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Abstract—Automatic self-localization is a critical need for the ef-
fective use of ad hoc sensor networks in military or civilian applica-
tions. In general, self-localization involves the combination of ab-
solute location information (e.g., from a global positioning system)
with relative calibration information (e.g., distance measurements
between sensors) over regions of the network. Furthermore, it is
generally desirable to distribute the computational burden across
the network and minimize the amount of intersensor communica-
tion. We demonstrate that the information used for sensor localiza-
tion is fundamentally local with regard to the network topology and
use this observation to reformulate the problem within a graph-
ical model framework. We then present and demonstrate the utility
of nonparametric belief propagation (NBP), a recent generalization
of particle filtering, for both estimating sensor locations and rep-
resenting location uncertainties. NBP has the advantage that it is
easily implemented in a distributed fashion, admits a wide variety
of statistical models, and can represent multimodal uncertainty.
Using simulations of small to moderately sized sensor networks,
we show that NBP may be made robust to outlier measurement er-
rors by a simple model augmentation, and that judicious message
construction can result in better estimates. Furthermore, we pro-
vide an analysis of NBP’s communications requirements, showing
that typically only a few messages per sensor are required, and that
even low bit-rate approximations of these messages can be used
with little or no performance impact.

Index Terms—Algorithms, calibration, distributed estimation,
localization, message passing, sensor network.

I. INTRODUCTION

IMPROVEMENTS in sensing technology and wireless com-
munications are rapidly increasing the importance of sensor

networks for a wide variety of application domains [1], [2]. Col-
laborative networks are created by deploying a large number
of low-cost, self-powered sensor nodes of varying modalities
(e.g., acoustic, seismic, magnetic, imaging, etc.). Sensor local-
ization, i.e., obtaining estimates of each sensor’s position, as
well as accurately representing the uncertainty of that estimate,
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is a critical step for effective application of large sensor net-
works. Manual calibration1 of each sensor may be impractical
or even impossible, and equipping every sensor with a global po-
sitioning system (GPS) receiver or equivalent technology may
be cost prohibitive. Consequently, methods of self-localization
which can exploit relative information (e.g., obtained from re-
ceived signal strength or time delay between sensors) and a lim-
ited amount of global reference information as might be avail-
able to a small subset of sensors are desirable. In the wireless
sensor network context, localization is further complicated by
the need to minimize intersensor communication in order to pre-
serve energy resources.

We present a localization method in which each sensor has
available noisy distance measurements to neighboring sensors.
In the special case that the noise on distance observations is
well modeled by a Gaussian distribution, localization may be
formulated as a nonlinear least-squares optimization problem.
In [3], it was shown that a relative calibration solution which
approached the Cramer–Rao bound could be obtained using an
iterative optimization approach.

In contrast, we reformulate localization as an inference
problem on a graphical model. This allows us to apply nonpara-
metric belief propagation (NBP) [4], a variant of the popular
belief propagation (BP) algorithm [5], to obtain an approximate
solution. This approach has several advantages.

• It exploits the local nature of the problem; a given sensor’s
location estimate depends primarily on information about
nearby sensors.

• It naturally allows for a distributed estimation procedure.
• It is not restricted to Gaussian measurement models.
• It produces both an estimate of sensor locations and a

representation of the location uncertainties.

The last is notable for random sensor deployments where multi-
modal uncertainty in sensor locations is a frequent occurrence.
Furthermore, estimation of uncertainty (whether multimodal or
not) provides guidance for expending additional resources in
order to obtain more refined solutions.

In the subsequent sections, we describe the sensor localiza-
tion problem in more detail and relate it to inference in graph-
ical models. In Sections II–III, we formalize the problem and
discuss the types of uncertainty which occur in localization.
Section IV reformulates the localization problem as a graph-
ical model, and presents a solution based on the NBP algo-
rithm. We show several empirical examples demonstrating the

1In the context of this paper, we use the term localization interchangeably
with the more general term calibration in sensor networks.
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ability of NBP to solve difficult distributed localization prob-
lems. We conclude with three modifications to improve NBP’s
performance in practical applications. Section VI shows how
NBP may be augmented to include an outlier model in the mea-
surement process, and demonstrates its improved robustness to
non-Gaussian measurement errors. Section VII presents an al-
ternative sampling procedure which may improve the perfor-
mance of NBP in systems with limited computational resources,
and Section VIII considers the communication costs inherent
in a distributed implementation of NBP, and provides simula-
tions to demonstrate the inherent tradeoff between communica-
tion and estimate quality.

II. SELF-LOCALIZATION OF SENSOR NETWORKS

This section describes a statistical framework for the sensor
network self-localization problem, similar but more general
than that given in [6]. We restrict our attention to cases in
which individual sensors obtain noisy distance measurements
of a (usually nearby) subset of the other sensors in the network.
This includes, for example, scenarios in which each sensor
is equipped with a wireless and/or acoustic transceiver and
distance is estimated by received signal strength or time delay
of arrival between sensor locations. Typically, this involves a
broadcast from each source as all other sensors listen [6], [7].

