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Abstract. This paper presents a statistical framework which combines the regis-
tration of an atlas with the segmentation of MR images. We use an Expectation
Maximization-based algorithm to find a solution within the model, which simul-
taneously estimates image inhomogeneities, anatomical labelmap, and a mapping
from the atlas to the image space. An example of the approach is given for a brain
structure-dependent affine mapping approach. The algorithm produces high qual-
ity segmentations for brain tissues as well as their substructures. We demonstrate
the approach on a set of 30 brain MR images. In addition, we show that the ap-
proach performs better than similar methods which separate the registration from
the segmentation problem.

1 Introduction

With notable exceptions, segmentation and registration have been recognized as two
separate problems in medical imaging research. However, these techniques comple-
ment each other. For example, segmentation simplifies the registration of anatomical
structures with ambiguous intensity patterns [1]. On the other hand, aligning an atlas
to these anatomical structures aids the detection of indistinct boundaries and therefore
simplifies the segmentation problem [2]. In this paper, we describe a simultaneous so-
lution to both problems by combining them in a unified Bayesian framework.

The idea of the unified Bayesian framework was motivated by boundary localization
techniques, such as [3, 4], which align an atlas to the subject and simultaneously esti-
mate the shape of a structure. These methods relate both problems to each other by ex-
tending the definition of the shape to include its pose. This paper suggests an integrated
segmentation and registration approach for voxel-based classification methods. In con-
trast to boundary localization approaches, voxel-based classification methods consider
the anatomical structure associated with each voxel within a Bayesian framework.

Voxel-based classification methods have coupled registration and segmentation of
misaligned spectral images [5, 6], However, we wish to align an atlas to MR images
and separate the images into anatomical structures. Previous voxel-based classification
methods perform this task sequentially [7–10, 2]. The separation of these two issues
increases the risk of systematic biases [11, 12, 1]. In contrast, our new approach is based
on the principle of least commitment so that an initial imperfect estimation converges
to a good approximation for each problem.

This paper is based on an instance of the Expectation Maximization Algorithm
(EM) by Wells [13]. Unlike boundary localization techniques, this method explicitly
models the image inhomogeneities of MR images. Therefore, the approach can seg-
ment large data sets without manual intervention. However, the approach of Wells [13]
cannot differentiate structures with similar intensity patterns as it uses stationary char-
acteristics of anatomical structure. To overcome this drawback, Section 2 proposes a
Bayesian framework which describes the relationship between atlas registration, inten-
sity correction, and image segmentation. This formulation is based on a maximum a
posteriori estimation formulation whose solution gives an approximation to these three
interrelated problems.
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Section 3 applies the concept to a hierarchical registration framework modelling
global- and structure-dependent deformations. The limits and benefits of the implemen-
tation are illustrated in Section 4 by applying it to synthetic images. We then present a
study comparing the robustness of our algorithm with respect to other EM implementa-
tions which outline a set of 30 MR images into the major brain tissue classes as well as
the thalamus, a structure with indistinct boundaries.

2 Deriving an EM Framework for Simultaneous Inhomogeneity
Correction, Registration, and Segmentation

The accuracy of outlining structures with indistinct boundaries on MR images with
tissue classification methods significantly depends on properly modeling the image in-
homogeneities as well as correctly registering the atlas to the subject. In this section,
we develop a unified framework which performs segmentation, registration and inho-
mogeneity correction simultaneously.

2.1 A Maximum a Posteriori Estimation Problem for the Three Instances

As mentioned above, correctly modeling the image inhomogeneities and accurately
mapping the atlas to the image space greatly influences the robustness of atlas based
segmenters. Due to their complex dependencies, it is very difficult to extract the in-
homogeneitiesB and the registration parametersR from the MR imagesI without
additional assumptions.

