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Abstract. In this paper, we present a description of a nonparametric two dimensional (2-D) procedure to

extrapolate a signal, an extension of the Adaptive Weighted Norm Extrapolation (AWNE) method, and illustrate

its application to SAR image formation. The benefits of the AWNE procedure are shown for synthetic data and for

MSTAR data. Once the phase history is recovered, the AWNE method is applied to a subaperture or to the full set

of frequency samples to extrapolate them to a larger aperture from which a superresolved complex SAR image is

obtained. Use of the 2-D AWNE procedure proves to be superior to its one-dimensional separable version by

reducing undesirable effects such as sidelobe interference, and variability in energy of the extrapolated data from

row to row and column to column. To assess the performance of AWNE in enhancing prominent scatterers,

reducing speckle, and suppressing clutter, we compare the superresolved images to the images formed with the

traditional Fourier technique starting from the same phase history data. Fourier images are also compared with

superresolved images formed using less data in order to assess the quality of the extrapolation and to quantify the

method’s ability to recover lost resolution. We illustrate performance by visual comparison and by the use of a

geometric constellation of prominent point scatterers of the targets extracted from the images. A brief comparison

with the 2-D versions of Capon and the linear prediction methods is illustrated and a hybrid AWNE/Capon

approach is proposed.
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1. Introduction

There is an increasing interest in the use of superresolution methods to form Synthetic

Aperture Radar (SAR) images [1], [2], [3], [4], [5], [6], [7], [8]. The motivation for

applying these methods to SAR, as discussed by DeGraaf [1], is to improve resolution,

Multidimensional Systems and Signal Processing, 14, 83–104, 2003
# 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

B This work was supported by ARO Grants DAAH04-95-1-0494 and DAAD19-99-1-0012, and by a grant

from the Texas Instruments Foundation.



to suppress sidelobe artifacts, and to reduce speckle in comparison with traditional

Fourier imaging techniques. Improvements in resolution of prominent scatterers,

speckle reduction, enhancement of contrast, and CFAR detectability of targets in

clutter are among the reported results [1]. Superresolution methods have also proven

to increase significantly the performance of Automatic Target Recognition (ATR)

systems [2]. A one-dimensional (1-D) nonparametric procedure to extrapolate a

narrowband signal, denoted Adaptive Weighted Norm Extrapolation (AWNE) [9], has

been used to enhance resolution in SAR imaging by row-column processing [7]. In [8],

we reported the use of a two-dimensional (2-D) version of the algorithm where the

emphasis was on objectively quantifying the quality of the superresolved images using

a CFAR detector to segment target and clutter in order to compute metrics, such as

peak location and matching, when comparing to a reference image. The AWNE

procedure is based on the iterative use of re-weighting in minimum weighted norm

extrapolation to produce a spectrally concentrated stationary extension of the given

data [9]. Recently, a similar procedure has been extensively analyzed and promoted for

use in geophysical data processing problems [10]. It has also been recently re-cast and

related to a general procedure to solve a linear inverse problem with sparseness

constraints [11].

In this paper, we present a description of the two-dimensional (2-D) version of

AWNE and propose its application in SAR imaging using data obtained from the

MSTAR [12] targets database of images. Once the phase history is obtained by

reversing the windowing and Discrete Fourier Transform (DFT) steps of the Fourier

image formation, the AWNE method is applied to a subaperture or to the full set of

frequency samples to extrapolate them to a larger aperture. Then, the Inverse DFT is

applied to obtain the new complex SAR image. The use of the 2-D AWNE procedure

minimizes potential artifacts that can be introduced when the 1-D version [7] is used.

To experimentally assess the performance of the 1-D and 2-D AWNE in enhancing

prominent scatterers, reducing speckle, and suppressing clutter, we compare the super-

resolved (SR) images to images formed with the traditional Fourier techniques using

the same amount of data. We also evaluate images formed with less data to assess the

quality of the extrapolation and to quantify the benefits of using superresolution if less

than the desired amount of phase history data is available. Thus, in our first set of

experiments, we use a subaperture of the frequency samples to evaluate the perform-

ance of the 2-D AWNE in this handicapped situation in comparison to the 1-D AWNE

algorithm and to the traditional Fourier approach. The other focus of our experiments is

the illustration of the potential advantages of going beyond the traditional limits of

resolution by extrapolating the full aperture of phase history to a larger size. We

evaluate the results by visual comparison and the geometric constellation of prominent

point scatterers of the targets extracted from the images. Finally, an experimental

comparison of superresolved images generated by the 2-D AWNE, the Capon’s

minimum variance, and the 2-D linear prediction (AR) methods is presented. Particular

features of the SR images are discussed and a hybrid scheme combining the 2-D

AWNE and MVM methods is proposed to take advantage of the best features of each

method.
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2. The Adaptive Extrapolation Method

