INFORMATIVE SUBSPACES FOR AUDIO-VISUAL PROCESSING: HIGH-LEVEL
FUNCTION FROM LOW-LEVEL FUSION

John W. Fisher III *

Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

We propose a new probabilistic model of single source multi-
modal generation, and show algorithms for maximizing mu-
tual information which find correspondences between signal
components. We show a nonparametric method for finding
informative subspaces that captures complex statistical re-
lationships between different modalities. We extend a pre-
vious subspace method to include new priors on the projec-
tion weights, yielding more robust results. Applied to hu-
man speakers, our model finds a relationship between audio
speech and video of facial motion, and partially segments
background events in both channels. We present new results
on the problem of audio-visual verification, and show how
the audio and video of a speaker can be matched without a
prior model of the speaker’s voice or appearance.

1. INTRODUCTION

Relating multi-modal signals is a challenging task for au-
tomated perception systems. Given signals from multiple
modalities, one would like to find correspondences: por-
tions of the signals from the same underlying source. In
the domain of audio and video (A/V) of human speakers
this ability is useful for a variety of tasks. Namely, speaker
localization in a video frame, speaker audio enhancement
with respect to noise, and verification as to whether the ob-
served person is actually the person speaking.

We propose an independent cause model to capture the
relationship between generated signals in each individual
modality. Using principles from information theory we show
how an approach for learning maximally informative joint
subspaces can find cross-modal correspondences. Nonpara-
metric statistical models have been used to measure the de-
gree of mutual information (MI) in complex A/V phenom-
ena [1]. This method simultaneously learns projections of
images and periodograms from the A/V sequence. The pro-
jections are computed adaptively such that the image and
audio projections have maximum MI. Early results of this
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method applied to A/V data have been reported [1], but

without any derivation from a probabilistic framework. In

this paper we ground the MI algorithm in a probabilistic

model, and extend the informative subspace algorithm to in-

clude a prior bias toward small projection coefficients. We

also present new results on the problem of A/V verification-
without prior models of user speech or appearance, an ap-

plication not previously addressed in the literature.

In the next section we review related work on audio-
visual fusion. We then present our probabilistic model for
cross-modal signal generation, and show how audio-visual
correspondences can be found by identifying components
with maximal MI. We then review techniques for efficient
estimation of MI using non-parametric entropy models. Fi-
nally, we show a new application to a verification task where
we detect whether audio and video come from the same
speaker. In an experiment comparing the audio and video
of every combination of a group of eight users, our tech-
nique was able to perfectly match the corresponding au-
dio and video from a single user. These results are based
purely on the instantaneous cross-modal mutual information
of the two signals, and do not rely on any prior experience
or model of user’s speech or appearance.

2. RELATED WORK

There has been substantial progress on feature-level integra-
tion of speech and vision for speech recognition (e.g. Meier
et al [2] and Stork [3]). However, many of these systems as-
sume that no significant motion distractors are present and
that the camera was “looking” at the source of the -audio
signal. Indeed, speech systems are easily confused if there
are nearby speakers also making utterances. Our method,
which is not specific to A/V, is used to detect whether audio
and video signals come from the same or different sources.

Other work, closely related to ours, is that of Hershey
and Movellan [4] which examined the per-pixel correlation
relative to an audio track, detecting which pixels have re-
lated variation. An inherent assumption of this method was
that of joint Gaussian statistics. Slaney and Covell [5] con-
sider temporal alignment between audio and video tracks,
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but do not address the problem of detecting whether two
signals came from the same person or not. Their technique
was more general than [4] in that pixel changes were con-
sidered jointly, although there is also an implicit Gaussian
assumption and use of training data. We are not aware of
any prior work which can perform audio-visual verification
at a signal-level without prior speech or appearance models.

3. LINEAR FUSION MODEL

For reasons of brevity, we consider the following linear fu-
sion model (any differentiable model is suitable).

yiooun [ _[ Ay OT ][ atak i
][5 %) (3] o
where z7 € R and z? € RN+ are lexicographic samples
of images and periodograms, respectively, from an A/V se-
quence. The linear projection defined by hT € RMv*Nv and
hT € ®MaxNa maps A/V samples to low dimensional fea-
tures y¥ € RM» and y¢ € RM=. . .

