to the changing parameter vector. In this problem,
normalized IS estimator is a factor of between four and quadratic cost approximation visually appears to proside
six, corresponding to a reduction in variance by a factor qjood fit to the true costi.€., Jy(s) is well-approximated by

between 20 and 40. r - 52 for most policies), yet the resulting approximation of
i x(0) loses much of the true structure. Comparatively, a linear
B. Gradient search cost approximation visually seems poorer, but the resultin

To compare the performance of the gradient search proc@Pproximation is reasonable.
dures, we tested the two algorithms from the same starting
point for 150 random values @f ~ U(0, 100). In each gra-
dient iteration, we performed 100 Monte Carlo simulations This paper has shown how importance sampling can be
using the current policy paramety, calculated the gradient applied to estimate the parameter of a cost function approx-
using the respective estimate (Eq. (9) and Eqg. (18)), arithation architecture using-LSTD, and how the resulting
implemented the gradient stép,; = 0, — 7Vx. Gradient algorithm can be applied to improve gradient estimates in a
estimates were calculated using a sliding window of thpolicy gradient optimization by restricting cost estinsate a

V. CONCLUSIONS



low-dimensional subspace. Our empirical results dematestr
the utility of the proposed method in several ways: analysis
of the cost function showed that the proposed method results
in a significantly better approximation, while gradient leyp
mentations were able to use much larger step sizes, resultin
in significantly faster convergence behavior.
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