2.1. Minimum Weighted Norm Extrapolation

2.1.1. Previous Related Work

The nonparametric extrapolation problem has been the subject of extensive research and

a diverse array of iterative and noniterative methods have been devised [9], [13], [14],

[15], [16], [17], [18], [19]. Recently, generalizations of some of these methods to

multidimensional signals with discontiguous passbands and discontiguous time-

concentration regions have been developed [19]. Since the nonparametric extrapolation

problem always admits an infinite number of solutions due to its underdetermined

nature, several schemes to choose a solution have been proposed and good reviews of

the most popular methodologies for this selection can be found in [17], [18]. Of

particular interest are the minimum norm (energy) extrapolation algorithms [9], [13],

[14], [15], [16] where the signal with the least energy is chosen from the set of

admissible extrapolations. Typically, conventional least squares stabilization theory for

dealing with ill-conditioned problems is used. Also, some type of constraint or assumed

a priori information is used in order to reach a desirable type of solution. Frequency

weighting based extrapolation algorithms [9], [15], [16], [17] are particular cases devised

in order to obtain a minimum weighted norm (energy) solution that matches the given

data (data consistent) and reflects the available frequency profile information, which

describes the desirable energy distribution. The frequency weighting can be a given

profile [15], [16] or it can be directly inferred from the data [9] via a spectrum estimator.

These algorithms can be considered more general than the traditional band-limited

extrapolation algorithms [13], [14] in the sense that ideal spectral support information is

not necessary. However, the main data consistency constraint is always present in both

types of algorithms.

2.1.2. Mathematical Formulation

We denote a general set of L given discrete-time data samples as xðm1Þ; xðm2Þ; . . . ; xðmLÞf g,
where all mk values are integers. A frequency weighting function Q( f ) can be used to

define an inner product in the linear space V of signals with spectral support B, where

B� [�0.5, 0.5]. Assuming thatQ( f ) > 0 for f 2 B, and thatQ( f )¼ 0 otherwise, this inner

product is

xðnÞ; yðnÞh iQ ¼
Z
f 2B

X ð f ÞY*ð f Þ
Qð f Þ df :

The infinite set D of valid extrapolations is the subset of signals in V which go through

the given time samples. An optimal unique choice xbb (n) for the associated linearly

constrained optimization problem [11] is the Minimum Weighted Norm Extrapolation
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(MWNE), which solves

min
xðnÞ2D

Z
f 2B

X fð Þj j2

Qð f Þ df

( )
¼ jjbbxðnÞjj2Q ¼

Z
f 2B

bbX ð f Þ�� ��2
Qð f Þ df :

The extrapolation xbb (n) is thus the result of an optimal spectral shape match of A bbX ð f ÞA2

to Q( f ). That is, Q( f ) can be used as a tool to influence the choice of bbxðnÞ from D and it

provides a means for obtaining high resolution. The weighting function Q( f ) may not be

available as a priori information but may be a spectrum estimate obtained using a simple

technique that only requires the available time samples at hand, such as the periodogram. It

can be shown [9] that defining the autocorrelation sequence q(n) as the inverse-Fourier

transform of Q( f ), a closed form solution for xbb (n) exists. This is the MWNE extrapolation

which is a linear expansion of the form

bbxðnÞ ¼ XL
i¼1

biqðn� miÞ; ð1Þ

where the bi’s are the extrapolation coefficients that can be obtained directly from the

L-constraints that make xbb (n) a data consistent extrapolation. To solve for the bi ’s, a L � L

Gram matrix G is defined having entries (G)r,c ¼ q(mr � mc) for row r and column c. In

the case of uniformly-spaced, contiguous samples, G is a Hermitian Toeplitz matrix since

(G)r,c ¼ q(r � c). From Eq. (1), we note that the resulting extrapolation xbb (n) has a length
given by L þ Nq � 1, for an autocorrelation q(n) of length Nq ¼ 2J � 1 and a given

parameter J � L that controls the desired extrapolation length. From Eq. (1), the frequency

domain form of MWNE is given by

Xbbð f Þ ¼ Qð f Þ
XL
i¼1

bie
�j2pfmi : ð2Þ

The frequency weighting Q( f ) summarizes the prior or inferred knowledge and is a

smooth function if q(n) has finite duration as we assume. This spectrum heavily influences

the solution, see Eq. (2).