While the framework we describe is not the most general pos-
sible, it is sufficiently flexible to be extended to more complex
scenarios. For instance, our method may be easily modified to
fit cases in which sources are not co-located with a cooperating
sensor, to incorporate direction-of-arrival information (which
also necessitates estimation of the orientation of each sensor)
[6], or simultaneous estimation of other sensor characteristics
such as transmitter power [7].

Let us assume that we have sensors scattered in a planar
region, and denote the two-dimensional location of sensor by

. The sensor obtains a noisy measurement of its distance
from sensor with some probability

(1)

We use the binary random variable to indicate whether this
observation is available, i.e., if is observed, and

otherwise. Finally, each sensor has a (potentially un-
informative) prior distribution, denoted . Thus, the joint
distribution is given by

(2)

The typical goal of sensor localization is to estimate the max-
imum a posteriori (MAP) sensor locations given a set of
observations . Of course, there is a distinction between
the individual MAP estimates of each versus the MAP esti-
mate of all jointly. For this work, it is convenient to select
the former; in a discrete system, this would correspond to min-
imizing the bit-error rate (as opposed to an “all-or-nothing” se-
quence-error probability).

The estimated distances and may be different, and
it is even possible to have (indicating that only one

of sensors and can observe the other). It will later be con-
venient to symmetrize these relationships, a process which in-
volves exchanging information between any pair of sensors ,
, which observe either or ; this may involve multihop

message routing or other communication protocols which are
beyond the scope of this paper. For Gaussian , the two esti-
mates are simply averaged. However, for arbitrary distributions
the process of using both measurements, while not difficult, be-
comes notationally cumbersome; we, thus, assume in the devel-
opment that and , and include remarks on
the differences when this is not the case.

Also, the amount of prior location information may be almost
nonexistent. In this case, we may wish to solve for a relative
sensor geometry (versus estimating the sensor locations with re-
spect to some absolute frame of reference) [3]. Given only the
relative measurements , the sensor locations may
only be solved up to an unknown rotation, translation, and re-
flection (mirror image) of the entire network. We avoid ambi-
guities in the relative calibration case by assuming priors which
enforce known conditions for three sensors (denoted , , and

).

1) Translation: has known location (taken to be the origin:
).

2) Rotation: is in a known direction from (
for some ).

3) Negation: has known sign ( for some ,
with ).

Typically. , , and are taken to be spatially close to each
other in the network. When our goal is absolute calibration
(calibration with respect to a known coordinate reference), we
simply assume that the prior distributions contain suf-
ficient information to resolve this ambiguity. The sensors with
significant prior information (or for relative calibration)
are referred to as anchor nodes.

In general, finding the MAP sensor locations is a complex
nonlinear optimization problem. If the uncertainties ,
above are Gaussian and is assumed constant, MAP joint
estimation of the reduces to a nonlinear least-squares
optimization [6]. In the case that we observe distance measure-
ments between all pairs of sensors (i.e., ), this also
corresponds to a well studied distortion criterion (“STRESS”)
in multidimensional scaling problems [8]. However, for
large-scale sensor networks, it is reasonable to assume that
only a subset of pairwise distances will be available, primarily
between sensors which are in the same region. One model
(proposed by [3]) assumes that the probability of detecting
nearby sensors falls off exponentially with squared distance

(3)

We use (3) in our example simulations, though alternative forms
are equally simple to incorporate into our framework, leaving
open the possibility of estimating from training data, if avail-
able; such experiments have already been performed for certain
sensor types and measurement methods [7].

A large number of methods have been previously proposed
to estimate sensor locations [7], [9]–[13]. An exhaustive catego-
rization is beyond the scope of this paper, here, we are able to list
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Fig. 1. Example sensor network. (a) Sensor locations are indicated by symbols and distance measurements by connecting lines. Calibration is performed relative
to the three sensors drawn as circles. (b) Marginal uncertainties for the two remaining sensors (one bimodal, the other crescent-shaped), indicating that their
estimated positions may not be reliable. (c) Estimates of the same marginal distributions using NBP.

only a few. For better or worse, many of these methods eschew
a statistical interpretation in favor of computational simplicity.
Some examples include estimating distances which were not
observed and applying classical multidimensional scaling [8],
multilateration [12], or other techniques [9]. Other approaches
search for locations which satisfy convex distance constraints
[11]. Yet another method heuristically minimizes the rank of the
distance matrix [14].

However, these algorithms often lack a direct statistical in-
terpretation, and as one consequence rarely provide an estimate
of the remaining uncertainty in each sensor location. Iterative
least-squares methods such as [6], [10], [12], and [13] do have
a statistical interpretation, but assume a Gaussian model for
all uncertainty, which may be questionable in practice. As we
discuss in Section III, non-Gaussian uncertainty is a common
occurrence in sensor localization problems. In consequence,
the Cramer–Rao bound may be an overly optimistic character-
ization of the actual sensor location uncertainty, particularly
for multimodal distributions. Estimating which, if any, sensor
positions are unreliable is an important task when parts of the
network are underdetermined. Furthermore, Gaussian noise
models are often inadequate for real-world noise, which may
have some fraction of highly erroneous (outlier) measurements.