However, this problem is greatly simplified when formulated as an incomplete data
problem within an EM framework. To determineB andR within this framework, we
define the following MAP estimation problem over the incomplete data model:

(B̂, R̂ ) = argmaxB,R logP(B,R |I ). (1)

In general, this results in a system of equations for which there is no analytical solution.
To simplify the problem, we combine the observed image intensitiesI with the

unknown true segmentationT . If T is known,B andR can more easily be estimated
from I . We now restate Equation (1) by marginalizing over the missing dataT

(B̂, R̂ ) = argmaxB,R log
(
∑T P(B,R ,T |I )

)
(2)

Next, we incorporateP(T |I ,B ′,R ′), where (B ′,R ′) are estimates of(B̂, R̂ ), into
Equation (2) and defineEA|B( f (C)) , ∑AP(A|B) f (C) to get the following relationship

(B̂, R̂ )=argmax
B,R

log
(
∑T

P(B,R ,T |I )P(T |I ,B ′,R ′)
P(T |I ,B ′,R ′)

)
=argmax

B,R
logET |I ,B ′,R ′

(
P(B,R ,T |I )

P(T |I ,B ′,R ′)

)

The purpose of these operations is to put Equation (2) into a form such that we can
exploit the following bound derived via Jensen’s Inequality as in [14]

logET |I ,B ′,R ′
(

P(B,R ,T |I )
P(T |I ,B ′,R ′)

)
≥ ET |I ,B ′,R ′

(
log P(B,R ,T |I )

P(T |I ,B ′,R ′)

)
(3)
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The right side of Equation (3), which defines a lower bound on the objective func-

tion logET |I ,B ′,R ′
(

P(B,R ,T |I )
P(T |I ,B ′,R ′)

)
, is more easily maximized using an EM implementa-

tion. When properly defined, the EM framework [14] gives two important guarantees.
First, each iteration yields an improved estimate of(B,R ) as measured by Equation
(1). Second, the algorithm converges to a local maxima of the objective function. In our
case, the Maximization Step (M-Step) is defined by the update rule:

(B ′,R ′)← argmaxB,R ET |I ,B ′,R ′
(
logP(B,R ,T |I )− logP(T |I ,B ′,R ′)

)

= argmaxB,R ET |I ,B ′,R ′(logP(B,R |T ,I )+ logP(T |I ))

= argmaxB,R ET |I ,B ′,R ′ (logP(I |T ,B,R )+ logP(B,R |T )− logP(I |T ))

= argmaxB,R ET |I ,B ′,R ′ (logP(I |T ,B,R )+ logP(R |T ,B)+ logP(B|T ))

(4)

The optimization procedure decomposes nicely as consequences of the following in-
dependence assumptions: First, we assume independence ofI with respect toR con-
ditioned onT andB following Wells [13]. We therefore characterize each anatomical
structure with a stationary intensity distribution which is not influenced by the mapping
between atlas and image space. Based on the same argument, we also assume indepen-
dence ofR with respect toB conditionedT . Finally, we assume independence ofB
with respect toT as the image inhomogeneities are caused by the radio frequency coil
of the scanner [8]. Thus, Equation (4) simplifies to

(B ′,R ′)← argmaxB,R ET |I ,B ′,R ′ (logP(I |T ,B)+ logP(R |T )+ logP(B)) (5)

The unknown true segmentationT = (T1, . . . ,Tn) is composed of the indicator random
variablesTx ∈ {e1, . . . ,eN}, wherex represents a voxel on the image grid. The vectorea

is zero at every position buta, where its value is one. For example, ifTx = ea then voxel
x is assigned to the anatomical structurea. If we now define

Wx(a) , ETx|Ix,B ′x,R ′(Tx(a)) = 1 ·P(Tx = ea|Ix,B ′x,R ′)+0·P(Tx(a) 6= ea|Ix,B ′x,R ′)

In order to further reduce the computational complexity of the model we make two
additional independence assumptions. Based on the previous discussion, we assume that
R is independent ofB and we assume spatial independence of the unknown ground-
truth T . A simple application of Bayes’ rule yields:

Wx(a) = P(Ix|Tx(a)=ea,B ′x,R ′)·P(Tx(a)=ea|B ′x,R ′)
P(Ix|B ′x,R ′) = P(Ix|Tx(a)=1,B ′x)·P(Tx(a)=1|R ′)

P(Ix|B ′x,R ′) (6)