2.2. Adaptive Weighted Norm Extrapolation (AWNE)

In general, the minimum norm extrapolation solution concentrates the energy around the

observation indices, suppressing energy outside this region [19]. A good extrapolation

results from this method only if most of the energy of the signal to reconstruct (extrapolate/

interpolate) is actually concentrated in the region of the observations. This assumption is

not always appropriate, specially in the recovery of sinusoidal signals. Therefore, schemes

can be devised to improve the quality of the reconstructed signal. One algorithm that

incorporates the benefits of the minimum energy solution and tries to overcome the

concentration of energy around the observation indices by generating longer extrapolation

sequences through an iterative procedure is the AWNE method [9]. AWNE, in each
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iteration, finds a minimum weighted norm extrapolation solution and uses it to compute a

new, more concentrated weighting function. The fundamental idea is to infer the frequency

weighting information from the extrapolation solution of the previous iteration in order to

refine the current spectrum profile by making it more concentrated. Consequently, this

increases the energy in the overall time (space) domain. This method provides a better

solution for sinusoidal signals [11] than any of the two-step minimum energy extrapolation

methods [13], [14], [15], [16].

AWNE is an iterative process that uses the original data, as well as some of the newly

computed (extrapolated) data samples, to obtain a new Q( f ) at each iteration for use in the

next one. To reduce sidelobe effects and have control of the resultant extrapolation length,

the spectrum in the (k þ 1)-th estimate is computed via the modified periodogram as

Qkþ1ð f Þ ¼ jF bbxkðnÞ � pðnÞf gj2, where p(n) can be any standard non-negative symmetric

window. There is a direct relationship between the resolution that the extrapolation can

achieve and the type of window p(n) used as well as a trade off between the stability of the

extrapolation and the sidelobe attenuation implied by the window type. Analysis of these

issues has been reported in [11], [20], [21] where the extrapolation resolution is related to

an imposed window which is characterized as a Tukey-like window and a new algorithm

has been devised to undo this effect achieving the highest resolution possible [11], [22].

The AWNE procedure is illustrated in Figure 1 for the case of contiguous data samples

in the range 0 � n � L � 1, indicating that a priori spectral support (bandwidth)

information can also be incorporated, if available. Using a fixed window p(n) of

length J � L, the iterative procedure produces increasing resolution until little change

occurs between one iteration and the next. The final result of the AWNE procedure is the

extrapolated signal at the last iteration. The maximum possible length NE of this signal,

and that of all intermediate results, is determined by the window length parameter J,

Figure 1. 1-D AWNE block diagram.
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which produces an autocorrelation q(n) of length Nq ¼ 2J � 1. Since the number of given

data samples is L, this leads to (see Eq.(1))

NE ¼ Nq þ L� 1 ¼ 2J þ L� 2: ð3Þ

To save computations, the process can also be performed for a fixed number of

iterations; typically 3–5 iterations, stopping before the convergence is reached. Such an

approach has been used in some previous experiments with SAR imaging [7]. Because the

length of all signals involved is known and finite, a DFT of length ND can be used, with

ND � NE. The zero-th extrapolation resulting from Q0( f ) ¼ 1 is the zero-padded data

xbb0(n). The first iteration (non-trivial) of the procedure uses a weight Q1( f ) which is the

modified periodogram computed using only the zero-padded given data. As a conse-

quence, the first extrapolation xbb1(n) will be a linear combination of shifted versions of the

autocorrelation q1(n) of the windowed zero-padded data. This result is a significantly

different extrapolation than the zero-padded data. The length of xbb1(n) is N1 ¼ 3L � 2

which corresponds to NE when J ¼ L in Eq. (3). Although we are concentrating on

contiguous uniformly spaced data samples, it is important to mention that AWNE can be

applied to interpolate missing gaps of samples [9]. Figure 2 shows the results of applying

the AWNE method to extrapolate 45 samples of the signal

xðnÞ ¼ e j2pð0:27nÞ þ e j2p 0:28nþ p
4ð Þ:

In Figure 2, the real part of the 45 samples of the original signal are shown in a);

the result of the AWNE method is shown in b); the spectrum of the truncated data is

Figure 2. 1-D extrapolation example.
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shown in c); and the spectrum of the extrapolated data is shown in d). This example shows

the frequency domain high resolution capability of AWNE.

