
A CONSTRAINT GENERATION INTEGER PROGRAMMING APPROACH TO
INFORMATION THEORETIC SENSOR RESOURCE MANAGEMENT

Jason L. Williams,1,2 John W. Fisher III,2 Alan S. Willsky1,2

1Laboratory for Information and Decision Systems and
2Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge MA 02139
jlwilliams@alum.mit.edu fisher@csail.mit.edu willsky@mit.edu

ABSTRACT
Many estimation problems involve sensors which can be ac-
tively controlled to alter the information received and uti-
lized in the underlying inference task. In this paper, we dis-
cuss a novel integer programming method which exploits the
submodularity of information theoretic estimation criterion to
find an efficient solution to constructing an open loop plan
for sensor resource management problems involving many
independent objects. The integer programming formulation
solves a sequence of simplified problems; the solution of each
forms an upper bound to the full complexity problem. The
updates performed between iterations may be viewed as steps
in a constraint generation process, ensuring that the bound is
successively tightened. An auxiliary problem also provides
a lower bound to the optimal solution, and a solution attain-
ing that bound, enabling early termination with a guaranteed
near-optimal solution. Computational experiments demon-
strate the benefit that the algorithm can provide in various
planning problems.

Index Terms— Sequential decision procedures, sequen-
tial estimation, tracking

1. INTRODUCTION

Active sensing is motivated by modern sensors which can be
controlled to observe different aspects of an underlying prob-
abilistic process. For example, if we use cameras to track
people in buildings, we can steer the camera to focus or zoom
on different people or places; in a sensor network, we can
choose to activate and deactivate different nodes and different
sensing modalities within a particular node; or in a medical
diagnosis problem we can choose which tests to administer to
a patient. In each of these cases, our control choices impact
the information that we receive in our observation, and thus
the performance achieved in the underlying inference task.

A commonly used performance objective in active sens-
ing is mutual information (MI) (e.g., [1]). Denoting the quan-
tity that we aim to infer as X and the observation resulting

This work was supported by MIT Lincoln Laboratory through ACC
PO#3019934.

from control choice u as zu, the MI between X and zu is
defined as the expected reduction in the entropy produced by
the observation [2], i.e., I(X; zu) = H(X) − H(X|zu) =
H(zu) −H(zu|X).1 Since H(X) is invariant to the control
choice u, choosing u to maximize I(X; zu) is equivalent to
minimizing the uncertainty in X as measured by the condi-
tional entropy H(X|zu).

In this paper we propose a novel method for addressing
a problem structure which commonly arises in multiple ob-
ject tracking, similar to that examined in [3]. Suppose that
we have a number of objects, numbered {1, . . . ,M}, each of
which can be observed using any sensor time slot. We seek to
construct an open loop plan of which object to observe with
our sensor (or sensors) in each time slot. This entire plan
could be executed, or the first few steps could be executed and
an updated plan constructed (so-called Open Loop Feedback
Control, [4]). To motivate this structure, consider a problem
in which we use an airborne sensor to track objects moving
on the ground beneath foliage. In some positions, objects will
be in clear view and observations will yield accurate posi-
tion information; in other positions, objects will be obscured
by foliage and observations will be essentially uninformative.
Within the time scale of a planning horizon, objects will move
in and out of obscuration, and it will be preferable to observe
objects during the portion of time in which they are expected
to be in clear view.

Our algorithm exploits submodularity, the same property
used to obtain performance guarantees for greedy heuristics
in [5, 4]. Submodularity captures the notion that as we se-
lect more observations, the value of the remaining unselected
observations decreases, i.e., the notion of diminishing returns.

Definition 1. A set function f is submodular if f(C ∪ A) −
f(A) ≥ f(C ∪ B)− f(B) ∀ B ⊇ A.

It was established in [5] that, assuming that observations
are independent conditioned on the quantity to be estimated,
MI is a submodular function of the observation selection set.

1Note that when we condition on a random variable (such as a yet unre-
alized observation) the conditional entropy involves an expectation over the
distribution of that random variable.