Equation (5) simplifies to

(B ′,R ′)←argmaxB,R ∑x ∑αWx(a)(logP(I |Tx = ea,B)+logP(R |Tx = ea))+logP(B)

and M-Step solves the following two separate MAP problems

R ′←argmaxR ∑x ∑αWx(a) · logP(Tx = ea|R )+ logP(R ) (7)

B ′←argmaxB ∑x ∑αWx(a) · logP(I |Tx = ea,B)+ logP(B) (8)
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We must point out that a minor drawback of this formulation is its sensitivity to-
wards uncommon characteristics favored by the atlas. The aligned atlas is represented
in Equation (7) and Equation (6) by the conditional probabilityP(Tx = ea|R ). To match
the atlas with the segmentation problem, the algorithm compensates for any biases
through intensity correction and atlas realignment. For example, if the atlas does not
properly capture the intensity distribution defined through the image acquisition pro-
tocol, the algorithm might not be able to distinguish the intensity pattern of the neck
with those inside the brain. The image inhomogeneity correction will try to correct for
any image artifacts inside the neck area to increase the similarity between neck and
brain. In addition, the registration approach might scale the atlas of brain tissue to cover
both brain and neck. Thus, the algorithm converges to a suboptimal solution but re-
calibration of the atlas intensity distributions can overcome this problem.

In summary, we find a local maxima to the difficult MAP problem of Equation (1)
by solving the simpler Equation (4), which is embedded in an EM framework. Based on
independence assumptions, the E-Step determinesW of Equation (6) and the M-Step
solves for the MAP estimates of Equation (7) and Equation (8).

2.2 Defining a Hierarchical Registration Approach

To solve the MAP estimation problem of Equation (7), we first define the registra-
tion parametersR and the conditional log likelihoodlogP(T |R ). The parameters
R model a hierarchical registration framework, which distinguishes between global-
and structure-dependent deformations. We then apply the registration framework to the
MAP estimation problem and find a solution with another optimization algorithm.

The hierarchical registration parametersR capture the correspondence between at-
las, brain, and structures within the brain. The mapping of the atlas to the image space is
performed by an interpolation functionr(R ,x), which maps voxelx into the coordinate
system defined byR . r(R , ·) can be rigid, affine or non-rigid. As a rigid registration can
be interpreted as special case of an affine transformation, we now focus our discussion
on affine and non-rigid registration methods.

The parametersR can be structure-dependent or -independent. Structure-independent
parameters capture the correspondence between atlas and image space. Restrained by
an affine interpolation, the degrees of freedom ofR are too low to capture the character-
istics of individual brain structures ([11, 12]). The alternative is a non-rigid framework
which often has problems aligning structures with indistinct boundaries [1].

Structure-dependent registration parameters treat the relationship between the atlas
and image space for each structure independently. Since most of the misalignment is
structure-independent, e.g the head of the patient is not aligned with the atlas space,
we expect small differences between structure-dependent parameters of different struc-
tures. However, forcing the parameters to be similar across structures is difficult to
express in Equation (7).

We model dependency across structures with a hierarchical registration framework
R = (R G,R S). R G are the global registration parameters, which describe the non-
structure dependent deformations between atlas and image. The structure dependent
parametersR S , (R1, . . . ,R N) are the residual structure-specific deformations that are
not adequately explained byR G. The similarity between different structure specific

4



parameters is encoded in Equation (7) through the prior probabilityP(R ). In Section 3
we defineR explicitly and then modelP(R ) with a simple Gaussian distribution. The
distributions enforce tight bounds onR S and weak constraints onR G.

Let R a of R S be the parameters specific to structurea with a ∈ {1, . . . ,N}. If
we now definefa as the spatial distribution of structurea in the atlas space, then
fa (r(R G,R a, ·)) defines the spatial distribution in the structure specific coordinate sys-
tem of the patient. Thus, we can model the conditional structure probability:

P(Tx = ea|R ) , fa (r(R G,R a,x))
∑a′ fa′ (r(R G,R a′ ,x))

(9)

Substituting Equation (9) into Equation (7) changes the MAP problem to

R ′←argmaxR∑x ∑a

[
Wx(a) · (log fa[r(R G,R a,x)]−log∑a′ fa′[r(R G,R a′ ,x)]

)]

+ logP(R )