2.3. Extension to a Two-Dimensional Version

2.3.1. Motivation

In this paper, we provide an extension to 2-D of the 1-D AWNE method focusing on the

case of uniformly spaced samples and on its use for SAR superresolution. We recently

reported [7] the use of 1-D AWNE to enhance the resolution of MSTAR SAR images for

further processing. We performed experiments to evaluate the performance of AWNE on

SAR images taken from the MSTAR database focusing on the effects of using a reduced set

of phase history samples to attempt to re-generate the same images, under this handicapped

situation, with the help of AWNE. We used several criteria [7] to compare the super-

resolved images to the original MSTAR images and showed how the method behaves as the

phase history subaperture block size changes. Despite the handicapped situation consid-

ered, we obtained SAR images of higher resolution with enhanced prominent scatterers and

reduced speckle. We also found that the same statistical model (Weibull) can be used in the

CFAR detector of the target region on both the original and the SR image. In this paper, we

derived and use a 2-D version of AWNE to reduce the peak location mismatch, attenuate

better the sidelobes, and produce overall better images because the local 2-D dependencies

are taken into account. In addition, the 2-D AWNE version can be compared more fairly to

other 2-D superresolution methods [1], [3], [4], [5], [6] used for SAR image formation.

2.3.2. Two-Dimensional AWNE

Following the discussion of the previous sections we can see that the extension of AWNE

to a 2-D version for discrete-time signals can be done starting from the minimum weighted

norm extrapolation procedure so that Eq. (1) now takes the form

bbxðn;mÞ ¼ XL
i¼1

XL
j¼1

bi; j qðn� ni;m� mjÞ; ð4Þ

where we now have L � L extrapolation coefficients, the bi, j’s, matching the L � L number

of given data samples of x(n, m), which are the constraints that make xbb (n, m) a valid

extrapolation. For contiguous uniformly spaced data samples, a vector y containing the

given data samples and a matrix G are used to solve for the vector b of bi, j’s in Eq. (4). The

Gram matrix G has L � L blocks denoted g(k) so that

G ¼

g ð0Þ g ð�1Þ : : : g ð�Lþ 1Þ
g ð1Þ g ð0Þ : : : g ð�Lþ 2Þ
] ] ] ]

g ðL� 1Þ g ðL� 2Þ : : : g ð0Þ

2666664

3777775; ð5Þ
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and each block g(k) is also of dimension L � L, having the form

gðkÞ ¼

q ð0; kÞ q ð�1; kÞ : : : q ð�Lþ 1; kÞ
q ð1; kÞ q ð0; kÞ : : : q ð�Lþ 2; kÞ

] ] ] ]

q ðL� 1; kÞ q ðL� 2; kÞ : : : q ð0; kÞ

2666664

3777775: ð6Þ

Clearly, the block matrix G is Hermitian and has a block-Toeplitz structure since

q(n, m) ¼ q*(�n, �m). However, the blocks are not in general Hermitian. Regarding the

iterative part of the process, the window p(n) used in the 1-D AWNE version has various

extensions to 2-D including the circularly symmetric 2-D window [23]. The rest of the

components defined in Figure 1 can be extended in a simple way because they all have

2-D counterparts.

We can summarize next all the computations of the algorithm whose given items are the

L � L samples of x(n, m), the window diameter (length) J � L centered on the data, a

maximum number of iterations K0 or a stopping tolerance ":

Step 0. Form the 2-D circularly symmetric window p(n, m) of diameter J and zero-pad it to

size NE � NE where NE ¼ 2J þ L � 2.

Step 1. Extend x(n, m) to a zero-padded version xz(n, m) of size NE � NE preserving the

original samples in the center of xz(n, m).

Step 2. The initial extrapolation for k ¼ 0 is given by xbb0(n, m) ¼ xz(n, m).

Step 3. Increment k and replace the previous extrapolation with a windowed version

bbxk�1ðn;mÞ ¼ bbxk�1ðn;mÞ � pðn;mÞ:

Step 4. Obtain the 2-D autocorrelation

qkðn;mÞ ¼ bbxk�1ðn;mÞ* bbxk�1* ð�n;�mÞ:

Step 5. Form the block-Toeplitz matrix G according its definition in Eqs. (5) and (6).

Step 6. Solve for b from

G � b ¼ y;

where b is the vector of ordered extrapolation coefficients and y is a similarly

ordered set of data samples.

Step 7. Compute the new extrapolation as

bbxkðn;mÞ ¼ XL
i¼1

XL
j¼1

bi; jqkðn� i;m� jÞ:

Step 8. Stop if ||xbbk(n, m) � xbbk�1(n, m)|| < " or k ¼ K0, otherwise go to Step 3.
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2.4. Implementation Issues and Simulated Point Scatterer Examples

The AWNE procedure involves the use of a window which can be chosen by the user.