The simple result that we will utilize from submodularity is
that I(x; zC |zA) ≥ I(x; zC |zB) ∀ B ⊇ A.

2. INTEGER PROGRAMMING FORMULATION

The emphasis of our formulation is to exploit the structure
which results in sensor management problems involving ob-
servation of multiple independent objects. In addition to the
above assumption that observations should be independent
conditioned on the state, three new assumptions regarding the
objects’ states must be met for this structure to arise: (1) the
prior distribution over object states must be independent; (2)
the objects must evolve accordingto independent dynamical
processes; and (3) the objects must be observed through in-
dependent observation processes. The first two assumptions
are not overly limiting in multi-object tracking problems. The
third, which is often violated (e.g., due to data association), is
made as an approximation for planning purposes. In circum-
stances involving strong dependency between small numbers
of objects (out of a large total number), dependent objects
may be considered as a collective hyper-object, and indepen-
dence of the hyper-objects remains.

When the three assumptions are met, the mutual infor-
mation reward of observations of different objects becomes
the sum of the individual observation rewards. Denoting by
Xi = {xi1, . . . , xiN} the joint state (over the N -step planning
horizon) of object i, we define the reward of observation set
Ai ⊆ {1, . . . , N} of object i (i.e., Ai represents the subset of
time slots in which we observe object i) to be:

riAi = I(Xi; ziAi) (1)

where ziAi are the random variables corresponding to the ob-
servations of object i in the time slots in Ai. Under the pre-
ceding assumptions, we can write the reward of choosing ob-
servation set Ai for object i ∈ {1, . . . ,M} as:

I(X1, . . . , XM ; z1
A1 , . . . , zMAM )

=
M∑
i=1

I(Xi; ziAi) =
M∑
i=1

riAi (2)

As a slight generalization, let R denote the set of sens-
ing resources that are available (assumed finite). The ele-
ments ofRmay correspond to different time slots of the same
sensor, the same time slot of different sensors, or combina-
tions of both. We assume that each element of R may be
assigned at most one task (although this can be easily gen-
eralized, as shown in [4]). As another slight generalization,
let U i = {ui1, . . . , uiLi} be the set of elemental observation
actions (assumed finite) that may be used for object i, where
each elemental observation uij corresponds to observing ob-
ject i using a particular mode of a particular sensor within
a particular period of time. An elemental action may oc-
cupy multiple resources; let t(uij) ⊆ R be the subset of re-
sources consumed by the elemental observation action uij . Let

S i ⊆ 2U
i

be the collection of observation subsets which we
allow for object i. This is assumed to take the form of Eq. (3),
consisting simply of all subsets of U i for which no two ele-
ments consume the same resource:

S i = {A ⊆ U i|t(u1)∩t(u2) = ∅ ∀ u1, u2 ∈ A} (3)

We denote by t(A) ⊆ R the set of resources consumed by the
actions in set A, i.e., t(A) =

⋃
u∈A t(u).

The problem that we (conceptually) seek to solve is that
of selecting the set of observation actions for each object such
that the total reward is maximized subject to the constraint
that each resource can be used at most once:

max
ωi
Ai

M∑
i=1

∑
Ai∈S i

riAiω
i
Ai (4a)

s.t.
M∑
i=1

∑
Ai∈S i

t∈t(Ai)

ωiAi ≤ 1 ∀ t ∈ R (4b)

∑
Ai∈S i

ωiAi = 1 ∀ i ∈ {1, . . . ,M} (4c)

ωiAi ∈ {0, 1} ∀ i, Ai ∈ S i (4d)

The binary indicator variables ωiAi are 1 if the observation
set Ai is chosen for object i and 0 otherwise. The constraints
in Eq. (4b) ensure that each resource (e.g., sensor time slot)
is used at most once. The constraints in Eq. (4c) ensure that
exactly one observation set is chosen for any given object; this
is necessary to ensure that the additive objective is the exact
reward of corresponding selection (since, in general, riA∪B 6=
riA + riB).