= argmaxR∑x

[
∑a (Wx(a) · log fa[r(R G,R a,x)])−log

(
∑a fa[r(R G,R a,x)]

)]

+ logP(R )

(10)

Finding a closed form solution to Equation (10) is generally difficult. Instead, we ex-
press Equation (10) through a objective functionQ(·) for which the maximum is found
in Section 3. We also replacelog fa(r(R G,R a,x)) by log( fa(r(R G,R a,x))+ ε) with
ε > 0, so that the MAP problem is defined forfa(r(R G,R a,x)) = 0. If we define

Q(R ) , ∑x∑a [Wx(a) · log( fa [r(R G,R a,x)]+ ε)]− log
(
∑a fa [r(R G,R a′ ,x)]+ ε

)

+ logP(R )

then Equation (10) becomes

R ′← argmaxR Q(R ) (11)

To get a better understanding of the objective functionQ(·), let ya , r(R G,R a,x)
be the coordinate of voxelx in the atlas space of structurea. If now voxel x is clearly
assigned to structurea′ thenWx(a′) = 1, fa′(ya′) = ∑a fa(ya) so that

∑a [Wx(a) log( fa(ya)+ε)]− log( fa′(ya′)+ε) = log( fa′(ya′)+ε)− log( fa′(ya′)+ε) = 0.

Thus, the value ofQ(·) is not influenced byx as the sum over all structures at this voxel
is zero. In other words,Q(·) is determined by all voxels that are not clearly assigned to
one structure.

2.3 Estimating the Intensity Inhomogeneities

The calculations of the inhomogeneitiesB closely follow [13]. In Equation (8), the
conditional intensity distribution of structurea for n input channels is now defined as

P(Ix|Tx = ea,Bx) , 1√
(2·π)n|ϒa|

e−
1
2(Ix−Bx−µa)T ·ϒ−1

a ·(Ix−Bx−µa)
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We defineAx(a) , ∂
∂Bx

P(Ix|Tx = ea,Bx) = ϒ−1
a ·(Ix−Bx−µa) to turn Equation (8) into

a closed form solution forB ′ yielding

0 = ∑xWx · ∂
∂Bx

logP(Ix|Tx,Bx)+
∂

∂Bx
P(B)

P(B)
= W T

x ·Ax +
∂

∂Bx
P(B)

P(B)

for which a solution can be approximated. In practice, we achieve very good results by
defining the approximation according to [13] which estimatesB via a low pass filter
applied to a weighted residual that depends onW , (µa,ϒa), andI [11, 15].

2.4 EM Applied to the Registration and Segmentation Problem

Section 2 developed an EM implementation. The E-Step calculatesW of Equation
(6) based on the aligned spatial priorsfa

(
r(R ′G,R ′a, ·)

)
, intensityI , image inhomo-

geneitiesB ′, and voxelx

Wx(a) =
P(Ix|Tx(a)=1,B ′x)P(Tx(a)=1|R ′)

P(Ix|B ′x,R ′)
=

P(Ix|Tx(a) = 1,B ′x) ·P(Tx(a) = 1|R ′)
∑a′P(Ix|Tx(a)=1,B ′x) ·P(Tx(a) = 1|R ′)

=
|ϒa|−0.5 ·e− 1

2 (Ix−Bx−µa)T ·ϒ−1
a ·(Ix−Bx−µa) · fa

(
r(R ′G,R ′a,x)

)

∑a′ |ϒa′ |−0.5 ·e− 1
2(Ix−Bx−µa′)

T ·ϒ−1
a′ ·(Ix−Bx−µa′) · fa′

(
r(R ′G,R ′a′ ,x)

)

The M-Step updates the approximation of the inhomogeneitiesB ′ and registration pa-
rametersR ′ based on the current weightsW . The inhomogeneityB is approximated
by the product between the simple low pass filter H, now represented by a large matrix,
and a weighted residuum (see [13]):

B ′← H ·∑aWx(a)ϒ−1
a (Ix−µa)

R ′ is updated by the maximum of objective functionsQ(·) as defined in Equation (11)

R ′← argmaxR Q(R )

To find the maximum we use a maximization algorithm as discussed in the next section.