Throughout most of this paper, we will restrict our choice of window type and length to

simplify our comparisons. Given the length L � L set of data (L odd) to extrapolate, a

circularly symmetric [23] Hamming window of diameter J ¼ L is used in most cases in the

application of the 2-D AWNE. Awindow length J ¼ L is used for the 1-D AWNE and for

the Taylor window (1-D or 2-D separable) that is used when the Fourier imaging

procedure is applied. This window length that matches the data size is a conservative

choice that incorporates only original data samples and thus produces a convergence at

iteration 2 due to the operation in Step 3 and the form of p(n, m) defined in Step 0. It also

imposes a maximum extrapolation length of NE � NE, where NE is approximately three

times the given data sample length L, see Eq.(3). Figure 3a) shows the spectrum of a

square of 17 � 17 samples of the 2-D signal given by

xðn;mÞ ¼ e j2pð0:2nþ0:16mÞ þ e j2pð0:15nþ0:2mÞ

using a rectangular window where it is clear that the sinusoids cannot be resolved.

Figure 3b) shows the spectrum of the 51 � 51 samples that result after the application of

the 2-D AWNE to the given data. The high resolution characteristics of the resulting

spectrum can be observed.

In order to contrast the performance of the 1-D and 2-D versions of AWNE with the

Fourier method, Figure 4 shows the results of the three methods on a collection of

simulated point scatterers configured to spell AERIM used by DeGraaf in [1]. The data

is corrupted by additive white Gaussian noise with a target-to-noise ratio of 33 dB.

Figure 4 shows a) the true points; b) the Fourier image of the 24 � 24 samples of

original phase history with rectangular windowing; c) the Taylor windowed Fourier

image; d) the spectrum of the 72 � 72 samples of extrapolated phase history computed

Figure 3. a) Fourier image (rectangular window), b) 2-D AWNE image (high resolution).
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with the 1-D AWNE method in a row-column separable fashion; and e) the spectrum of

the 72 � 72 phase history computed with the 2-D AWNE method. Note that all the

magnitude images presented in this paper are plotted on a square root scale. It is

interesting to see the good localization of the point scatterers produced by the 2-D

AWNE, the absence of sidelobes in the image, and the improvement over the results

produced by its 1-D counterpart.

3. Processing MSTAR SAR Images with 2-D AWNE

One of the reasons for implementing and presenting the 2-D AWNE method in this paper

is to improve our previous results obtained when the 1-D version [7] was applied to actual

SAR imagery. The images selected from the MSTAR public target database [12] are

formed using the Sandia method [24] which uses an overlapped-subaperture algorithm

based on FFT and vectorial operations to allow for real-time and fine resolution operation.

Among the tasks that the algorithm performs are motion compensation, phase correction,

Taylor windowing and DFT computation. This database includes SAR images of different

time-critical targets at different depression and aspect angles. The two images used for

experimentation throughout this paper include a T72 tank.

Figure 4. Simulated point scatterer Images.
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3.1. Obtaining the Phase History

To produce a new image, the AWNE method works on the phase history, which is obtained

by inverting the last two steps of the MSTAR image formation process. The size of an

MSTAR target image is 128 � 128 complex pixels. After performing the DFT, the phase

history revealed is approximately 100 � 100 in dimension. From the header file of the

MSTAR image, we know that a �35 dB Taylor window is used and we assume that n ¼ 4

is used. Thus, we form the corresponding Taylor window and divide it out from the

100 � 100 phase history samples to obtain the unweighted frequency (phase history)

samples. These phase history samples are ready for the application of the 1-D AWNE [7]

or the 2-D AWNE algorithms. It is important to mention that we take advantage of all the

previous processing done by the Sandia image formation method to focus our attention

exclusively on the effects of the extrapolation procedure.