The problem is not a pure assignment problem, as the
observation subsets Ai ∈ S i consume multiple resources
and hence appear in more than one of the constraints defined
by Eq. (4b). The problem is actually a bundle assignment
problem, and conceptually could be addressed using combi-
natorial auction methods (e.g., [6]). However, generally this
would require computation of riAi for every subset Ai ∈ S i.
If the collections of observation sets S i, i ∈ {1, . . . ,M} al-
low for several observations to be taken of the same object,
the number of subsets may be combinatorially large.

3. CONSTRAINT GENERATION APPROACH

This section outlines the approach we propose, which in many
practical situations can provide an efficient solution of the in-
teger program in Eq. (4). The algorithm, which is described
in detail in [4], proceeds by sequentially solving a series of in-
teger programs with progressively greater complexity. In the
limit, we arrive at the full complexity of the integer program
in Eq. (4), but in many practical situations it is possible to
terminate much sooner with an optimal solution. By simulta-
neously lowering an upper bound on the optimal solution, and



raising a lower bound on the optimal solution (which comes
alongside a solution attaining the lower bound), we can also
terminate early with a solution that is guaranteed to be within
a given fraction of optimality.

The formulation may be conceptually understood as di-
viding the collection of subsets for each object (S i) at iter-
ation l into two collections: T i

l ⊆ S i and the remainder
S i\T i

l . The subsets in T i
l are those for which the exact

reward has been evaluated; we will refer to these as candi-
date subsets. The reward of each of the remaining subsets
(i.e., those in S i\T i

l ) has not been evaluated, but an upper
bound to each reward is available. In practice, we will not
explicitly enumerate the elements in S i\T i

l ; rather we use
a compact representation which implicitly considers all ele-
ments on the basis of upper bounds obtained using submodu-
larity. The compact representation of S i\T i

l associates with
each candidate subset, Ai ∈ T i

l , a subset of observation ac-
tions, Bil,Ai ; A

i may be augmented with any subset of Bil,Ai
to generate new subsets that are not in T i

l (but that are in S i).
We refer to Bil,Ai as an exploration subset, since it provides a
mechanism for discovering promising new subsets that should
be incorporated into T i

l+1. The additional reward for select-
ing an exploration subset element u ∈ Bil,Ai when the candi-
date subset Ai is already selected is riu|Ai , riAi∪{u} − r

i
Ai .

By submodularity, ∀ C ⊆ Bil,Ai ,

riAi∪C ≤ r
i
Ai +

∑
u∈C

riu|Ai

Equality will hold if |C| ≤ 1.2

To initialize the problem, we select T i
0 = {∅}, and

Bi0,∅ = U i for all i. The integer program that we solve at
each stage is:

max
ωi
Ai
, ωi
u|Ai

M∑
i=1

∑
Ai∈T i

l

riAiωiAi +
∑

u∈Bi
l,Ai

riu|Aiω
i
u|Ai

 (5a)

s.t.
M∑
i=1

∑
Ai∈T i

l

t∈t(Ai)

ωiAi

+
M∑
i=1

∑
Ai∈T i

l

∑
u∈Bi

l,Ai

t∈t(u)

ωiu|Ai ≤ 1 ∀ t ∈ R (5b)

∑
Ai∈T i

ωiAi = 1 ∀ i ∈ {1, . . . ,M} (5c)

∑
u∈Bi

l,Ai

ωiu|Ai − |B
i
l,Ai |ω

i
Ai ≤ 0 ∀ i, Ai ∈ T i

l

(5d)

2We assume throughout that Bi
l,Ai ∩ A

i = ∅; our algorithm for con-

structing Bi
l,Ai will ensure that this is the case.

