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Abstract. We present an algorithm to generate samples from proba-
bility distributions on the space of curves. We view a traditional curve
evolution energy functional as a negative log probability distribution and
sample from it using a Markov chain Monte Carlo (MCMC) algorithm.
We define a proposal distribution by generating smooth perturbations
to the normal of the curve and show how to compute the transition
probabilities to ensure that the samples come from the posterior distri-
bution. We demonstrate some advantages of sampling methods such as
robustness to local minima, better characterization of multi-modal dis-
tributions, access to some measures of estimation error, and ability to
easily incorporate constraints on the curve.

1 Introduction

Curve evolution methods are a class of algorithms which seek to segment an
image I with a curve C by finding a local optimum of a given energy functional
E(C; I). In general, having a single local optimum provides little insight as to
how close the result is to the global optimum or how confident one should be
in the answer. For low signal-to-noise ratio (SNR) or ill-posed problems, there
are many local optima, and there can be multiple answers that plausibly explain
the data. A common alternative is to view the problem as one of probabilistic
inference by viewing E(C; I) as the negative log of a probability density:

p(C | I) ∝ exp(−E(C; I)) . (1)

Having a probabilistic interpretation allows the use of many standard inference
algorithms such as stochastic optimization [1], particle filtering [2], or Markov
chain Monte Carlo (MCMC) methods [3] to avoid local minima.

We propose an algorithm to draw samples from p(C | I) which is, in general, a
complex distribution and non-trivial to sample from. Samples are useful because
not only can they help avoid local minima, they can also be used to characterize
multi-modal distributions and estimation uncertainty by more fully exploring
the configuration space. We will show examples of noisy images where the global
maximum a posteriori estimate does not provide a satisfactory segmentation due
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to the large amount of noise, whereas a constellation of samples can help provide
greater information as to likely locations for the true segmentation.

MCMC methods [4,5] were developed for situations when one wishes to draw
samples from a distribution, but it is not possible to do so directly. Instead a
proposal distribution q is defined, and samples from q are accepted in such a way
as to guarantee that samples from p are generated asymptotically. They have
been widely used for image segmentation since Geman and Geman [6] used a
MCMC approach to segment images with a Markov random field (MRF) model.
The advantage of sampling curves instead of from MRFs is that curve sampling
is an inherently geometric process that enables one to work explicitly in the space
of shapes and encode statistical properties of shape directly into the model such
as global object characteristics. Tu and Zhu [3] also propose an approach using
MCMC, but their primary focus is on finding global optima using a simulated
annealing approach, and they do not generate large numbers of samples from
the posterior distribution. One of our key results is to show how to ensure that
detailed balance holds when sampling from the space of closed curves (a necessity
to ensure that we asymptotically generate true samples from the posterior) and
how to adapt these sampling methods to use user input to perform conditional
simulation in order to reduce the estimation variance.

2 Curve Evolution Methods

Given an image domain Ω ⊂ R
2, a scalar-valued image I : Ω → R, and a closed

curve C : [0, 1] → Ω, active contour methods are formulated by specifying
an energy functional E(C | I) and evolving the curve according to the gradient
descent of that functional. Introducing an artificial time variable t, this results in
a geometric PDE of the form ∂C

∂t (s) = f(s)N C(s) where f(s) is a force function
and N C(s) is the outward normal to the curve. A classical energy functional
is Euclidean curve length: E(C | I) =

∮
C

ds with ds being the differential arc
length along the curve. The resulting force function is f(s) = −κC(s) where κC is
curvature. This flow has a smoothing effect on the curve [7] and is typically used
as a regularization term. Region-based energy functionals (e.g., Chan-Vese [8]
and Mumford-Shah [9]) separate regions using the image statistics and are now
widely used for image segmentation due to their robustness to noise.

The earliest curve evolution methods by Kass et al. [10] tracked discrete
marker points on the contour. Level set methods [7] were later introduced to
more naturally handle topological changes and reduce reinitialization problems.
With level sets, a surface Ψ(x) is created whose zeroth level set is the curve:
Ψ(C(s)) = 0 ∀ s ∈ [0, 1]. By convention, Ψ is negative inside the curve and
positive outside the curve. To ensure that the zeroth level set of Ψ tracks C,
we need: ∂Ψ

∂t = −∂C
∂t · ∇Ψ . As ∂C

∂t is only defined on the zeroth level set of Ψ ,
the PDE is extended to the rest of Ω by a technique known as velocity exten-
sion [7].