3.2. Applying the 2-D AWNE

The application of the 2-D AWNE to the MSTAR images is intended to show the

improvement in some of the characteristics of the SAR imagery when this superresolution

method is used in lieu of the traditional Fourier method. There are several experiments

defined to evaluate the performance of the AWNE algorithm. The first experiment is done

to evaluate the two versions of AWNE. In the previous section, we have shown that the 2-D

version gives better results than the 1-D version (see Figure 4) when the methods were

applied to simulated point scatterers. The application of both algorithms is presented in

Figure 5 to contrast their performance with the Fourier (MSTAR) method as a basis for

comparison under a handicapped situation. For fairness purpose, extrapolations that go

beyond the original data size are truncated to this size. Figure 5 shows in a) the original

MSTAR image (hb03793.015); in b) the image formed after the extrapolation of the middle

49 � 49 phase history samples to 100 � 100 samples using 1-D AWNE (1 iteration) in a

row/column fashion; and in c) the image formed by the application of the 2-D AWNE

Figure 5. a) Original MSTAR image, b) 1-D and c) 2-D handicapped SR images, obtained by extrapolating a

subset of 49 � 49 phase history samples to 100 � 100.
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(1 iteration) to extrapolate from 49 � 49 to 100 � 100 phase history samples. Two

important things can be observed by evaluating the 2-D AWNE result of Figure 5c): the

preservation of the target’s shadow present in Figure 5a) and the absence of the central

sidelobes present in Figure 5b). The image in Figure 5c) is closer to the MSTAR image in

Figure 5a) than its counterpart in Figure 5b). The scatterers are well defined even though

the image has been generated with only a quarter of the phase history samples that

produced the original MSTAR image. Some objective metrics were presented in [7] and [8]

to evaluate quantitatively the performance of both SR versions of the AWNE method in

this handicapped way using the original MSTAR image as a basis for comparison.

There is an inherent drawback to the 2-D AWNE method imposed by the need to solve

L2 linear equations per iteration of the algorithm. Motivated by the decimation/mosaicing

strategy employed by DeGraaf [1], we propose two schemes for the application of the 2-D

AWNE version: a zooming on the targets or region of interest to reduce the amount of data,

and similarly a partitioning of the image in the spatial domain that renders a small set of

phase history to extrapolate for each block. For the zooming scheme, before applying the

2-D AWNE method, the phase history is modulated to baseband by image-domain

shifting, lowpass filtered, and then decimated by 3 in both range and cross-range

directions. These operations result in a zooming of the target part of the MSTAR SAR

image (see Figure 6). Then the decimated phase history can be used to perform full rather

than handicapped extrapolation experiments (i.e. extrapolate the available data to a larger

size than the given original phase history size in order to produce a higher resolution

image). For the partition scheme, we break the complex image into blocks and recover the

phase history of each one in an independent way. Then, the 2-D AWNE is applied to every

block of phase history to obtain an extrapolated block of phase history and then a new

image block that can be reassembled with the other blocks as shown in the block diagram

in Figure 7. The following section will discuss the results from these experiments in

further detail.

Figure 6. Block diagram for the zooming MSTAR experiments.
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4. Experimental Comparison of Fourier vs. Superresolved Images

We present some experiments to evaluate the quality of the superresolved (SR) images in

comparison to Fourier images. Figure 6 shows a block diagram which summarizes the set

of experiments carried out on the target chip or Region Of Interest (ROI) which covers

one-ninth of the original image area. Using the zooming procedure defined in the previous

section, we obtain the new set of 33 � 33 Phase History (PH) samples of the target ROI.

Using this new phase history, we form the new full MSTAR (Fourier) image which is used

as the reference or ground truth in the comparison done for the evaluation of the SR

images.

4.1. Target Zooming Scheme

The full resolution experiments explore the possibility of going beyond the resolution

limits implied by the given phase history data size. An example of extrapolated phase

history samples obtained with the 2-D AWNE method applied to the set of 33 � 33

samples to extrapolate to 100 � 100 samples using only one iteration (a conservative

choice) corresponding to the target chip can be seen in Figure 8a). Recall that the original

33 � 33 block of phase history data is preserved perfectly (centered at the 50th location)

in the middle of the extrapolated set. Note that the AWNE method gives a natural

amplitude decay away from the given data region which prevents sidelobe interference

in the resulting image. Figure 9 shows: a) the new full MSTAR Fourier image

(hb03793.015); b) the full 1-D (row/column separable) SR image; and c) the full 2-D

SR image. Higher resolution in the point scatterers can be observed in Figures 9 b) and c)

which can be better appreciated in the 3-D mesh plots presented in Figures 10 a) and b).

The comparison of these with the 3-D plot of the new full MSTAR presented in Figure 8b)

clearly favors the SR images in terms of resolution although the extrapolation lengths are

minimal (a 3 fold increase).

