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ABSTRACT 

We present extensions to our previous work in modelling 
dynamical processes. The approach uses an information 
theoretic criterion for searching over subspaces of the past 
observations, combined with a nonparametric density char- 
acterizing its relation to one-step-ahead prediction and un- 
certainty. We use this methodology to model handwriting 
stroke data, specifically signatures, as a dynamical system 
and show that it is possible to learn a model capturing their 
dynamics for use either in synthesizing realistic signatures 
and in discriminating between signatures and forgeries even 
though no forgeries have been used in constructing the mod- 
el. This novel approach yields promising results even for 
small training sets. 

1. INTRODUCTION 

Real-world dynamical processes often exhibit characteris- 
tics which make them extremely difficult to model with con- 
ventional tools. Specifically, nonlinear effects and nongaus- 
sian randomness can cause canonical modelling methods to 
fail or at least to require problem-specific modification (hu- 
man intervention) to mitigate such difficulties. In general 
there is a fundamental tradeoff in the capacity of a model 
and its ease of use. For example, linear methods have great 
advantages in computation but lack the modelling capaci- 
ty to consistently handle problems which fall outside the 
linear-quadratic-gaussian regime. Neural network based ap- 
proaches lack a complete model of uncertainty, while HMM 
methods are not well suited to continuous state dynamics. 
Nonparametric approaches possess the modelling capacity; 
however, such capacity must be controlled (e.g. via dimen- 
sionality reduction). 

The approach we present, based on nonparametric mod- 
elling of a subspace of the data, chosen via an information- 
theoretic criterion, allows us to exploit the modelling capac- 
ity of a nonparametric density estimate while reducing the 
computational burden. This gives us the flexibility to de- 

0-7803-7041-4/01/$10.00 02001 IEEE 

scribe complex, possibly multimodal uncertainty and non- 
linear system dynamics while retaining control over the com- 
putational complexity. Such a system description has an in- 
trinsic notion of randomness and uncertainty (not restricted 
to a “noise-like’’ interpretation) which questions the role of 
“prediction” as a useful metric, but nevertheless character- 
ize many dynamical systems. 

2. DYNAMICAL SYSTEM MODEL DESCRIPTION 

We hypothesize our dynamical systems to be of the form 
depicted in Figure 1. In such systems the state is fully cap- 
tured by the local past of the process. The conditional distri- 
bution p ( z k  Izk-1 . . z k - ~ )  is by assumption stationary. 
It should be noted that such a description includes both s- 
tationary and nonstationary processes (e.g. random walk). 
Furthermore, we hypothesize that the intrinsic dimensional- 
ity of this state is less than N .  That is, there exists a (possi- 
bly vector-valued) function G such that 

P ( Z ~ I G ( Z ~ - I  . . z ~ - N ) )  

is stationary and G is sufficient, i.e. the mutual information 
satisfies 

This G corresponds to the informative subspace of the delay 
coordinate space {zk, zkp1 . . . X k - N } .  The arbitrariness 
of G allows an arbitrary data manifold - our assumption is 
only that its dimension is small 

Despite this underlying assumption, it should be noted 
that as discussed in [ 13 useful information can be extracted 
by such a model even when the true process does not quite 
satisfy the conditions. For example, a process which has a 
dependence longer than N will cause any lost information 
to be attributed to randomness in the signal. Note also that 
although G is in some way capturing the relational struc- 
ture of the data and its uncertainty, the two are intimate- 
ly related. Note G need not equal G exactly; it need only 
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Fig. 1. Dynamical System Model 

be equivalent to G up to a bijective transformation, which 
then determines the relationship of p and 5. Thus, repre- 
sentational capacity in the model 5 can reduce the required 
complexity of G. 

3. TRAINING NONPARAMETRIC DYNAMICAL 
MODELS 

The mutual information between z and any statistic G is 
bounded as follows [2] 

= H(s) + H ( @ p a s t ) )  - H(z, Gb-past)) 

with equality if G is sufficient. As described in [ I ]  our train- 
ing method maximizes I (z ,  G).  We construct a density es- 
timate o f p ( z ,  G(spast))  as follows: 

where X k  = [sk, G ( z ~ - I , .  . . ) I ,  K is a kernel function (in 
our case a unit-variance Gaussian) and h is the kernel band- 
width [3]. Once G is learned this will become the distribu- 
tion in our model. 