3 Affine Registration Implementation

This section describes an implementation of the approach presented in Section 2.4. We
will give an example of an interpolation functionr(·, ·, ·), the corresponding registra-
tion parametersR , a Probability Density Function (PDF)p(R ), and a maximization
algorithm to solve the MAP estimation problem defined in Equation (11).

The interpolation functionr(·, ·, ·) of Equation (11) can model various mapping ap-
proaches. For simplicity, we choose an affine interpolation function so that the param-
eters forR z = (−→tz t ,−→rz

t ,−→sz
t)t with z∈ {G,1, . . . ,N} define translation−→tz , rotation−→rz,

and scaling−→sz . The mapping is defined asr(·, ·, ·) : R 12×12×3→ R 3,(R g,R a,x)→
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Image Atlas of GREY Atlas of WHITE

Fig. 1.The structures of the foreground - GREY and WHITE - are of different scale in the image
but not in the atlas space. To secure statistical consistency within our affine warping framework
the atlas of the background, which is black in the image, is implicitly defined by the foreground.

AR G
·AR a · (xt ,1)t whereAR z is an affine transformation matrix based on the parame-

ter settingR z.
This framework makes no assumptions about the correspondence between the atlas

and the image space by uniformly distributing the global registration parameterR g.
As opposed toR g, the structure specific parametersR S , (R 1, . . . ,R N) describe the
residual of structure specific deformations that are not well explained byR G. In gen-
eral, our model should penalize large deviations ofR S from the expected mean, which
is approximated by the average structure-specific registration parameters of the train-
ing data. We enforce this penalty by modeling the PDF ofR S as a Gaussian distribu-
tion N(µR S

,ϒR S
) with structure independent meanµR S

and varianceϒR S
based on the

mapping parameters of the training data. We choose a Gaussian distribution as small
varianceϒR S

discourages large deformations from the meanµR S
. In addition, Gaussian

distributions simplify the calculations in the M-Step [16].
Based on the previous modeling assumptions the cost function is defined as

Q(R ) , ∑x ( ∑a

(
Wx(a) · log

[
fa(AR G

·AR a · (xt ,1)t)+ ε
])

− log
[
∑a fa(AR G

·AR a · (xt ,1)t)+ ε
]
)− 1

2
(R S−µR S

)tϒ−1
R S

(R S−µR S
)

A problem illustrating this approach is shown in Figure 1. WHITE and GREY are
defined by spatial distributions of equivalent size but their scale in image space differs.
The black structure, the background (BG), is the opposite of the foreground composed
by WHITE and GREY. The affine registration parameters of BG are too constrained
to cope with the enlarged WHITE and shrunken GREY object. To solve this problem
and therefore increase the statistical consistency of the model, the spatial distribution of
BG is determined implicitly. If we define the structure-specific coordinates in the atlas
space asya , AR G

·AR a · (xt ,1)t then the spatial distribution of BG is

fBG(x) ,
{

1−∑ a6=BG fa(ya) , if ∑ a6=BG fa(ya) < 1

0 , otherwise

so that the cost function changes to
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Q(R ) ,∑x

(
∑a6=BGWx(a) · log[ fa(ya)+ ε]+Wx(BG) · log

[
∑a6=BG fa(ya)+ ε

]

− log
[
∑a6=BG fa(ya)+ fBG(x)+ε

])
− 1

2
(R S−µR S

)tϒ−1
R S

(R S−µR S
)

(12)

In order to find a solution to the MAP problem defined byQ(·), we first decouple
the search forR G andR S as dependencies between these two parameter settings can
cause instability. We then estimate the solution to these problems with the help of a
maximization algorithms that find the optimal solution without the derivative ofQ(·).
Such methods include the Downhill Simplex algorithm and the Powell’s method [17].
We complete this section with the pseudo code below which describes the integration
of the Powell’s method into our implementation.

