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Abstract 
Objects of interest are rarely silent or invisible. Analysis of multi- 
modal signal generation from a single object represents a rich and 
challenging area for sman sensor arrays. We consider the prob- 
lem of simulraneously leamirig and audio and visual appearance 
model of a moving subject. We present a method which success- 
fully leoms such a model wifhout benefit of hand initialization 
using only the associated audio signal 10 "decide" which object 
to model and track. We are interested in pnnicular in modeling 
join1 audio and video variation, such as pmduced by a speaking 
face. We present an algorithm and experimental results of a human 
speaker moving in a scene. 

1. INTRODUCTION 

Objects of interest are rarely silent or invisible. Efforts to model 
and perceive them will therefore be more effective if they can con- 
sider the signals an object generates across multiple modalities. 
We are interested in particular in modeling joint audio and video 
variation, such as produced by a speaking face. For many lasks, 
including detection, localization, and identification, the use of in- 
formation from both modalities can make processing both more 
accurate and robust. In this light we consider "smart cameras" to 
be "smart sensors" which cm adapt to their users and their envi- 
ronment in order to integrate multiple information sources in an 
intelligent manner. 

Consider an image sequence in which changes are attributable 
to several objects which undergo rigid body and/or iconic motion. 
We wish to explain observed changes in the scene via a cmss- 
modal appearance model of finite  upp port (e.g. a set of appear- 
ance bases) which we will leam from the sequence itself. We are 
liable to leam a model of any of the objects in the scene using 
visual appearance alone in the absence of additional information 
and explicit initialization. Suppose we have an associated signal, 
specifically an audio signal. which we know to be associated with 
one object in the scene. We discuss a statistical learning approach 
by which one can use the associated audio signal as an indirect 
pointer to the object of interest in the scene and by which one 
can develop a combined audio-visual appearance model for that 
object. Ultimately. one might like to decompose a complicated 
scene into independent multi-modal data streams such that they 
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may he processed separately. Here we consider the simpler task of 
identifying and modeling a single multi-modal object outlining a 
methodology which extends our previous work [ I ]  (by incorporat- 
ing a parametric motion model) and presenting emprical results. 

Many useful applications arise when a generative cross-modal 
appearance model i s  available. By aggregating the MI measure 
over explicit sub-regions, a given sound can be classified as com- 
ing from one of many possible visual objects. 

We exploit a linear manifold model to approximate video a p  
pearance. Many models of statistical object appearance have been 
proposed recently that characterize object appearance. The 'mor- 
phable model' of Beymer and POggiO[2] and Jones and Poggio [3], 
and the related 'active appearance model' of Cootes and Taylor 141 
model both the surface variation (texture) and motion (shape) of an 
object using linear manifolds found by PCA. However, the initial- 
ization of these frameworks is challenging in that a set of images 
must be put in correspondence using manual or semi-automated 
means. Many models incorporate motion into the appearance model 
acquisition (c.f. [SI). De la Torre and Black [6] recently demon- 
strated a robust method for estimating modular PCA models. 

Ths work is of note in that we are interested in cases where 
information from another domain may make the initialziation of 
these systems trivial. For example, when the object of interest is 
the only audio source in the scene. In this case we should he able 
to learn a visual appearance model with no visual initialization, 
using only audio information provided that we have a method of 
estimating the joint audio-visual signal properties. 

Our approach is to enhance a subspace-based audiovisual MI 
model to include a parametric motion term, such that it can find 
an optimal warping to simultaneously align observed images over 
time and optimize MI with the received audio signal. While in the- 
ory we could solve this using exhaustive search to try all possible 
motions, in practice this is computationally infeasible. Augment- 
ing the model with a visual appearance component makes tracking 
practical. 

As we will describe below, we bootstrap a model of object ap- 
pearance from the initial set of image patches with high pixel vari- 
ation. Some of the patches correspond to the object of interest 
and some do not. From these patches we construct an initial sub- 
space matched filter which is used to "track objects in the scene. 
During learning we altemate between optimizing the statistics of a 
smaller audio-visual feature space using the previously estimated 
object position estimate followed by further refinement of a sub- 
space matched filter. 
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With this approach we can in principle follow the lips of a 
speaker when there is momentarily no speech, or when the lips are 
momentarily occluded but other parts of the face are clearly visible 
(even if those parts are not individually related to the audio). 

In the following sections we describe the approach and related 
work. We then demonstrate results of the method on the applica- 
tion of finding and modeling a moving noisy object in a dynamic, 
but otherwise silent, scene. We can define an object by its audio, 
and automatically build a visual model without any initialization 
in the visual domain. 

2. AUDIO-VISUAL STATISTICAL MODEL 

We now discuss a generative model of audio-visual data from which 
we derive approximate inference and estimation algorithms. From 
the standpoint of pure vision approaches, the assumptions we make 
are fairly standard with one important distinction, namely that the 
joint density over dependent audio-video parameters are repre- 
sented nonparametrically rather than using a simplifying paramet- 
ric form. The motivation for this choice is that i t  allows for aricher 
model of joint audio-visual dependency. The consequence is that 
we must also derive several novel approximations in order to arrive 
at a tractable joint tracking and appearance estimation algorithm. 