Such a density can be used to estimate the entropy gra- 
dient [4, 51. The method of [5] has several nice properties, 
such as a computational advantage and a term which dis- 
courages saturation which led us to select it for use. We 
then use this estimate to train our statistics, which we pa- 
rameterize as single-layer network structures, i.e. the i t h  

statistic is given by 

where the wi,j are the network weights and o(.) is the hy- 
perbolic tangent function.- 

This simple form of G does not severely limit its capa- 
bilities; as discussed above, the modelling power of ?; com- 

pensates for lack of flexibility in G. In addition, this tech- 
nique is easily extended to multilayer perceptrons, allowing 
more complex functional approximation if desired. 

4. GENERATIVE MODELS 

Having captured the relation of the past to subsequent data 
points, our model can be used to synthesize sample realiza- 
tions of the process from any point in time. However, the 
nonparametric nature of the modelled density raises the is- 
sue of how these points should be selected. It may be that 
this density is not unimodal, in which case the MSE esti- 
mate can be arbitrarily unlikely. Another choice, the ML es- 
timate, results in sequences which are not typical [2] .  In fac- 
t, in such cases the role of prediction is not clear, although 
sampling is. As a consequence of our complete model of 
uncertainty, synthesis - the task of generating multiple plau- 
sible patterns each of which displays the observed dynam- 
ics - is viable. Having modelled uncertainty means we also 
avoid mere repetition of observed data; this distinction is 
important in a number of applications such as image or au- 
dio tasks where humans are adept at discerning repetitive 
structure. To generate synthesis paths, we need only sam- 
ple from the induced conditional distribution of the model. 
If we have accurately captured the relation and randomness 
inherent in the process this will preserve its observed struc- 
ture. 

5. DISCRIMINATIVE MODELS FOR PROCESS 
CLASSIFICATION 

As described in [ 1 J ,  such a model also can be used to eval- 
uate the likelihood of a new process sequence of unknown 
type under the learned dynamical model. When all hypothe- 
ses have been modelled, a simple evaluation and likelihood 
ratio test will allow us to discriminate. However, in the case 
that we wish to discriminate between a modelled process 
and a continuum of other possibilities which we are not 
able to model accurately, the question becomes more dif- 
ficult. The problem of signature verification considered lat- 
er is one such case where it may not be possible to model 
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Fig. 2. (a) Example signature; (b) synthesis with 4d statistic using only local (dz, dy) information; (c) 4d statistic of local 
(z, y) information; (d) 3d statistic of local (dx, dy) augmented by time information 

“alternatives”, i.e. forgeries. 
However, it is still possible to test discriminatively. It 

can be shown that in the large-data limit the log-likelihood 
of the process X will approach its negative entropy rate 
-H(X). We can bound the deviation from this for a giv- 
en acceptance probability and number of samples, or the re- 
quired sample size for a given deviation and probability of 
acceptance. Any other process y will approach -H(y) - 
D(YllX) where D(.) is the =-divergence between the two 
processes. This quantity may be larger than -H(X), when 
y represents a “more probable than expected” version of X; 
but y which do not exhibit the same dynamics will gener- 
ally be unlikely under X ’ s  model and so have a likelihood 
less than -H(X). 

While we cannot characterize the probability of false- 
alarm without some model for “all other processes”; we can 
characterize the probability of rejecting a correct process X 
as a function of the number of samples and the acceptance 
region, or choose a region of acceptance given a fixed num- 
ber of samples and an acceptable probability of incorrect 
rejection. 

6. HANDWRITING AS A DYNAMICAL SYSTEM 

Handwriting represents a highly nonlinear system which ex- 
hibits both obvious structure and variability. Signatures are 
the most extreme example, being so consistent that we reg- 
ularly use them as verification of identity yet random e- 
nough that no two look exactly alike. Even text of arbi- 
trary content contains a considerable amount of information 
about its writer’s identity. Regarding handwriting as a two- 
dimensional time series, we can then consider the problems 
of signature synthesis and recognition as problems of mod- 
elling this dynamical system. 