ωiAi ∈ {0, 1} ∀ i, Ai ∈ T i (5e)

ωiu|Ai ∈ {0, 1} ∀ i, Ai ∈ T i, u ∈ Bil,Ai (5f)

The solution of the integer program selects the subset for
each object that maximizes the upper bound, ensuring that
the resource constraints (e.g., Eq. (5b)) are satisfied. The ob-
servation subset selected for object i is the set Ai for which
ωiAi = 1, augmented by any additional observations u for
which ωiu|Ai = 1. If the subset that the integer program se-
lects for each object i is in T i

l —i.e., it is a subset which had
been generated and for which the exact reward had been eval-
uated in a previous iteration—then we have found an optimal
solution to the original problem, i.e., Eq. (4). This occurs
when no more than one exploration subset element is chosen
for each and every object. Conversely, if the integer program
selects a subset in S i\T i

l for one or more objects, then we
need to tighten the upper bounds on the rewards of those sub-
sets, e.g., by adding the newly selected subsets to T i

l in the
next iteration and evaluating their exact rewards. This occurs
when two or more exploration subset elements are chosen for
any object. Each iteration of the optimization reconsiders all
decision variables, allowing the solution from the previous it-
eration to be augmented or reversed in any way.

The algorithm used to update the candidate subsets T i
l

and exploration subsets Bil,Ai between iterations ensures that
the upper bounds are tightened at each iteration. The algo-
rithm and its theoretic characteristics are explored in detail
in [4]. At each iteration l, a new candidate subset is intro-
duced for each object for which more than two exploration
subset elements were selected. The new candidate subset con-
sists of the previously selected subsetAi, augmented with the
exploration subset element (among those selected) u∗ with
the greatest incremental reward. The exploration subset for
Ai candidate subset is updated such that u∗ is removed, i.e.,
Bil+1,Ai = Bil,Ai\{u

∗}. The exploration subset for the new
candidate subset Ai ∪ {u∗} is set to the same subset (i.e.,
Bil+1,Ai∪{u∗} = Bil+1,Ai).

3

3.1. Augmented integer program

In the previous section we described a sequence of integer
programs which form a progressively tighter upper bound to
the solution of the full complexity integer program in Eq. (4).
In each iteration, we also solve an augmented integer pro-
gram, which provides the best solution amongst all solutions
for which the exact reward has been evaluated (i.e., a lower
bound to the reward of the optimal solution); this is formed
simply by adding to Eq. (5) constraints that prevent selec-
tion of more than one exploration subset element for any ob-
ject. The reward of this augmented integer program is a non-
decreasing function of iteration number. By combining this

3Actually, any elements which cannot be selected alongside u∗ (e.g., due
to resource constraints) are removed from Bi

l+1,Ai∪{u∗}.



best solution with the upper bound produced by the previ-
ously described constraint generation algorithm, we can ter-
minate when we are within a desired tolerance of optimality.

3.2. Comments

On the surface, our algorithm bears some similarity to the
recent work [7], which also solves a sensor resource man-
agement problem through an iterative solution of integer pro-
grams. However, the solution methodology in [7] is contin-
gent on the cost criterion yielding a relaxation to a convex
minimization. The obvious relaxation of information theo-
retic selection problems is a convex maximization [4] (a ge-
ometry for which few useful tools exist), hence it is unclear
how to apply the approach in [7] when an information theo-
retic criterion is used.

4. EXPERIMENTAL RESULTS

The algorithm was implemented using C++, solving the
integer programs using ILOGr CPLEXr 10.1 through the
callable library interface. Termination occurs when the
solution of the augmented integer program is guaranteed to
be within 95% of optimality.

4.1. Multiple object tracking

Our first example models surveillance of multiple objects by
a radar platform moving in a fixed racetrack pattern. Observa-
tion noise increases when objects become close to each other:
this is a surrogate for the impact of data association, although
we do not model the dependency between objects which gen-
erally results. We denote by yk the state (i.e., position and
velocity) of the sensing platform at time k. There are M ob-
jects under track, the states of which evolve according to a
nominally constant velocity model:

xk+1 =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

xk +wk (6)

where wk is a discrete time zero-mean Gaussian white noise
process with covariance