In this paper, we pose the sensor localization problem as infer-
ence on a graphical model, and propose an approximate solution
making use of a recent sample-based message-passing estima-
tion technique called NBP. NBP allows us to apply the general,
flexible statistical formulation described above, and can capture
the complex uncertainties which occur in localization of sensor
networks.

III. UNCERTAINTY IN SENSOR LOCATION

The sensor localization problem as described in the previous
section involves the optimization of a complex nonlinear like-
lihood function. However, it is often desirable to also have
some measure of confidence in the estimated locations. Even
for Gaussian measurement noise , the nonlinear relationship
of intersensor distances to sensor positions results in highly
non-Gaussian uncertainty of the sensor location estimates.

For sufficiently small networks, it is possible to use Gibbs
sampling [15] to obtain samples from the joint distribution of
the sensor locations. In Fig. 1(a), we show an example network
with five sensors. Calibration is performed relative to measure-
ments from the three sensors marked by circles. A line is shown

Fig. 2. Graph separation and conditional independence of variables: all paths
between the setsA andC pass throughB, implying p(x ; x j x ) = p(x j
x )p(x j x ).

connecting each pair of sensors which obtain a distance mea-
surement. Contour plots of the marginal distributions for the two
remaining sensors are given in Fig. 1(b); these sensors do not
have sufficient information to be well-localized, and in partic-
ular, have highly non-Gaussian, multimodal uncertainty (sug-
gesting the utility of a nonparametric representation). Although
we defer the details of NBP to Section IV-C, for comparison,
an estimate of the same marginal uncertainties performed using
NBP is displayed in Fig. 1(c).

IV. GRAPHICAL MODELS FOR LOCALIZATION

Graphical models are a popular means of encapsulating the
factorization of a probability distribution, enabling the applica-
tion of a number of simple, general algorithms for exact or ap-
proximate inference [5], [16], [17]. Interpreting the distribution
(2) as a graphical model allows one in principle to apply any
of a number of inference algorithms [16], [17], of which BP is
perhaps the best-known. In practice, however, we shall see that
the typical, discrete implementation of BP has an unacceptably
high computational cost. However, a particle-based approxima-
tion to BP, called NBP, results in a more tractable algorithm.

A. Graphical Models

An undirected graphical model consists of a set of vertices
and a collection of edges . Two vertices

, are connected if there exists an edge between
them, and a subset is fully connected if all pairs of ver-
tices are connected. Each vertex is also associ-
ated with a random variable , and the edges of the graph are
used to indicate conditional independence relationships through
graph separation. Specifically, if every path between two sets

passes through a set (see Fig. 2), then the
sets of random variables and

are independent given . This re-
lationship may also be written in terms of the joint distribution:

.



812 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

The relationship between the graph and joint distribution may
be quantified in terms of potential functions which are de-
fined over the graph’s cliques (the fully connected subsets of

), which we denote by [16]

(4)

Again, taking to be the location of sensor , we may immedi-
ately define potential functions which equate (4) to the joint dis-
tribution (2). Notably, this only requires functions defined over
single nodes and pairs of nodes. Take

(5)

to be the single-node potential at each node , and define the
pairwise potential between nodes and as

if
otherwise

(6)
We make no distinction between and , only one of
which2 appears in the product (4). The joint posterior likelihood
of the is then

(7)

Notice also that for nonconstant every sensor has some in-
formation about the location of each sensor (i.e., there is some
information contained in the fact that two sensors do not ob-
serve a distance between them, namely, that they should prefer
to be far from each other). This is a probabilistic relationship
and, thus, can account for the fact that sometimes (such as when
physical barriers are present) sensors which are near may fail to
observe each other.3

Unfortunately, fully connected graphs are very difficult for
most inference algorithms, and thus it behooves us to approxi-
mate the exact model. Experimentally (see [18]), it appears that
there is little loss in information by discarding the interactions
between nodes which are far apart, in the following sense. Let
the “1-step” graph be the graph in which we join two nodes
and if and only if we observe a distance (so that ).
We create the “2-step” graph by also adding an edge between
and if we observe and for some sensor , but not ,
and may extend this definition to “3-step” and so forth. Edges
for which , we refer to as observed; those with ,
we call unobserved edges. Note that the “1-step” graph is exact
if is a constant, since in this case the unobserved edges offer
no additional information.

There is also a convenient relationship between the statistical
and communications graph in localization. Specifically, distance
measurements are only obtained for sensor pairs which have

2The definition of  is slightly more complicated for asymmetric measure-
ments, since to obtain a self-consistent undirected graphical model we require
both t and u to know and agree on  =  , which will thus involve all four
quantities o , o , d , and d .