We address two issues here. First, is the criterion (and
algorithm) for designing the features. Specifically, we shall
treat z;’s and y;’s as samples of random variables X and
Y.. We propose (and justify) maximizing the MI, I(Y *;Y?),
between the derived features defined as [6]

I(Y%Y*) =h(Y)) +h(Y) —h(Y",Y®) (@

as the criterion for choosing h, and h,, where

W) = = [ py (u)log (py (u) du ®

is the differential entropy of either the marginal or joint fea-

ture densities. The means by which we approximate entropy
and infer densities from samples differentiates our approach
from other methods. More importantly, they lead to a com-
putationally tractable algorithm with the capacity to model
complex joint A/V properties. The second issue we address
is that of solving the system of equations described by 1.
The number of samples, N, is much less than the dimen-
sion of the A/V measurements, N, + N,, consequently the
system of equations is under-determined. We propose con-
straints on the projections which improve performance.

4. MI AS A FUSION CRITERION

Many multimodal scenes can be modeled with one common
A/V source and distinct interfering sources for each modal-
ity. Each observation combines information from the joint
and interfering sources for that channel. Figure 1 represents
the model graphically. High-dimensional observations of
each modality, {X", X}, are independent conditioned on
the causes {4, B,C} (B is the only common cause). The
joint statistical model consistent with figure 1a is

P(A,B,C,X° X") = P(A)P(B)P(C)
P(X®|A, B)P(X"|B,C).

@ ®) ©
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Fig. 1. Graphs of pertinent statistical models: (a) the in-
dependent cause model - {X ¢, X} are independent condi-
tioned on {4, B, C}, (b) information about X ¢ contained in
X" is conveyed through joint statistics of A and B, (c) the
graph implied by the existence of a separating function, and
(d) two equivalent Markov chains which can be extracted
from the graphs.

Bayes’ rule yields the model (graph of figure 1b)
P(A,B,C, X%, X") = P(X*)P(C)P(A,B|X*)P(X"|B,C)

in which information about X * contained in X* is con-
veyed through the joint statistics of A and B. Consequently,
we cannot disambiguate the influences of A and B on the
measurements. A similar model results when conditioning
on X". However, if decompositions X = [X%, X%] and
XV = [X3, Xg] exist (e.g. a segmented image or filtered
audio) such that the joint density

P(A,B,C, X%, X") = P(A)P(B)P(C)
P(X3|A)P(X3|B)P(X3|B)P(X¢|C)

can be written (graph of figure 1¢) we can extract a Markov
chain containing elements related only to B. Figure 1d
shows equivalent Markov chain graphs.

Given the decomposition, it can be shown via the data
processing inequality [6] that the following inequalities hold

I(X5; Xp) < I(X5; B) and I(X3;X3) < I(X5; B)

The inequalities hold for functions of X % and X} as well
(e.g. Y* and Y"), so maximizing I(Y3; Y5) increases I (Y5; B)
and I(Y3; B). The implication is that such fusion discovers
the underlying common cause of the observations.

5. FINDING INFORMATIVE SUBSPACES

Features with high mutual information are desirable as they
are predictive of each other. However, we wish to avoid
strong assumptions about the features’ joint statistics (e.g.
joint gaussianity). The method of [1] uses a nonparametric
density estimate for which there is an analytic gradient of
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the mutual information with respect to projection parame-
ters. As in [7], we replace each entropy term in equation 2
with a second-order Taylor series expanded about the uni-
form density, p.(z),

iy = [ (re ) = pufu))* du
= [ o) = puw))? du
+ / (Pyv,ve(u,2) — pu(u,2))’ dudz . (4)
Note, #(z) is a Parzen density estimate [8] defined as
ﬁ(y)=%zn(y—yh2) )

where we use a Gaussian product kernel for k() (ie. ¥ =
o2I). The resulting approximation is the integrated squared
error between the density of the projections to the uniform
density. As stated, this particular choice of entropy approx-
imation and density estimate lead to a closed form gradient
of MI with respect to the projection coefficients which can
be computed by evaluating a finite number of functions at a
finite number of points in the output space. The update term
for the individual entropy terms in 4 (note the opposite sign
on the third term) of sample y; at iteration k as a function of
vi's at iteration k — 1 is (where y; denotes a sample of either
Y® or YV or their concatenation depending on which term
of 4 is being computed)

- 1 - -
Ay ® = b, (D) - N Z”ﬂ (yi(k Dy, 1)’2) 6)
i

br(yi)s ~ 5 (n (wr5m) —x(u- gz)) ©

ka (¥,Z) = 6(y,Z) * &' (y, )

-1 T

= (2M+17rM/2ch+2) exp (—%) y (8
where M = M,, M,, or M,+ M, again depending on which
entropy term. Both b, (y:) and k4 (yi,0) are vector-valued
functions (M -dimensional) and d is the support of the output
(i.e. a hyper-cube with volume d*). The notation b, (y:);
indicates the jth element of b,(y:). Adaptation consists of
the update rule above followed by a modified least squares
solution for A, and h, until a local maximum is reached. In
the experiments that follow M, = M, = 1 with 150 to 300
iterations.