Q = q


∆t3

3
∆t2

2 0 0
∆t2

2 ∆t 0 0
0 0 ∆t3

3
∆t2

2

0 0 ∆t2

2 ∆t

 (7)

with ∆t = 0.01 sec, and q = 0.25. The simulation runs
for 100 time slots. The initial positions of the objects are dis-
tributed uniformly on the region [10, 100]×[10, 100]; velocity
magnitudes are drawn from a Gaussian distribution with mean
30 and standard deviation 0.5, while the velocity directions

are distributed uniformly on [0, 2π]. The initial estimates are
set to the true state, corrupted by additive Gaussian noise with
zero mean and standard deviation 0.02 (in position states) and
0.1 (in velocity states). In each time slot, the sensor may ob-
serve one of the M objects, obtaining either an azimuth and
range observation, or an azimuth and range rate observation,
each of which occupies a single time slot:

zi,rk =

[
tan−1

(
[xik−yk]3
[xik−yk]1

)√
([xik − yk]1)2 + ([xik − yk]3)2

]

+ di(x1
k, . . . ,x

M
k )
[
b(xik,yk) 0

0 1

]
vi,rk (8)

zi,dk =

 tan−1
(

[xik−yk]3
[xik−yk]1

)
[xik−yk]1[xik−yk]2+[xik−yk]3[xik−yk]4√

([xik−yk]1)2+([xik−yk]3)2


+ di(x1

k, . . . ,x
M
k )
[
b(xik,yk) 0

0 1

]
vi,dk (9)

where zi,rk denotes the azimuth/range observation for object
i at time k, and zi,dk denotes the azimuth/range rate (i.e.,
Doppler) observation. The notation [a]l denotes the l-th
element of the vector a; the first and third elements of the
object state xik and the sensor state yk contain the position in
the x-axis and y-axis respectively, while the second and
fourth elements contain the velocity in the x-axis and y-axis
respectively. The observation noises vi,rk and vi,dk are
independent white Gaussian noise processes with zero mean
and independent elements. The standard deviation of the
noise on the azimuth observations (σφ) is 3◦; the multiplier
function b(xik,y

j
k) varies from unity on the broadside (i.e.,

when the sensor platform heading is perpendicular to the
vector from the sensor to the object) to 3 1

3 end-on. The
standard deviation of the range observation (σr) is 0.1 units,
while the standard deviation of the range rate observation
(σd) is 0.075 units/sec. The function d(x1

k, . . . ,x
M
k )

captures the increase in observation noise when objects are
close together:

di(x1
k, . . . ,x

M
k ) =

∑
j 6=i

δ

(√
([xik − x

j
k]1)2 + ([xik − x

j
k]3)2

)
where δ(x) = 10 − x for 0 ≤ x ≤ 10 and δ(x) = 0 oth-
erwise. The state dependent noise is handled in a manner
similar to the optimal linear estimator for bilinear systems, in
which we estimate the variance of the observation noise, and
then use this in a conventional linearized Kalman filter (for
reward evaluations for planning) and extended Kalman filter
(for estimation). In addition to the option of these two obser-
vations, the sensor can also choose a more accurate observa-
tion that takes three time slots to complete, and is not subject
increased noise when objects become closely spaced. The az-
imuth noise for these observations in the broadside aspect has
σφ = 0.6◦, while the range noise has σr = 0.02 units, and
the range rate noise has σd = 0.015 units/sec.



0 5 10 15 20
1

1.05

1.1

1.15

Horizon length (time slots)

R
el

at
iv

e 
ga

in
Performance in 20 simulations of 50 objects

0 5 10 15 20
10

−3
10

−2
10

−1
10

0
10

1
10

2

Horizon length (time slots)

Average computation time to produce plan

A
ve

ra
ge

 ti
m

e 
(s

ec
on

ds
)

Fig. 1. Top diagram shows the total reward for each plan-
ning horizon length divided by the total reward for a single
step planning horizon, averaged over 20 simulations. Error
bars show the standard deviation of the mean performance
estimate. Lower diagram shows the average time required to
produce plan for different planning horizon lengths.