3The effect of these constraints is similar to, but less strict than, that achieved
by approximating unobserved distances by shortest paths [12], and to the non-
convex constraints mentioned in [11]. This has the additional benefit of being
less vulnerable to distortion (as observed by [12]) when the sensor configuration
is not entirely convex.

communications links.4 Thus, messages along observed edges
may be communicated directly, while messages along unob-
served edges may require a multihop forwarding protocol (with
2-step edges requiring at most two hops, etc.).

B. Belief Propagation

Having defined a graphical model for sensor localization, we
now turn to the task of estimating the sensor locations. Infer-
ence among variables in a graphical model is a problem which
has received considerable attention. Although exact inference
in general graphs can be NP-hard, approximate inference algo-
rithms such as loopy BP [5], [19] produce excellent empirical
results in many cases. BP can be formulated as an iterative, local
message passing algorithm, in which each node computes its
“belief” about its associated variable , communicates this be-
lief to and receives messages from its neighbors, then updates
its belief and repeats.

The computations performed at each iteration of BP are rela-
tively simple. In integral form, each node computes its belief
about (a normalized estimate of the posterior likelihood of

) at iteration by taking a product of its local potential
with the messages from its neighbors, denoted

(8)

Typically, the (arbitrary) proportionality constants are chosen to
normalize , i.e., . The messages from
the node to are computed in a similar fashion

(9)

One appealing consequence of using a message-passing infer-
ence method and assigning each vertex of the graph to a sensor
in the network is that computation is naturally distributed. Each
node (sensor) performs computations using information sent
by its neighbors, and disseminates the results, as described in
Alg. 1. This process is repeated until some convergence crite-
rion is met, after which each sensor is left with an estimate of
its location and uncertainty.

Alg. 1 also uses a suggestion of [20], in which a reweighted
marginal distribution is used as an estimate of the
product of messages (9). In addition to the advantages dis-
cussed in [20], this has a hidden communication benefit—all
messages from to its neighbors may be communicated si-
multaneously via a broadcast step. This is because the message
from to each neighbor is a function of the marginal

, the previous iteration’s message from to , and
the compatibility (which depends only on the observed
distance between and ). Since the latter two quantities are
also known at node , may simply communicate its estimated
marginal to all its neighbors, and allow each to deduce
the rest.

4While technically the time-varying nature of these links means that commu-
nications may not be entirely reliable, we ignore this subtlety and assume that,
over the short period of time in which localization is performed, the communi-
cations graph is static.
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Alg. 1. Belief propagation for sensor self-localization.

C. Nonparametric Belief Propagation

The BP update and belief (8) and (9) are easily computed in
closed form for discrete or Gaussian likelihood functions; un-
fortunately neither discrete nor Gaussian BP is well-suited to
localization, since even the two-dimensional space in which the

reside is too large to accommodate an efficient discretized
estimate,5 and the presence of nonlinear relationships and po-
tentially highly non-Gaussian uncertainties makes Gaussian BP
undesirable as well. The development of a version of BP making
use of particle-based representations, called NBP [4], enables
the application of BP to inference in sensor networks.

In NBP, each message is represented using either a sample-
based density estimate (as a mixture of Gaussians) or as an ana-
lytic function. Both types are necessary for the sensor localiza-
tion problem. Messages along observed edges are represented
by samples, while messages along unobserved edges must be
represented as analytic functions since often
is not normalizable (typically, tending to 1 as be-
comes large) and, thus, is poorly approximated by any finite set
of samples. The belief and message update (8) and (9) and are
performed using stochastic approximations, in two stages: first,
drawing samples from the estimated marginal , then using
these samples to approximate each outgoing message . We
discuss each of these steps in turn, and summarize the procedure
in Alg. 2.

Given weighted samples from the marginal
estimate obtained at iteration , computing a Gaussian
mixture estimate of the outgoing message from to is rel-
atively simple. We first consider the case of observed edges.
Given a measurement of the distance , each sample is
moved in a random direction by plus noise6:

(10)

5For M bins per dimension, calculating each message requires O(M ) op-
erations, though there has been some work to improve this [21], [22].

6If p is non-Gaussian and d 6= d , we may draw some samples according
to each of p(x j x ; d ) and p(x j x ; d ) and weight by the influence of
the other observation.

Alg. 2. Using NBP to compute messages and marginals for sensor
localization.

The samples are then weighted by the remainder of (9),
, and (as is typical in kernel density

estimation) a single covariance is assigned to all samples.
There are a number of possible techniques for choosing the
covariance ; one simple method is the rule of thumb esti-
mate [23], given by computing the (weighted) covariance of the
samples

(11)

(where ) and dividing by . A simple and
computationally efficient alternative has been proposed by [24];
if the uncertainty added by is Gaussian, we may simply use
the mean ( ) and apply the covariance of the Gaussian
uncertainty to each sample ( ). This method may also
be extended to small Gaussian mixtures, and works well when
the number of particles is sufficiently large.