We use superscripts to indicate whether the variable of inter- 
est is related to visual appearance (e.g. Y"). audio appearance 
(e.g. Y"). or audio-visual appearance (e.g. Y""). Let {Y;} de- 
note the set of N observed images (represented as vectors) from 
a sequence. We model the kth image in the sequence, Y;. as a 
transformation T k  of linearly combined appearance bases a" and 
Vu plus independent additive Gaussian noise: 

Fig. 1. Generative model of audio-visual appearance (left) 

where p ( a " )  and p(O(")  are modelled as Gaussian, and p(a"",  
p"") is a Parzen density. It is important to note that joint depen- 
dence in the audio and video observations Yt and Y t  is through 
the joint density p (a"", 0""). In the sequel it is our purpose to 
simultaneously estimate the parameters T k ,  the appearance bases 
9". a"", Q"", and 0". and amodel ofthejoint density p (a"", p"") 
Given the indeterminacy of such a task, some care and simplifying 
assumptions are necessary. 

X LEARNING WHILE TRACKING 

Having described the generative model, we now discuss a method 
by which we learn appearance bases {@",aa", El", W"} and es- 
timate the motion parameters Tk. We accomplish this via an iter- 
ative coordinate optimization procedure (iterations are denoted by 
the index j). A particular challenge in this regard is to learn the 
joint statistical model p(aa".  0""; {a$",/3;"}) as well as the as- 
sociated bases a-" and ea". Toward that end we decompose the 
algorithm into three steps, summarized as: 

1. detection: Given previous (initial) estimates of {Th, ay,  
a6,a"",aU},~,,performalocalsearch togenerateanew 
set of transformations { T k } ;  

where a" and V" span orthogonal subspaces and a;, a;" are 
projection coefficients associakd with the respective sets of bases. 

Additionally, let {YE} denote the set of N associated audio 
measurements. The kth audio measurement, Y t ,  is a local peri- 
odogram (i.e. the magnitude squared of a fourier transform com- 
puted over a window of data) centered in time on the kth image and 
windowed. The periodogram samples are also modeled as a linear 
combination of bases 0" and 0"" with coefficient vectors 0; and 
py, respectively, plus independent additive Gaussian noise: 

. ,. 
2. estimate dependent bases: Given { T k } > ,  estimate {a"", 

0"". a"*", or},. 

where ea and 0"" span orthogonal subspaces and 0;. 0;" are 
projection coefficients associated with the respective bases. In our 
model the sets of bases {a", a"", Q", Sa"} and the transfonna- 
tion T k  are treated as parameters to be estimated while {a;, a;", 
0;. 0;") are treated as random variables. 

In Equation (1). the coordinate transformation Tk accounts for 
affine motion in the kth image frame. Coefficients a; account for 
iconic changes in the object appearance which are independent of 
the audio signal, while ay account for iconic changes that are re- 
lated to the audio. Likewise, the &' account for changes in the 
audio which are independent of the iconic changes to the image, 
while the coefficients 0;" account for audio changes which are re- 
lated. The generative statistical model. depicted in Figure I ,  over 

3. estimate independent bases: Given {W"'. W"}j remove 
their contribution from the audio and video observations 
andestimate {a", W}j. 

3.1. Detection 

Following the additive Gaussim assumption, conditioned on pre- 
vious estimates of {a"". a", a". a""} j -~ ,  Tk's are estimated 

using a local search in translation and rotation about { T k } j - ~ .  

Translations are searched efficiently using FFTs while rotation and 
translation are further locally refined via d o w h l l  simplex [7, 81. 
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3.2. Estimating AN Dependency 

In [ I ]  we presented an approach for leaming joint audio-visual 
statistical models based on a nonparametric estimate of mutual in- 
formation 191. We further refined the approach in [ IO]  in which 
we provided a statistical justification for the method as well as ad- 
ditional regularizing terms related to the leamed bases. Since @." 
and 0"" span subspaces which are orthogonal to 0" and 8". re- 
spectively (by construction) we can consider the projection of the 
observations onto Q-" and 8"" separately. As such we leam pro- 
jection matrices H ,  and H. which parameterize the linear fusion 
model: 

so as to maximize the criterion 

J = f(aa";Da") ~ X1HVTH, 

- X2HaTH, - X J H , ~ R ; ' H ,  (6) 

where 0 indicates a matrix of zeroes with appropriate dimension, 
f(a; b) is a particular estimate of mutual information [IO], and the 
remaining terms are regularizing priors. The set of bases Q"" and 
0"" are computed as the pseudo-inverse of the matrices H ,  and 
H ,  respectively. 

The inclusion of mutual information in the criterion is moti- 
vated by the easily proven inequalities: 

I ( a " " ; P " " I { n } )  5 I(a"";a:") (7) 
I(aa";B."l{Tk}) 5 I ( P " " ; K " )  (8) 

where a " ,  fl:= are the "true" latent variables. Consequently, 
maximizing the mutual information between the estimated latent 
variables a"" and pa" maximizes a lower bound on the mutual 
information between the estimates and the true underlying latent 
variables (up to some invertible transformation). Due to the use of 
mutual information as a similanty criterion, these variables need 
not have the same form or dimensionality. 