Algorithm 1: SEGMENTATION AND REGISTRATION()

repeat
E-Step:Update soft assignment of anatomical structures

Wx(a)← 1
ZP(Ix|Tx(a) = 1,B ′x) · fa

(
r(R ′G,R ′a,x)

)

M-Step: Update parameter space
B ′← H ·∑aWx(a)ϒ−1

a (Ix−µa)
R ′G← Result of Powell’s method withQ((·,R ′S))
R ′S← Result of Powell’s method withQ((R ′G, ·))

until B ′ andR ′converge

define labelmap:Tx← argmaxa Wx(a)

4 Validation

This section evaluates our method in two steps. The first experiment applies variations
of the implementation discussed in Section 3 to synthetic images. The second study
uses a 30 Brain MR image set to evaluate different mapping strategies of the atlas to the
image space within an EM segmentation framework.

4.1 Experiment on Synthetic Images

To illustrate the reliability of our approach, we apply different variations of the im-
plementation discussed in Section 3 to synthetic images similar as in Figure 1. The
images are composed of three structures WHITE, GREY, and BLACK. Unlike in Fig-
ure 1 WHITE and GREY have the same intensity pattern (see Figure 2). All structure
specific parameters stay fixed with the exception of WHITE in the image space.

The robustness of the variations of our implementation is tested with respect to the
scaling of structure WHITE in the synthetic image. The structure is scaled within a
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Scale 0.5 Scale 1.0 Scale 1.5 Scale 2.4

Fig. 2. The test images are examples of our experiment, which tests the robustness of various
implementations from Section 3. In this experiment, only the scale of object WHITE changes.
The atlas space of Figure 1 remains constant and corresponds to the image with scale 1.0.

range of 0.1 to 2.4 of its original size for which the atlas space in Figure 1 was con-
structed. For each test image, the automatically generated segmentations are compared
to the ground truth by using the volume overlap measure of Dice [18].

The first experiment shown in Figure 3 (a) compares the reliability of our approach
using Powell’s to one using the Downhill Simplex method. Powell’s method outper-
forms Downhill Simplex method, when comparing their robustness with respect to the
scaling of structure WHITE. The Downhill Simplex method fails on images where
WHITE and the non-aligned atlas (Figure 1) do not overlap. Powell’s method is un-
reliable for scaling parameters greater than 2.4 for whom WHITE almost disappears
from the synthetic image.

The experiment in Figure 3 (b) compares the robustness of global- to structure-
specific registration parameters. As expected, structure specific registration parameters
are superior because they can better capture the scale differences between WHITE and
GREY.

The graph in Figure 3 (c) shows the performance of an implicitly- and an explicitly-
defined spatial distribution of structure BLACK. The superior implicit spatial distribu-
tion is the inverse of the spatial distribution of the aligned foreground, which is defined
by WHITE and GREY. The explicit spatial distribution increases the risk of statistical
inconsistency within our model. Thus, the complexity of the MAP estimation problem
of Equation (11) increases, which greatly reduces the reliability of our implementation.

In summary, the most robust approach uses a hierarchical registration framework,
an implicitly defined spatial background, and Powell’s method to solve the MAP esti-
mation problem.

4.2 Comparative Study on 30 Test Cases

The section compares three EM implementations which differ in the mapping process of
the atlas to the patient. The first approach (EM-NonRigid) maps the atlas to the patient
using an intensity based non-rigid registration approach and then runs our EM imple-
mentation without registration parameters [15]. The second approach (EM-Affine) is
like (EM-NonRigid) but uses the affine mapping method of Warfield et al. [19] as the
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Fig. 3.The graphs show the robustness of implementations proposed in Section 3. The robustness
of the method is determined by the quality of the automatic generated result with respect to the
scaling of structure WHITE (Figure 2). The experiment suggests, that the most robust implemen-
tation uses Powell’s method to solve the MAP estimation problem (a), a hierarchical registration
framework (b), and an implicitly-defined spatial distribution of the background BLACK (c).

preprocessing step. The third approach (EM-Integrated) is our novel algorithm which
solves the registration and segmentation problem simultaneously.

The three methods segment 30 test cases into the three brain tissue classes and fur-
ther parcellate grey matter into right and left thalamus. We compare the automatic seg-
mentations of the thalamus to manual ones, which we view as ground-truth. We focus
on the thalamus because it is a challenging structure for registration and segmentation.
Many fiber tracks pass through the thalamus so that its intensity pattern in MR images
is very similar to the neighboring white matter (Figure 5). Intensity based registration
methods have difficulties aligning this structure because of its weakly visible boundary.
In our experience EM without spatial priors will fail and EM with spatial priors heav-
ily relies on these priors. Thus, registration errors greatly influence the segmentation
quality of our three methods.