MCMC Curve Sampling for Image Segmentation 479

3 Formulation

For MCMC methods, an ergodic Markov chain with p(C | I) as its stationary
distribution is constructed [5], so simulating the chain has the probability distri-
bution of the state asymptotically approach p(C | I) for any initial state C0. The
chain’s transition probability T(C(t)→C(t+1)) is the product of a proposal distri-
bution q(Γ (t+1) | C(t)) and an acceptance probability function a(Γ (t+1) | C(t)).
A sample from T(C(t) → C(t+1)) is drawn by accepting a sample Γ (t+1) from
q(Γ | C(t)) with probability a(Γ (t+1) | C(t)) otherwise C(t+1) = C(t).

The proposal distribution is chosen so as to be easy to sample from, as MCMC
methods change the problem of sampling from p to one of drawing many samples
from q. For discrete state spaces, a sufficient condition for p(C|I) to be the
stationary distribution of the chain is detailed balance:

p(C(t)|I)T(C(t) → C(t+1)) = p(C(t+1)|I)T(C(t+1) → C(t)) . (2)

For continuous state spaces, a similar statement can generally be made [5]. A
common acceptance rule is Metropolis-Hastings [11]. For an iterate C(t) and
a candidate sample Γ (t+1), the Metropolis-Hastings acceptance probability is
defined as a(Γ (t+1)|C(t)) = min

(
1, η(Γ (t+1)|C(t))

)
where the Hastings ratio η

is η(Γ (t+1)|C(t)) = p(Γ (t+1))q(C(t) | Γ (t+1))/p(C(t))q(Γ (t+1) | C(t)).
The algorithmic steps for a Metropolis-Hastings sampler involve: 1) sample

from q(Γ (t+1)|C(t)); 2) evaluate a(Γ (t+1)|C(t)); 3) accept or reject Γ (t+1).

3.1 Proposal Distribution

We implicitly define q by explicitly defining how to sample from it. To generate
a candidate sample Γ (t+1), we randomly perturb the previous iterate C(t):

Γ (t+1)(s) = C(t)(s) + f (t+1)(s)N C(t)(s)δt (3)

where f (t+1)(s) is a random field. The problem of generating Γ (t+1) is now the
problem of generating f (t+1)(s).

In this work, we focus on generating f (t)(s) composed of a correlated zero-
mean Gaussian random process r(t)(s) and a mean function μ(t)(s): f (t)(s) =
μ(t)(s) + r(t)(s). We construct r(t)(s) by circularly convolving white Gaussian
noise n(t)(s) with a smoothing kernel h(s) (e.g., a Gaussian kernel). Many other
choices for generating r(s) are possible such as using Fourier or wavelet bases.

The mean process is chosen to increase the convergence rate of the sampling
algorithm. Here, we define it as μ(t)(s) = −κC(t)(s)+γ(t) where γ(t) is a positive
inflation term counteracting the curve shortening term κC . As discussed earlier,
f(s) = −κC(s) is a regularizing flow which creates smooth curves, so this biases
our proposal distribution to create smooth curves.

3.2 Detailed Balance

Metropolis-Hastings sampling requires that we be able to evaluate both the
forward and reverse proposal distributions q(Γ (t+1)|C(t)) and q(C(t)|Γ (t+1)).
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This computation needs to be understood in order to ensure detailed balance and
guarantee that our samples come from the posterior. For our curve perturbations,
this is non-trivial because q is asymmetric due to the mean component.

The perturbation defined in equation (3) is a differential in the direction of
the normal, so each random perturbation maps one curve uniquely to another.
This remains approximately true for small finite δt. Thus evaluating q(Γ | C)
is equivalent to evaluating the probability of generating f(s). To implement
(3), we generate a noise vector n of fixed length, multiply it by a circulant
matrix H (which implements the circular convolution), and add a mean vector
μ. This results in a Gaussian random vector f ∼ N(μ, HHT). Note that f is
deterministically generated from n so pf(Hn + μ) = pn(n) ∝ exp(− 1

2nTn).
To compute the probability of the reverse perturbation, we construct the

analog to equation (3):

C(t)(s) = Γ (t+1)(s) + g(t+1)(s)N Γ (t+1)(s)δt , (4)

and the reverse perturbation probability is the probability of generating g(t+1).
For small δt, a reasonable estimate is g(t+1)(s) ≈ −f (t+1)(s)/N C(t)(s)·N Γ (t+1)(s)
which is obtained using locally-linear approximations to Γ (t+1) and C(t). Note
that this explicit correspondence we construct here means that even though we
implement the perturbations using level sets, topological change is not valid for
our chain. To allow splitting or merging of regions, a jump-diffusion process must
be used [3]. Once we have computed g(s), we can write it as g = Hn′+μ′ (obtain-
ing μ′ from Γ (t+1) exactly as we obtain μ from C(t)) and compute its probability
as pg(Hn′ + μ′) = pn′(n′) ∝ exp(− 1