Figure 7. Block diagram for the partitioning MSTAR experiments.
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Further analysis of the effects of extrapolation using the 2-D AWNE method can be done

on Figure 11 where structural information is presented in terms of the contour plots and the

convex hulls of the prominent point scatterers for each case. Figure 11 shows: a) the full

new MSTAR image; and b) the full 2-D SR image. In Figure 11, the convex hull of the

prominent point scatterers represents the constellation of the target. This is a geometric

representation that can be used in peak-based target detection [25] by comparing as a

means of constellations of peaks. The general shape of the constellation of the peaks of

Figure 11a) for the new full MSTAR image is preserved in the 2-D SR image (Figure

11b)), where a better definition of this constellation can be observed. Furthermore, the

contour plots in the same Figure show how the resolution of the point scatterers is superior

in the full 2-D SR image and how the process also suppresses clutter around the target.

From a subjective point of view, the conclusion that going beyond the original limit of

phase history samples produces better images is easily established. However, objective

comparison metrics cannot be used with these full SR images, as in previous work

Figure 9. a) New Full MSTAR, b) Full 1-D and c) Full 2-D SR images.

Figure 8. a) Magnitude of the extrapolated phase history from 33 � 33 to 99� 99, b) New Full MSTAR 3-D plot.
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reported in [7], [8] because of the lack of a ground truth image to compare with. An

alternative approach is the objective evaluation of the full SR images based on their impact

on the performance of an ATR system [2], [26]. Also, general image quality metrics that

allow a comparison among various superresolution generated images coming from

different methods [1], [3], [4], [5], [6] can be defined and used.

4.2. Block Partition Scheme

Here we present the results of the scheme to save computational effort described by the

block diagram in Figure 7. It is an approach to reduce the amount of data to extrapolate at

any given time while still processing the complete phase history data available. Figures 12

Figure 11. a) New Full MSTAR, and b) Full 2-D SR contour and convex hull plots.

Figure 10. a) Full 1-D SR 3-D plot, b) Full 2-D SR 3-D plot.
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and 13 show two images processed in a partition scheme of blocks of size 16 by 16 pixels

each from which we obtain 12 � 12 phase history samples. The images are processed with

the 2D AWNE using parameters that lead to extrapolated blocks that are 3 times and

5 times larger. Both images show the preservation of the scatterer centers and the

attenuation of clutter. In addition, both images present the shadow of the target as seen

before in Figure 5c) and in the original MSTAR image, see Figure 5a). However, we can

appreciate higher resolution in the images of Figure 12 and Figure 13 than in the ones of

Figure 5 because the former ones make use of the full set of phase history data while the

latter ones use only a subset of the data in a handicapped situation. An interesting behavior

in the performance of our algorithm is the sparse result that is produced when large

extrapolation ratios and several iterations are used. The image in Figure 13 formed with

5 fold extrapolation has better concentration of the scatterers and shows more background

clutter suppression. Further experimental results with larger extrapolation lengths showed

a very sparse image with single peaks representing the scatterer centers that can be used as

features for an ATR system.

Clearly, the independent processing of the superresolved blocks introduces blocking

artifacts as it can be observed in Figures 12 and 13. The artifacts are better appreciated in

Figure 12. These artifacts are expected to affect CFAR detection applied to the image by

skewing the image pixel distribution and generating false-positives outside the target

region. Approaches to deal with the artifacts can be postprocessing at the boundaries, or

block overlapping and averaging as in [1].

Figure 12. Extrapolated image using block partitioning with extrapolation length of 3 times the original block size.
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5. Experimental Comparison to Other Superresolution Methods

In this section, Capons’ minimum variance method (MVM) and the 2-D linear prediction

or AR method are used to form superresolved SAR images. They are compared visually

with the 2-D AWNE images under handicapped situations using a different MSTAR

image than before. The main idea is to contrast particular features of the superresolution

SAR formation methods. The superresolution methods process a subset of the full phase

history (PH) samples to form SR SAR images of equivalent spectral resolution and size.

As noted before, the handicapped situation can be used to stress the benefits of using

superresolution methods when only limited data is available.

The 2-D linear prediction or autoregressive (AR) method [27], [28] is implemented using

a quarter-plane support modified covariance version. In particular, the method uses a fast

Cholesky-decomposition type of algorithm [29] and the 2-D AR power spectral density is

produced by the combination of the results for quadrants 1 and 4 [28]. For this

experiment the PH signal subset used is 55 � 55 and the order of the 2-D AR parameter

array chosen is 22 � 22. Figure 14 illustrates the 2-D AR SR image which presents an

unusual character for the target although a few prominent point scatterers are well

defined. In addition, it can be observed that the shadow of the target is not well

preserved. Furthermore, the introduction of spurious point scatterers throughout the

background region can be observed. These are undesirable image characteristics for ATR

systems based on prominent peak processing [26].