To acquire our signature examples, we used a CrossPad 
digitizing tablet, which samples with equal time-spacing 
and a spatial resolution of 256 pixelshnch. Eight exam- 
ple signatures were taken from each of five subjects and re- 

sampled to have the same number of samples (that person’s 
average, between 130 and 200 points); no further warping 
or feature-matching was performed. Informative statistic- 
s were then learned within the recent past, i.e. the previ- 
ous ten (2, y) pairs using the methodology of [ 11. Forgeries 
were used solely in the likelihood testing stage, not for train- 
ing, and consisted of so-called “skilled” forgeries, wherein 
the forger is given access to copies of the true signature, 
time to practice, and knows that the dynamics of the motion 
will play a role. For testing, the new signature is resampled 
to the same length as those of the training set, and the ac- 
cumulated log-likelihood of the new data conditioned on its 
statistics of the past is computed. 

Inherent in any model is a choice of coordinate system- 
s, and frequently its selection is quite relevant to the dif- 
ficulty of the task. In this case there are two obvious co- 
ordinate systems: relative and differential. This illustrates 
an essential tradeoff in such problems, namely manually re- 
moving information which may or may not be extraneous in 
order to improve the volume of data available for the densi- 
ty estimate. If the removed information is truly extraneous 
this improves the estimate; if not it may create bimodalities 
which could otherwise be differentiated. For the momen- 
t we put this issue aside to present some results; we will 
return to it later. 

In Figure 2 we see examples of a true signature and sev- 
eral synthesized sample paths. The first, given only differ- 
ential information, may possess characteristics of handwrit- 
ing but fails to capture the process. Essentially, this is due to 
a lack of context - i t  has insufficient information to disam- 
biguate position within the word. The second, using relative 
(x ,y)  coordinates, possesses context but as we might ex- 
pect has more consistency near (0,O) than at later positions 
which are dependent on long-term factors such as slant or 
size deviation. Finally, differential coordinates augmented 
by a time index have good consistency throughout but are 
not, for example, confined to a straight line. 

This illustrates an earlier point. The dynamics of sign- 
ing are not stationary; it is only through conditioning on s- 
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Fig. 3. Estimated PDF of average log-likelihoods for test signatures (solid), training (dotted), and forgeries (dashed) for 
“ihler” and “john” 

tatistics which provide this context that we can approximate 
them as such. If the necessary context is present in the ob- 
servations, it will be leamed; but without it the model cannot 
hope to capture the true dynamics. Such context is clearly 
necessary for synthesis, but may be less vital for discrimi- 
nation. Figure 3 shows a kernel estimate of the distribution 
of average likelihoods for three cases: signatures from the 
training set (excluding them from the density first), true sig- 
natures from the testing set, and forgery attempts. Notice 
that despite its small size the training set provides a reason- 
able estimate of the true likelihood distribution, while forg- 
eries are in general found to be unlikely under the learned 
models. 

It should be noted that this preliminary result was re- 
stricted to short, single stroke signatures. It is certainly pos- 
sible to learn multiple stroke models. More complete details 
can be found in [6]. 

7. CONCLUSIONS 

We have shown the flexibility and capacity of our approach 
to model difficult dynamical systems involving nonlinear 
and nongaussian dynamics, even a degree of nonstationar- 
ity. The system model possesses the ability to synthesize 
realistic sample paths, and to characterize the likelihood of 
a new sequence. We discussed the use of these models for 
synthesis and hypothesis testing, even when no alternatives 
can be well characterized. 

We then take a novel outlook to the handwriting recog- 
nition problem. Signature verification is a task in which we 
wish to differentiate between two hypotheses, but in reality 
data from only one is available to us. This perhaps makes a 
dynamical system model and likelihood evaluation unique- 
ly suited for such a test, since we have the assurance that the 

better our model fits the true dynamics the more difficult a 
forgery will be. We demonstrate the capability to learn such 
a dynamical model, even from few examples, and show that 
it has captured dynamics in two ways - its capability of gen- 
erating plausible new signatures, and in the clustering of test 
signatures around the estimated entropy rate. We also show 
that i t  is at least reasonably difficult to forge such a dynamic, 
even with practice. 
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