2n′Tn′).
We can then use the analysis we just performed (a detail that most implemen-

tations ignore) to ensure detailed balance by computing the ratio of the forward
and reverse proposal distributions (for use in the acceptance rule) as

q(C(t) | Γ (t+1))
q(Γ (t+1) | C(t))

= exp
(
− 1

2

[
n′Tn′ − nTn

])
(5)

with n = H−1(f − μ) and n′ = H−1(g − μ′).

3.3 Conditional Simulation

In many application domains of interest, segmentations are currently performed
by an expert. Rather than trying to remove them completely from the loop,
we can create a feedback system that allows them to focus their expertise and
knowledge on the most difficult portions of the problem. With an optimization-
based approach, this would require one to do constrained optimization which is
hard for high-dimensional problems. With a sampling approach, we can use a
technique known as conditional simulation where we fix part of the state space
and sample from the distribution conditioned on the known part.
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Let Ck : [0, β] → Ω be the known part of the curve (β ∈ [0, 1]) and Cu :
[β, 1] → Ω be the unknown part of the curve. Then C(s) = Ck(s) and C(s) =
Cu(s) on [0, β] and [β, 1] respectively. It is straightforward to generalize this
approach for multiple fixed intervals. We wish to sample from p(Cu|I, Ck) =
p(Cu, Ck|I)/p(Ck) ∝ p(C | I). Thus, we can see that computing the conditional
target distribution is unchanged (except part of C no longer changes).

To ensure that our samples from our proposal distribution stay on the mani-
fold of curves that contain Ck, we need to modify our proposal distribution to
impose zero variance on Ck. A simple way to implement this is to multiply the
random perturbations defined in Sec. 3.1 by a scalar field: r̃(s) = d(s)r(s) with
d(s) = 0 for s ∈ [0, β], d(s) = 1 for s ∈ [β+ε, 1−ε] and ε > 0. From (β, β+ε] and
[1 − ε, 1), d(s) smoothly transitions from 0 to 1 so there is not a strong variance
mismatch at the end points of Ck.

Computationally, this is equivalent to multiplying our random vector r by a
diagonal matrix D resulting in r̃ ∼ N(Dμ, DHHTD). This is a degenerate
probability distribution as some entries of r have zero variance, so we should
only evaluate q(· | ·) using the the perturbation ru on the unknown part of the
curve. Otherwise the computation is identical to that described in Sec. 3.2.

4 Results

In this section we present results on a prostate magnetic resonance (MR) example
and a thalamus MR segmentation problem. For each application, we generated
1000 samples from p(C | I). Computation time per sample ranged from 10-30
seconds for 256 × 256 images on a 2 GHz Opteron workstation. Each sample
is generated independently of the others, so sample throughput can be easily
increased using parallel computers.

For both examples, we assume that pixels are independent and identically
distributed (iid) given the curve and learn (from segmented training data) non-
parametric histogram distributions p(I(x)|0) and p(I(x)|1) for the intensity dis-
tribution outside and inside the curve respectively (shown in in Figs. 1(a) and
2(a)). Using the Heaviside (or indicator) function H and a curve length prior,
this results in an overall posterior probability of:

p(C | I) = exp(−α

∮

C

ds)
∏

x

p (I(x) | H(−ΨC(x))) . (6)

To display the samples, we will use three main visualization approaches that
are only possible because we are able to draw a large number of statistically-
correct samples from the posterior distribution:

1. Displaying the highest probability samples (e.g., Fig. 1(b)). The most likely
samples can be viewed as proxies for what a global optimizer would find.

2. Histogram images (e.g., Fig. 1(c)). For each x we count the number of Ci

for which x is inside the curve (i.e., ΨCi
(x) < 0). This is thus the marginal

distribution over segmentation labels at each x.
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Fig. 1. Prostate segmentation using non-parametric intensity distributions. (a) Pixel
intensities for each class. (d) Initial curve. (b) Two most likely samples (very different
from the correct curve). (c) Marginal confidence bounds and histogram image. (e)-(f)
Most likely samples and marginal bounds for prostate-only cluster.

3. Marginal confidence bounds (e.g., Fig. 1(c)). Given a histogram image, we
plot the level contours. These can be viewed as confidence bounds (e.g., the
10% confidence bound is the contour outside of which all pixels were inside
fewer than 10% of the samples). The 50% confidence bound can be viewed
as being analogous to a median contour.