As stated previously, messages along unobserved edges (pairs
, for which is not observed) are represented using an ana-

lytic function. Using the probability of detection and samples
from the marginal at , an estimate of the outgoing message to

is given by

(12)

which is easily evaluated for any analytic model of .
Estimation of the marginal is potentially

more difficult. Since it is the product of several Gaussian
mixtures, computing exactly is exponential in the number
of incoming messages. However, efficient methods of drawing
samples from the product of several Gaussian mixture den-
sities are investigated in [25]; in this work, we primarily use
a technique called mixture importance sampling. Denote the
set of neighbors of having observed edges to by . In
order to draw samples, we create a collection of
weighted samples (where is a parameter of the sampling
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Fig. 3. (a) Small (ten-sensor) graph with edges denoting observed pairwise distances. (b) The same network with “2-step” unobserved relationships also shown.
Calibration is performed relative to the sensors drawn as open circles. (c) Centralized estimate of the MAP solution shows generally similar errors (lines) to
(d), NBPs approximate (marginal maximum) solution. However, NBP’s estimate of uncertainty (e) for the poorly resolved sensor displays a clear bimodality.
Adding “2-step” potentials (f) results in a reduction of the spurious mode and an improved estimate of location.

algorithm) by drawing samples from each message
and assigning each sample a weight equal to the

ratio . We then draw values from
this collection with probability proportional to their weight
(with replacement), yielding equal-weight samples drawn from
the product of all incoming messages. Computationally, this
requires operations per marginal estimate.

V. EMPIRICAL CALIBRATION EXAMPLES

We show two example sensor networks to demonstrate NBP’s
utility. All the networks in this section have been generated by
placing sensors at random with spatially uniform probability
in an area, and letting each sensor observe its distance
from another sensor (corrupted by Gaussian noise with vari-
ance ) with probability given by (3). We investigate the rela-
tive calibration problem, in which the sensors are given no ab-
solute location information; the anchor nodes are indicated by
open circles. These simulations used particles and
underwent three iterations of the sequential message schedule
described in Section VIII; each iteration took less than 1 s/node
on a P4 workstation.

The first example [Fig. 3(a)] shows a small graph ( ),
generated using and noise ; this made
the average measured distance about , and each sensor ob-
served an average of five neighbors. One sensor (the lowest) has
significant multimodal location uncertainty, since it observes
only two measurements. The true joint MAP configuration is
shown in Fig. 3(c), while the “1-step” NBP estimate is shown
in Fig. 3(d). Comparison of the error residuals would indicate
that NBP has significantly larger error on the sensor in question.

However, this is mitigated by the fact that NBP has a represen-
tation of the marginal uncertainty [shown in Fig. 3(e)] which
accurately captures the bimodality of the sensor location, and
which could be used to determine that the location estimate is
questionable. Additionally, the true MAP estimate uses more in-
formation than “1-step” NBP. We approximate this information
by including some of the unobserved edges (“2-step” NBP). The
result is shown in Fig. 3(f); the error residuals are now compa-
rable to the exact MAP estimate.

While the previous example illustrates some important details
of the NBP approach, our primary interest is in automatic cali-
bration of moderate- to large-scale sensor networks with sparse
connectivity. We examine a graph of a network with 100 sensors
generated with (giving an average of about nine
observed neighbors) and , shown in Fig. 4. For
problems of this size, computing the true MAP locations is con-
siderably more difficult. The iterative nonlinear minimization of
[3] converges slowly and is highly dependent on initialization.
As a benchmark to illustrate the best possible performance, an
idealized estimate in which we initialize using the true loca-
tions is shown in Fig. 4(c). In practice, we cannot expect to per-
form this well; starting from a more realistic value (initialization
given by classical multidimensional scaling (MDS) [8]) finds
the alternate local minimum shown in Fig. 4(d). The “1-step”
and “2-step” NBP solutions are shown in Fig. 4(e)–(f). Errors
due to multimodal uncertainty similar to those discussed previ-
ously arise for a few sensors in the “1-step” case. Examination
of the “2-step” solution shows that the errors are comparable to
the estimate with an idealized initialization.

In the “2-step” examples above, we have included all “2-step”
edges, but this is often not required. The sensors which require
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Fig. 4. Large (100-node) example sensor network. (a) and (b) 1- and 2-step edges. Even in a centralized solution we can at best hope for (c) the local minimum
closest to the true locations; a more realistic initialization (d) yields higher errors. NBP (e)–(f) provides similar or better estimates, along with uncertainty, and is
easily distributed. Calibration is performed relative to the three sensors shown as open circles.