The results of the simulation are shown in Fig. 1. When
the planning horizon is less than three time steps, the con-
troller does not have the option of the three time step obser-
vation available to it. A moderate gain in performance is ob-
tained by extending the planning horizon from one time step
to three time steps to enable use of the longer observation.
The increase is roughly doubled as the planning horizon is
increased, allowing the controller to anticipate periods when
observations for some objects are poor. As expected, the
complexity increases exponentially with the planning horizon
length. However, using the algorithm it is possible to produce
a plan for 50 objects over 20 time slots using a few seconds in
computation time. Performing the same planning through full
enumeration would involve evaluation of the reward of more
than 1040 different candidate sequences, a computation which
is intractable on any foreseeable computational hardware.

4.2. Example of possible benefit

The scenario we discuss here demonstrates the increase
in performance which is possible through long planning
horizons when observations occupy different numbers of
time slots. In such circumstances, algorithms utilizing
short-term planning may make choices that preclude
selection of later observations that may be arbitrarily more
valuable. The scenario involves M = 50 objects observed

using a single sensor through a linear Gaussian observation
model. The initial distribution of the objects is jointly
Gaussian, where all objects are independent with covariance
I. In each time slot, a single object may be observed
through either of two linear Gaussian observations (i.e., of
the form z = Hx + v, where v ∼ N{0,R}). The first,
which occupies a single time slot, has Hi,1

k = I, and
Ri,1
k = 2I. The second, which occupies five time slots, has

Hi,2
k = I, and Ri,2

k = rkI. The noise variance of the longer
observation, rk, varies periodically with time (k), according
to rk = 10−mod(k−1,5)−1 (the time index k commences at
k = 1). Unless the planning horizon is sufficiently long to
anticipate the availability of the observation with noise
variance 10−5 several time steps later, the algorithm will
select an observation with lower reward, which precludes
selection of this later more accurate observation.

The performance is examined in detail in [4]. As the plan-
ning horizon increases from a single time slot (i.e., myopic) to
50 time slots, the performance (reward) increases by a factor
of 4.7×. The computation time required to produce a plan for
50 time slots is on the order of tens of milliseconds. While
this is an extreme example, it illustrates an occasion when
planning is highly beneficial (when there are observations that
occupy several time slots with time varying rewards), and
that the proposed algorithm is able to efficiently solve large
planning problems in such a situation. An algorithm utilizing
short-term planning in such circumstances may make choices
that preclude selection of later observations which may be ar-
bitrarily more valuable.

5. REFERENCES

[1] K.J. Hintz and E.S. McVey, “Multi-process constrained estima-
tion,” Systems, Man and Cybernetics, IEEE Transactions on,
vol. 21, no. 1, pp. 237–244, 1991.

[2] Thomas M. Cover and Joy A. Thomas, Elements of Information
Theory, John Wiley and Sons, New York, NY, 1991.

[3] V. Krishnamurthy and R.J. Evans, “Hidden Markov model mul-
tiarm bandits: a methodology for beam scheduling in multitarget
tracking,” Signal Processing, IEEE Transactions on, vol. 49, no.
12, pp. 2893–2908, December 2001.

[4] Jason L. Williams, Information Theoretic Sensor
Management, Ph.D. thesis, Massachusetts Institute
of Technology, February 2007, Available online at
http://ssg.mit.edu/group/jlwil/publications/Thesis.pdf.

[5] Andreas Krause and Carlos Guestrin, “Near-optimal nonmyopic
value of information in graphical models,” in Uncertainty in
Artificial Intelligence, July 2005.

[6] David C. Parkes and Lyle H. Ungar, “Iterative combinatorial
auctions: Theory and practice,” in Proc 17th National Confer-
ence on Artificial Intelligence (AAAI), 2000, pp. 74–81.

[7] Amit S. Chhetri, Darryl Morrell, and Antonia Papandreou-
Suppappola, “Sensor resource allocation for tracking using
outer approximation,” IEEE Signal Processing Letters, vol. 14,
no. 3, pp. 213–216, Mar. 2007.