Figure 13. Extrapolated image using block partitioning with extrapolation length of 5 times the original block size.

SAR IMAGE SUPERRESOLUTION VIA 2-D ADAPTIVE EXTRAPOLATION 99



The 2-D version of Capon’s MVM [27], [28] is a popular choice in SAR imaging [1], [2],

[3], [29], [30] and recently there has been increasing interest in its computational aspects.

The interest comes from the argument that the main burden of theMVMdoes not come from

the correlation estimate formation and inversion but from the computation of the estimator

over all the needed frequencies. Therefore, fast algorithms to overcome this problem have

been proposed in [29], [30]. For the calculation of the spectral estimate, the forward-

backward averaged correlation matrix is formed using all possible M1 � M2 subapertures,

which are available from the selected PH sample subset that forms a matrix of size N1� N2,

leading to a number of subapertures given by A ¼ (N1 � M1 þ 1) (N2 � M2 þ 1).

Empirical results [1] suggest that the MVM produces satisfactory results when the relation

between subaperture size and aperture size is kept between the following bounds

0:4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

N1N2

r
� 0:5: ð7Þ

For the computation of the experimental results shown next, a direct implementation of

the MVM is used and the empirical bound in Eq.(7) is satisfied. The next set of figures

show the results for the case when approximately a quarter (55 � 55) of the full phase

history data set is used to generate the superresolved images using a 256 � 256 2-D DFT.

Figure 15 and Figure 16 show the corresponding superresolved images for the 2-D AWNE

and Capon methods. In this case, the SR MVM image has better definition of the main

scatterer center but the smoothness presented in the rest of the target area may be an

undesirable feature. In addition, the shadow for the SR MVM image is almost perfectly

preserved. On the other hand, the SR 2-D AWNE image has a better definition of the

prominent peaks, is comparable in terms of the shadow preservation, but is inferior as far

Figure 14. 2-D (AR) linear prediction SR image (hb03787.015) using 55 � 55 phase history samples and a filter

order of 22 � 22.
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as speckle reduction and clutter suppression. Overall, the SR images are superior in

comparison with the Fourier images (not shown) using the same subset of phase history

samples.

A hybrid scheme between the 2-D AWNE and the MVM is proposed to produce a SR

image with the best features of both methods. The main goal is to achieve the high

resolution of the prominent scatterer centers produced by the 2-D AWNE and the better

Figure 15. 2-D AWNE SR image (hb03787.015) extrapolating 55 � 55 to 163 � 163 phase history samples.

Figure 16. Capon SR image (hb03787.015) using 55 � 55 phase history samples.
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clutter suppression and speckle reduction produced by the MVM. To illustrate the viability

of this scheme a 39 � 39 subset of phase history samples is extrapolated using the 2-D

AWNE to 115 � 115 and then these samples are used by the MVM to produce a SR

image. In the resultant SR image shown in Figure 17, it can be observed that the scatterer

centers have better resolution than in the MVM SR image (Figure 16) and the clutter

suppression and speckle reduction is better than in the 2-D AWNE SR image (Figure 15)

even when the subset of original PH samples used is about 50% of the 55 � 55 set. This

leads us to believe in the potential of complementing the hybrid scheme to produce

superior SR SAR imagery than either method alone at expense of higher complexity.

6. Conclusions

We have presented a detailed two-dimensional (2-D) extension of the adaptive weighted

norm extrapolation method and proposed its application to achieve superresolution in SAR

imaging by showing its benefits on simulated and MSTAR images. The use of the 2-D

AWNE procedure instead of the 1-D version [7] results in a better image with less

undesirable artifacts. The 2-D AWNE proved to have better performance in the handi-

capped experiments realized. First, it preserved the shadow of the target and produced a

closer image to the MSTAR reference (see Figure 5). The other focus of our experiments

was the illustration of the potential advantages of going beyond the traditional limits of

resolution by extrapolating the full aperture of phase history to a larger size. We proposed

two schemes for the formation of images that allow the full use of phase history data to

produce an extrapolation using the 2-D AWNE algorithm. We analyzed performance by

visual comparison and by comparison of the geometric constellation of prominent point

Figure 17. Hybrid Scheme. Capon via AWNE SR image (hb03787.015) using 39 � 39 phase history samples.
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scatterers of the targets present in the images. The 2-D AWNE method proved to be

superior to its 1-D counterpart and it was established that going beyond the original limit

of phase history samples produces better images (see Figure 12 and 13).
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