Fig. 5. (a) Small (ten-sensor) graph and the observable pairwise distances; calibration is performed relative to the location of the sensors shown in green.
One distance (shown as dashed) is highly erroneous, due to a measurement outlier. (b) The MAP estimate of location, discarding the erroneous measurement.
(c) A nonlinear least-squares estimate of location is highly distorted by the outlier. (d) NBP is robust to the error by inclusion of a measurement outlier process in
the model.

this additional information are typically those with too few ob-
served neighbors, and we could achieve similar results by in-
cluding only “2-step” edges which are incident on a node with
fewer than, for example, four observed edges.

VI. MODELING NON-GAUSSIAN MEASUREMENT NOISE

It is straightforward to change the form of the noise distribu-
tion so long as sampling remains tractable. This may be used
to accommodate alternative distance noise models such as the
log-normal model of [10], as might arise when distance between
sensor pairs is estimated using the received signal strength, or
models which have been learned from data [7].

Although this fact can also be used to model the presence of a
broad outlier process, the form of NBP’s messages as Gaussian
mixtures provides a more elegant solution. We augment the
Gaussian mixtures in each message by a single, high-variance
Gaussian to approximate an outlier process in the uncertainty
about , in a manner similar to [24]. To be precise, we add an

extra particle to each outgoing message, centered at the mean
of the other particles and with weight and variance chosen to
model the expected outliers, e.g., weight equal to the proba-
bility of an outlier, and standard deviation sufficiently large to
cover the expected support of . Direct approximation of the
outlier process requires fewer particles than naive sampling
to adequately represent the message, and thus is also more
computationally efficient.

Fig. 5(a) shows the same small ( ) “1-step” network
examined in Fig. 3 but with several additional distance measure-
ments (indicated as lines), on which we have introduced a single
outlier measurement (the dashed line). We again perform cali-
bration relative to the three sensors shown as circles. If we pos-
sessed an oracle which allowed us to detect and discard the erro-
neous measurement, the optimal sensor locations can be found
using an iterative nonlinear least-squares optimization [3]; the
residual errors after this procedure (for a single noise realiza-
tion) are shown in Fig. 5(b). However, with the outlier measure-
ment present, the same procedure results in a large distortion
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Fig. 6. Monte Carlo localization trials on the sensor network in Fig. 5(a).
We measure the probability of a sensor’s estimated location being within a
radius r of its true location (normalized by the region size L), with noise � =

:02L and :002L for both NBP and nonlinear least-squares, indicating NBP’s
superior performance in the presence of outlier measurements.

in the estimates of some sensor locations [Fig. 5(c)]. NBP, by
virtue of the measurement outlier process, remains robust to this
error and produces the near-optimal estimate shown in Fig. 5(d).

In order to provide a measure of the robustness of NBP in the
presence of non-Gaussian (outlier) distance measurements, we
perform Monte Carlo trials, keeping the same sensor locations
and connectivity used in Fig. 5(a) but introducing different sets
of observation noise and outlier measurements. At every trial,
each distance measurement is replaced with probability 0.05 by
a value drawn uniformly in . As there are 37 measurements
in the network, on average approximately two outlier measure-
ments are observed in each trial. We then measure the number of
times each sensor’s estimated location is within distance of its
true location, as a function of . We repeat the same exper-
iments for two noise levels, and .
The curves are shown in Fig. 6 for both NBP and nonlinear
least-squares estimation. As can be seen, NBP provides an esti-
mate which is more often “nearby” to the true sensor location,
indicating its increased robustness to the outlier noise; this be-
comes even more prominent as the becomes small and the
outlier process begins to dominate the total noise variance. Both
methods asymptote around 90%, indicating the probability that
the outlier process completely overwhelms the information at
one or more nodes.

However, Fig. 6 understates the advantages of NBP for this
scenario. NBP also provides an estimate of the uncertainty
in sensor position; trials resulting in large errors also display
highly uncertain (often bimodal) estimates for the sensor loca-
tions in question, as in Fig. 1. Thus, in addition to providing a
more robust estimate of sensor location, NBP also provides a
measure of the reliability of each estimate.

VII. PARSIMONIOUS SAMPLING

We may also apply techniques from importance sampling
[26], [27] in order to improve the small-sample performance of
NBP, which may play an important part of reducing its com-
putational burden. In Alg. 2, the outgoing messages are com-
puted via an importance sampling procedure to estimate (9).
In particular, samples are drawn from an approximation to (9)

Alg. 3. Using an alternative angular proposal distribution for NBP.
The previous iteration’s marginals may be used to estimate their relative
angle, and better focus samples on the region of importance. The estimate is
made asymptotically equivalent to that of Alg. 2 by importance weighting.

(called the proposal distribution in importance sampling liter-
ature), then reweighted so as to asymptotically represent the
target distribution (9).