To measure the quality of the automatic generated results, we compare them to
the manual segmentations using the volume overlap measure Dice. The table in Figure
5 lists the average Dice measure of the right (R Tha) and left thalamus (L Tha) for
the three algorithms. In general, EM-NonRigid performed worst because the intensity
based registration method is too unreliable for structures with smooth boundaries. The
method often overestimates white matter and underestimated the thalamus in this re-
gion. EM-Affine performs much better than EM-NonRigid but the method is sensitive
towards initial misalignments. For example, the patient shown in Figure 4 (Sagittal) has
an unusually large deformation along vertical direction of the image which causes a
bias along the same direction in the segmentation as shown in Figure 5 (EM-Affine).

EM-Integrated was generally significantly more reliable than the other two meth-
ods (Table in Figure 5). It did not fail in any of the 30 test cases and performed equally
well on the right and left thalamus. It performed much better than the other EM im-
plementations on difficult cases, where the deformation between atlas and image space
was complex. As the example of Figure 4, illustrates the accuracy of the registration
and segmentation parameters greatly depend on each other. Initially, the algorithm only
outlines the ventricles correctly. As the method progresses, the overall accuracy of the
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Sagittal Coronal Initial

10 Iterations 15 Iterations 20 Iterations

Fig. 4.The sagittal view of the MR image shows a patient with unusually high deformation along
the vertical direction. In the coronal view we outlined the right and left thalamus which was one
of the structures segmented by our approach. ’Initial’ is the initial segmentation of the image
without atlas alignment. The results in the second row present the automatic segmentations after
10, 15, and 20 iterations. Compared to the other two methods our new approach seems to perform
especially well in complicated cases like the presented one. Figure 5 shows in greater detail the
segmentation of the thalamus of this patient.

registration as well as segmentation increases. In this example it took 20 iterations un-
til the algorithm converged to the right solution and correctly segmented the thalamus
whose boundary is outlined in black.

We have demonstrated that our method performs better than the methods we de-
noted as EM-Affine and EM-NonRigid as a consequence of the fact that our approach
directly maps the spatial priors of the structures to the segmentation model. In contrast,
the EM-Affine and EM-NonRigid methods align an MR image in the atlas space to
the image of the patient [11], using the resulting deformation map to align the spatial
priors. This inherently increases the risk of systematic biases in the model. Another
explanation for the superior performance of our approach is the explicit modeling of
dependency between segmentation and registration, which further constrains our im-
plementation and thus simplifies the segmentation problem.
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Avg. Dice of 30 Cases

Method R Tha L Tha

Integrated 0.870 0.869

Affine 0.847 0.829

NonRigid 0.754 0.783

Manual / SPGR EM-Integrated EM-Affine EM-NonRigid

Fig. 5. The table to the left shows the mean Dice measure of the right (R Tha) and left thalamus
(L Tha) over 30 test cases for the three different approaches. Our new algorithm significantly
outperforms the other two, which is also visible in the pictures to the right. The images to the
right zoom in on the automatic segmentations of the patient presented in Figure 4. In the MR
image as well as 2D segmentations the thalamus is outlined in black.

5 Conclusion

We have presented a statistical framework combining inhomogeneity estimation, atlas
registration, and segmentation of MR images. Unlike other voxel-based classification
methods, our framework modeled these three problems as one maximization a poste-
riori estimation problem. We implemented the framework as an instance of an EM al-
gorithm using a hierarchical affine mapping approach for explicit anatomical structures
in combination with an implicit spatial distribution for the background. Our approach
was validated by automatically segmenting 30 sets of MR images into the major brain
tissue classes and the thalamus, a structure with indistinct boundaries. Using manual
segmentations of the thalamus, we then compared our results to other EM implementa-
tions which sequentially register and segment. In general, our method performed signif-
icantly better than the other segmentation methods . The improvement is due primarily
to the seamless integration of registration into the performance estimation problem.
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