Early results [1] demonstrated video localization of a
speaker. However, the technique often failed to converge,
as a consequence of the under-determined system of equa-
tions 1. To improve on the method, we thus introduce a prior
on h, and h, in the form of L, penalties. Additionally, we
constrain h, to have minimum average output energy when
convolved with images in the sequence. This penalty was
proposed by Mahalanobis et al [9] for optimized correlator

design. The difference being that in their case the outputs
were designed explicitly while here they are derived from
the MI optimization step of equation 6. The adaptation cri-
terion, maximized via coordinate descent, is then:

J=1(Y"Y* - avhTh, — auhThe — BhyRohy  (9)

where R, is average autocorrelation function of the images
in the sequence and can be combined efficiently with the L
penalty term. The scalar weighting terms a.,, a., 8, were
set using a data dependent heuristic for all experiments. The
last term is more easily computed in the frequency domain
(see [9]) and is equivalent to pre-whitening the images using
the inverse of the average power spectrum. Pre-whitening
accentuates edges in the input image. Moving edges (lips,
chin, etc.) to convey the most information about the audio.

6. EMPIRICAL RESULTS

In our experiments we demonstrate speaker localization in
the video and the measurement the A/V consistency. Simple
techniques which check only for the presence of a face (or
moving face) would fail when a person off-camera spoke a
command. With an eye toward interchangeable devices, we
are interested in the case where no prior voice or appearance
model is available.

We collected A/V data from eight subjects. Images were
collected at 30 frames/s (360x240 pixels). The audio was
filtered to 10KHz. Subjects uttered the phrase “How’s the
weather in Taipei?”, (2-2.5 seconds of data). Video frames
were processed as is, while the audio was converted to a se-
quence of periodogram using a window length of 2/30 sec-
onds. After computing h, and h, as described, I(Y?%; Y?),
estimated from samples was used to measure consistency.
Reported values are normalized with respect to the maxi-
mum possible value (i.e. two uniformly distributed random
variables which perfectly predict one another). We assume
no significant head movement on the part of the speaker.

Figure 2a shows results from two difference sequences.
The top row corresponds to an A/V sequence of a single
speaker and a video monitor while the bottom row is from
an A/V sequence with one speaker (on left) and one mov-
ing person who is not speaking. Column (a) is an image
from the sequences while column (b) is the magnitude of
the image after prewhitening. Column (c) is an image of the
pixel-wise standard deviations of the image sequence, note
that motion distractors have more energy than the speaker in
both cases. Column (d) shows the magnitude of the result-
ing h, (as an image). In both cases it is the facial features of
the speaker that are highlighted. In addition to video local-
ization of the audio, we also check A/V consistency. Such
a test is useful when the person to which a system is visu-
ally attending is not the person who actually spoke. Having
learned an MI-optimized projection, we estimate the MI and
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Fig. 2. Results from two A/V sequences: Top sequence contains one speaker and flickering monitor. Bottom sequence
contains one speaker (left) and person with random mouth movements: (a) image from sequence, (b) prewhitened image

(magnitude), (c) pixel standard deviation image, (d) image of h , (correct audio), () image of h,, (incorrect audio).

Table 1. Summary of results over eight video sequences.
The columns indicate which audio sequence was used while
the rows indicate which video sequence was used.

al a2 a3 a4 a$ a6 a7 a8
vl [ 0.68 019 0.12 005 019 0.11 012 0.05
v2 | 020 0.61 0.10 0.11 0.05 005 018 0.32
v3 | 005 027 055 005 005 005 005 0.05
vd [ 012 024 032 055 022 005 005 0.10
v5 0.17 005 005 005 055 005 020 0.09
v6 | 020 005 005 013 0.14 058 0.05 . 0.07
v7 1018 0.15 0.07 005 005 005 064 026
v8 0.13 005 0.10 0.05 031 0.16 0.12 0.69

In all the cases presented, our technique correctly matched
video with the corresponding audio from a particular indi-
vidual, and localized the user’s face in a video frame.
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