So long as the proposal distribution is absolutely contin-
uous with respect to the target distribution (meaning

), we are guaranteed that, for a sufficiently large
sample size , we can obtain samples which are representa-
tive of by drawing samples from and weighting by .
However, the sample size is limited by computational power,
and as is well-known in particle filtering the low-sample perfor-
mance of any such approximation is strongly influenced by the
quality of the proposal distribution [26], [27]. In general, one
takes to be as close as possible to , while remaining tractable
for sampling. We accomplished this for (9) by drawing samples
from the marginal (8), weighting by the remainder, and moving
the particles in a uniformly sampled by the observed distance

plus noise.
However, in the context of belief propagation, a good pro-

posal distribution is one which allows us to accurately esti-
mate the portions of which contribute to the product

. We would like to use our limited representative power
on parts of the message which overlap with other incoming mes-
sages, and any additional knowledge of may be used to
focus samples in the correct region [20].

One alternative proposal distribution involves utilizing pre-
vious iterations’ information to determine the angular direction
to neighboring sensors. Rather than estimating a ring-like distri-
bution at each iteration (most of which is ignored as it does not
overlap with any other rings), successive estimates are improved
by estimating smaller and smaller arcs located in the region of
interest. A simple procedure implementing this idea is given in
Alg. 3. In particular, we use samples from the marginal distri-
butions computed at the previous iteration to form a density es-
timate of the relative direction , draw samples from , and
weight them by so as to cancel the asymptotic effect of
drawing samples from rather than uniformly. The process re-
quires estimating a density which is -periodic; this is accom-
plished by sample replication [23].

We first demonstrate the potential improvement on a small ex-
ample of only four sensors. Fig. 7(a)–(b) shows example mes-
sages from three sensors to a fourth, with particles.
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Fig. 7. By using an alternate proposal distribution during NBP’s message construction step, we may greatly improve the fidelity of the messages.
(a) Naive (uniform) sampling in angle produces ring-shaped messages; however, (b) using previous iterations’ information we may preferentially draw samples
from the useful regions. (c) Monte Carlo trials show the improvement in terms of average K-L divergence of the sensor’s estimated marginal (from an estimate
performed withM = 1000 samples) as a function of the number of samplesM used. (d) In a larger (ten-node) network, we begin to observe the effects of bias:
for sufficiently largeM performance improves, but for smallM , we may become overconfident in a poor estimate.

Using the additional angular information results in the samples
being clustered in the region of the product, effectively similar
to a larger value of . To compare both methods’ performance,
we first construct the marginal estimate using a large- ap-
proximation ( ), and compare (in terms of KL-di-
vergence) to the results of running NBP with fewer samples
( ) using both naive sampling ( )
and Alg. 3. The results are shown in Fig. 7(c); as expected, we
find that Alg. 3 concentrates more samples in the region of in-
terest, reducing the estimate’s KL divergence.

As noted in [20], however, by reusing previous iterations’ in-
formation we run the risk of biasing our results. The results of a
more realistic situation are shown in Fig. 7(d)—performing the
same comparison for a relative calibration of the ten-node sensor
network [in Fig. 3(b)] reveals the possibility of biased results.
When the number of particles is sufficiently large ( ),
we observe the same improvement as seen in the four-node case.
However, for very few particles ( ), we see that it is pos-
sible for our biased sampling method to reinforce incorrect es-
timates, ultimately worsening performance.

VIII. INCORPORATING COMMUNICATIONS CONSTRAINTS

Communications constraints are extremely important for bat-
tery-powered, wireless sensor networks; it is one of the primary
factors determining sensor lifetime. There are a number of fac-
tors which influence the communications cost of a distributed
implementation of NBP. These include the following.

1) Resolution, , of all fixed- (or floating-) point values.
2) Number of iterations performed.
3) Schedule—The order in which sensors transmit.
4) Approximation—The fidelity to which the marginal esti-

mates are communicated between sensors.
5) Censoring—Sensors may save energy by electing not to

send a marginal which is “sufficiently similar” to the pre-
vious iteration’s marginal.

All these aspects are, of course, interrelated, and also influence
the quality of any solution obtained; often their effects are dif-
ficult to separate. Note that the number of particles used
for estimating each message and marginal influences only com-
putational complexity. The following experiments used

samples per message and marginal estimate, with
times oversampling in the product computation.

Due to space constraints, we do not consider resolution or
similarity-based censoring here. We assume the resolution is
sufficiently high to avoid quantization artifacts; for example,
taking bits is typically more than sufficient. Message
censoring can be used to decrease the total number of messages
and as a convergence criterion [28], but its overall effect in loopy
graphs is difficult to determine [29].

A. Schedule and Iterations

The message schedule has a strong influence on BP, affecting
the number of iterations until convergence and even potentially
the quality of the converged solution [30]. We consider two pos-
sible BP message schedules, and analyze performance on the
ten-node graph shown in Fig. 3(b). Because we are primarily
concerned with the intersensor communications required, we
enforce a maximum number of messages per sensor, rather than
the actual number of iterations.