3.3. Estimating IndepeniJent Bases 

The final step in each iteration is to estimate the independent bases 
for audio and video. In order to ensure that these bases span a sub- 
space which is orthogonal to their counterparts in the previous step 
we begin by removing the contribution of the dependent bases: 

0; and 0; are taken to be the first principal components of the 
resulting augmented observations. 

3.4. Initialization 

We use a simple algorithm based on image differences to initialize 
the algorithm. We begin by apriori choosing an image patch size. 
Candidate patches are chosen throughout the sequence which have 

Fig. 2. Two images from the image sequence (left and center) and 
the average over all images (right). As can be seen the speaker 
undergoes significant (primarily translational) motion. 

high energy as measured by differences between consecutive im- 
ages. Some of these patches contain the object of interest while 
others do not. These patches are used to construct an initial ap- 
pearance subspace. We'll denote this as Qo, note that this basis 
implicitly includes @; and @?. For experimental purposes, the 
initial subspace dimension i s  restricted to 5 (i.e. 5 bases) of size 
128x128. These form the hasis of an initial subspace filter which 
is used to locate the object. Thereafter we iterate through the steps 
outlined above. 

4. EMPIRICAL RESULTS 

In this section we present empirical results using the method de- 
scribed. We use as a test sequence a 15 second audio-video clip 
of a person speaking and moving their torso from side to side. 
Most of the motion i s  translational. however, there is some rota- 
tional component when the subject is at the extreme left or right. 
The subject is speaking during the entire sequence. Additionally 
there is a computer monitor in the background whose image i s  
also changing. Figure 2 shows two of the images from the A N  se- 
quence when the speaker is approximately at the extreme left and 
right. The third image in the sequence shows the average over all 
images. The average image will help to illustrate the effectiveness 
of the approach in identifying and tracking a movinglspeaking per- 
son. Additonally, figure 3 shows the difference images between 
subsequent image frames for the same two images as well as the 
image of pixel standard deviations. These differences are used to 
bias the intial choice of appearance bases. It is important to note 
that changes due to the monitor are in some sense easier to track 
as the monitor does not change position. At the very least, without 
biasing the model, one i s  as likely to leam an "appearance" of the 
monitor as one is to leam an appearance of the speaker without 
using the additional information provided by the audio signal. 

The dimensions of the image sequence are 369x240 pixels. Im- 
ages patches, which ultimately comprise the appearance model are 
128x128 pixels. As will be seen this is about twice the size needed 
for encompassing the face of the speaker. 

The dimensionality (number of bases) of the combined visual 
appearance hasis was set to five. Two of the dimensions are used 
to consmct the audio-video feature space, They are then com- 
bined with the remaining three to construct a subspace matched 
filter for locating the object in the scene. All leaming is done in 
batch over 450 images from the segment iterating over the steps of 
the previous section. Anecdotally, we noted that convergence in 
the beginning is quite slow. Most likely this is due to the lack of 
image patch alignment to start (which we intentionally avoided). 
Eventually, the image patches align (via the estimated transforms) 
at this point convergence is quite quick - approximately I O  itera- 
tions. Figure 4 shows the resulting object appearance basis func- 
tions. The two at the right correspond to the audic-video feature 
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Fig. 3. nvo difference images from subsequent frames in the im- 
age sequence (left and center) and image of pixel-wise standard 
deviations taken over all images(right). Note that black indicates 
large values while white indicates low values. From difference 
images we see that changes in the scene due to the monitor are 
as significant as changes due to the moving speaker. Additionally, 
as illustrated from pixel-wise standard-deviations. changes due to 
the monitor are localized, while changes due lo the speaker cover 
a large region. 

Fig. 4. Images of basis functions learned from the procedure. The 
two basis images at the right are the result of the cross-modal sub- 
space and exhibit more sensitivity to the lipkhin motion than the 
remaining three basis images at the left which are more sensitive 
to the objects static features. 

space. They appear to have more sensitivity to lip and chin motion 
than the three hasis images to the left. All five are used to con- 
struct a matched subspace filter which is used to locate the object 
of interest. 

Finally. in a repeat of figure 2 we show the same three images 
aJier after applying the estimated inverse transformation in figure 
5. While the single images appear to be centered, i t  is the average 
image which is most striking, noting that the facial features come 
clearly into view. 

5. DISCUSSION 

We have presented a new algorithm for exploiting cross-modal in- 
formation for purposes of learning an appearance model and es- 
timating the large-scale motion of an audio-video object. This 
method extends our previous work on subspace approaches to learn- 
ing multi-modal statistical models. While the experimental results 
are promising, analysis of more complicated scenes will be the 
subject of future work. Note that we successfully recovered an ap- 
pearance model of a moving subject using audio-video correspon- 
dence in a feature space wirhour initializing to the object explicitly. 
Conceptually, the algorithm is straightforward. 
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Fig. 5. The same two images from the image sequence (left and 
center) shown in 2 after applying a global transformatin estimate 
and the transformed average over all images (right). 
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