Confidence bounds have been used in some previous image segmentation or
reconstruction approaches [12], but those dealt with parametric shape represen-
tations (so the uncertainty was over a finite set of parameters). It is important
to note that our confidence representations are marginal statistics from infinite-
dimensional non-parametric shape distributions.

4.1 Prostate Segmentation

In Fig. 1, we show results from a noisy T1-weighted prostate MR image. The
histogram image and the marginal confidence bounds in Fig. 1(c) show this dis-
tribution has three primary modes: one around the correct prostate segmentation
(the red contour); one containing only the rectum (the dark region beneath the
prostate); and one encompassing both the prostate and the rectum. As can be
seen in Fig. 1(b), the most likely mode contains the curves that segment the two
regions together, and this is what a gradient-based curve evolution implemen-
tation of (6) also finds. The reason for this can be seen in the image intensity
likelihoods in Fig. 1(a). Due to the noise and our simple iid model, the model
prefers all pixels with intensity below some threshold (including the rectum) to
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Fig. 2. Conditionally-simulated thalamus segmentation using non-parametric intensity
distributions. (a) Pixel intensities for each class. (b)-(c) Observed image (original and
zoomed). (d) Expert and initial curves. Two most likely samples ((e) and (g)) and
marginal confidence bounds and histogram image ((f) and (h)) with a point on the top
fixed and points on the top and the bottom fixed respectively.

be inside the curve. The sampling process enables us to see the multiple possible
solutions.

Without having any additional a priori information, it would be difficult to say
which of these three scenarios is the correct one. In fact, it is possible in some
applications where multiple modes all provide reasonable explanations of the
data. One approach we can take here is to utilize the information our sampling
procedure provides to us. While the aggregate marginal statistics do not appear
to be providing very useful information (though the 90% confidence boundary is
located within the true prostate boundary), it is easy to create three clusters of
samples. An expert user or a shape-driven classifier could then pick the correct
cluster. We show the most-likely samples and the marginal confidence boundaries
for the prostate-only cluster in Fig. 1(e) and (f).

4.2 Thalamus Segmentation

Segmenting sub-cortical structures is a challenging task due to the low amount of
contrast between tissue types. One approach to reduce the ill-posedness involves
using strong prior shape models [13]. As there is too little contrast for an uncon-
strained approach to succeed here, we apply the conditional simulation version
of our approach and specify small portions of the curve a priori (indicated with
the magenta line segments in Fig. 2).
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We begin by fixing a small portion of the top of each half of the thalamus
and generating samples conditioned on that information. Two separate level
sets are evolved for each half of the thalamus. The two most likely samples
in Fig. 2(e) correctly segment most of the thalamus except the bottom which
is least constrained by the fixed portion at the top. Note, though, that the
marginal confidence bounds in Fig. 2(f) show that the expert contour location is
mostly bracketed between the 90% and 10% confidence contours, and the median
contour is quite close to the expert-segmented boundary location.

Note that the sampling method actually provides information about where
the greatest uncertainty is and, thus, where expert assistance is most needed.
We can see in Fig. 2(f) that there is a more diffuse histogram image (and a larger
gap between the confidence bounds) at the bottom of the thalamus indicating
a greater amount of sample variability. In Fig. 2(g)-(h), we take the knowledge
gained from the first experiment and interactively revise the information pro-
vided to the sampler by specifying a location on the bottom of the thalamus
as well. With this additional information, the most likely samples are now both
reasonable, and the estimation variance is greatly reduced.

5 Conclusion

In this paper, we presented an approach to generate samples from probability
distributions defined on spaces of curves by constructing a MCMC algorithm
and showing how to properly compute the proposal distribution probabilities to
ensure detailed balance and asymptotic convergence to a desired posterior distri-
bution. The sampling approach provided robustness to local minima in low-SNR
and ill-posed problems, and we showed how a large number of curve samples can
be used to provide useful aggregate statistics (such as non-parametric marginal
confidence bounds) about the likely location of the true curve locations. We
demonstrated the usefulness of this aggregate information even when the most
likely curves were not providing satisfactory segmentations, and we showed how
constraints can be easily imposed on the samples (unlike a gradient-based opti-
mization method) to provide a semi-automatic segmentation approach.

Future work in this space involves developing faster sampling algorithms by
utilizing better proposal distributions or multiresolution methods; extending the
framework to non-closed curves, unknown topology, and volumetric segmenta-
tion; and creating uncertainty measures that provide information about the local
characteristics of the shape manifold.
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