The first BP schedule is a “sequential” schedule, in which
each sensor in turn transmits a message to all its neighbors.
We determine the order of transmission by beginning with the
anchor nodes, and moving outward in sequence based on the
shortest observed distance to any anchor. This has similarities
to schedules based on spanning trees [31], though (since each
sensor is transmitting to all neighbors) it is not a tree-structured
message ordering. For this schedule, one iteration corresponds
to one message from each sensor. Strictly speaking, this or-
dering is only available given global information (the observed
distances of each sensor), but in practice the schedule is robust
to small reorderings and, thus, local or randomized approxima-
tions to the sequential schedule could be substituted. Here, how-
ever, we will ignore this subtlety.

The second BP schedule we consider is a “parallel” schedule,
in which a set of sensors transmit to their neighbors simultane-
ously. Since initially, large numbers of sensors have no informa-
tion about their location, we restrict the participating nodes to
be those whose belief is well-localized, as determined by some
threshold on the entropy of the belief . To provide a fair
comparison with the sequential schedule, we limit the number
of iterations by allowing each sensor to transmit only a fixed
number of messages, terminating when no more sensors are al-
lowed to communicate.

Fig. 8(a) compares the two schedules’ performance over 100
Monte Carlo trials, measured by mean error in the location esti-
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Fig. 8. Analyzing the communications cost of NBP. (a) Number of iterations
required may depend on the message schedule, but is typically very few (1–3).
(b) Transmitted marginal estimates may be compressed by fitting a small
Gaussian mixture distribution; a few (1–3) components is usually sufficient.

mates and as a function of the number of message transmissions
allowed by each schedule. As can be seen, both schedules pro-
duce reasonably similar results, and neither requires more than
a few iterations (intersensor communications) to converge. Em-
pirically, we find that the sequential schedule performs slightly
better on average.

Faulty communications (nodes’ failure to receive some mes-
sages) may also be considered in terms of small deletions in the
BP message schedule. While the exact effect of these changes
is difficult to quantify, it is typically not catastrophic to the
algorithm.

B. Message Approximation

We may also reduce the communications by approximating
each marginal estimate as a small mixture of Gaussians before
transmission (instead of sending all particles). Such approxima-
tions may be constructed in any number of ways; we use the
Kullback–Liebler-based approximation of [32] due to its com-
putational efficiency, though more traditional methods such as
expectation-maximization could also be employed. Note that lo-
cally, each node retains its sample-based density estimate (al-
lowing tests for multimodality, etc.) regardless of how coarsely
the transmissions are approximated.

In order to observe the effect of this operation on multimodal
uncertainty, we performed 100 Monte Carlo trials of NBP with
measurement outliers (as in Section VI), but approximated each
message by a fixed number of (diagonal covariance) compo-
nents before transmitting. We applied the described sequential
message schedule. Fig. 8(b) shows the resulting marginal esti-
mate errors (measured by KL-divergence from exact message-
passing with 1000 particles) as a function of the number of
retained components. Single Gaussian (unimodal) approxima-
tions to the marginal beliefs resulted in a slight loss in perfor-
mance, while two-component (potentially bimodal) estimates
proved better at capturing the uncertainty. As a benchmark, rep-
resenting each Gaussian component costs at most bits, so that
a two-component mixture at is bits/message.

IX. DISCUSSION

We proposed a novel approach to sensor localization, ap-
plying a graphical model framework and using a nonparametric
message-passing algorithm to solve the ensuing inference
problem. The methodology has a number of advantages. First,

it is easily distributed (exploiting local computation and com-
munications between nearby sensors), potentially reducing the
amount of communications required. Second, it computes and
makes use of estimates of the uncertainty, which may subse-
quently be used to determine the reliability of each sensor’s
location estimate. The estimates easily accommodate complex,
multimodal uncertainty. Third, it is straightforward to incor-
porate additional sources of information, such as a model of
the probability of obtaining a distance measurement between
sensor pairs. Finally, in contrast to other methods, it is easily
extensible to non-Gaussian noise models, which may be used
to model and increase robustness to measurement outliers. In
empirical simulations, NBP’s performance is comparable to
the centralized MAP estimate, while additionally representing
the inherent uncertainties.

We have also shown how modifications to the NBP algo-
rithm can result in improved performance. The NBP framework
easily accommodates an outlier process model, increasing the
method’s robustness to a few large errors in distance measure-
ments for little to no computation and communication over-
head. Also, carefully chosen proposal distributions can result
in improved small-sample performance, reducing the compu-
tational costs associated with calibration. Finally, appropriate
message schedules require very few message transmissions, and
reduced-complexity representations may be applied to lessen
the cost of each message transmission with little or no impact
on the final solution.

There remain many open directions for continued re-
search. First, other message-passing inference algorithms
(e.g., max-product) might improve performance if adapted to
high-dimensional non-Gaussian problems. Also, alternative
graphical model representations may bear investigating; it may
be possible to retain fewer edges, or improve the accuracy
of BP by clustering nodes [16]. Given its promising initial
performance and many possible avenues of improvement, NBP
appears to provide a useful tool for estimating unknown sensor
locations in large ad hoc networks.
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