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Abstract. Standard image based segmentation approaches perform poorly when
there is little or no contrast along boundaries of different regions. In such cases,
segmentation is largely performed manually using prior knowledge of the shape
and relative location of the underlying structures combined with partially dis-
cernible boundaries. We present an automated approach guided by covariant shape
deformations of neighboring structures, which is an additional source of prior in-
formation. Captured by a shape atlas, these deformations are transformed into
a statistical model using the logistic function. Structure boundaries, anatomi-
cal labels, and image inhomogeneities are estimated simultaneously within an
Expectation-Maximization formulation of the maximum a posteriori probability
estimation problem. We demonstrate the approach on 20 brain magnetic reso-
nance images showing superior performance, particularly in cases where purely
image based methods fail.

1 Introduction

To better understand brain diseases, many neuroscientists analyze medical images for
cortical and subcortical structures that seem to be influenced by the disease [1]. The
analysis is based on segmentations of the structures of interests, often performed by
human experts. However, this manual process is not only expensive, but in addition, it
increases risks related to inter- and intra-observer reliability [2]. In this paper, we de-
scribe an automatic method, which accurately segments these structures by considering
anatomical shape constraints and image artifacts of Magnetic Resonance (MR) images.

The detection of substructures is difficult as many of them are defined by partially
discernible boundaries, such as in the case of the boundary between thalamus and white
matter [3]. However, the ventricles, the structure above the thalamus, is more easily
identified. In order for the ventricles to guide the boundary detection between the thala-
mus and the white matter, automatic segmentation algorithms use spatial priors [4–6].
These spatial priors capture the spatial relationship between structures such as the fact
that the ventricles are above the thalamus. This is one example in which neighboring
structures are of great utility for segmentation purposes.

These types of priors are often characterized by soft boundaries representing the
large spatial variability of a structure within a population. Deformable models offer



an alternative as they capture the shape and permissible modes of variation within a
population. In contrast to spatial priors on tissue labels, segmentation methods based
on deformable models are guided by structure specific boundary conditions such as the
length of the boundary in relation to others.

The work of this paper is motived by the class of deformable model-based ap-
proaches called active contour methods [7–9], in which the shape of an anatomical
structure is represented as a level set function in a higher dimensional space. Similarly,
our method defines anatomical shape constraints using signed distance maps in com-
bination with the modes of variations of a Principle Component Analysis (PCA) [13].
While active contour methods were originally motivated by physical models [10], many
methods are based on a Bayesian framework [11, 14, 12], which we chose for our algo-
rithm. A Bayesian framework allows us to explicitly model the image inhomogeneities
of MR images in order to segment large data sets without manual intervention.

The optimal solution within our framework is defined by a Maximum A posteriori
Probability (MAP) estimation problem with incomplete data. From the MAP estimation
problem we derive an instance of the Expectation Maximization algorithm (EM). The
main contribution of the current work is that while we represent the shape variations
through an implicit low-dimensional PCA, we additionally derive from this an explicit
space-conditioned probability model by way of the logistic function. When combined
with image-coupling and other terms in our Bayesian framework, the mechanism is able
to identify shapes that are not restricted to the low-dimensional PCA space.

In contrast to other EM implementations [11, 14, 15], our method explicitly models
the boundary via the shape model. Consequently, we achieve smooth segmentations
without underestimating fine structures; a common problem in EM implementations
[15]. To demonstrate the capabilities of our approach, we outline 20 sets of MR images
into the major tissue classes as well as subcortical structures. The reliability of our
approach is determined by the correspondence of the automatic segmentations to expert
manual ones.

2 Deriving a Unified Framework for Image Inhomogeneity
Correction, Shape Modeling, and Segmentation

The accuracy of outlining structures with indistinct boundaries in MR images signifi-
cantly depends on properly modeling the boundary of the structure as well as estimating
the inhomogeneities in the image. In this section, we develop a unified framework that
performs segmentation, shape detection, and inhomogeneity correction simultaneously.

Without additional assumptions, it is difficult to extract the inhomogeneitiesB and
the shape parametersS from the MR imagesI due to their complex dependencies. How-
ever, this problem is greatly simplified when formulated as an incomplete data problem
via EM. Within this framework, we define the following MAP estimation problem:

(B̂, Ŝ) = argmaxB,S logP(B,S |I ). (1)

In general, this results in a system of equations for which there is no analytical
solution. We introduce the labelmapT , which assigns each voxel in the image to an



anatomical structure. IfT is known it eases the estimation ofB and S based onI .
In our problem, the labelmapT is unknown so that the instance of the EM algorithm
iteratively determines the solution of [16]. At each iteration, the method improves the
estimates(B ′,S ′) of (B̂, Ŝ) through

(B ′,S ′)← argmaxB,S ET |I ,B ′,S ′ (logP(B,S ,T |I )) . (2)

The expected value is defined asEA|B( f (C)) , ∑AP(A|B) f (C).
In our case, Equation (2) is a less complicated MAP problem than Equation (1).

However, we would like to further simplify this update rule as it depends on both shape
S and inhomogeneitiesB. To split Equation (2) into two separate MAP problems, we
first rephrase Equation (2) by simply applying Bayes’ rule and dropping terms that do
not depend on(B,S):

(B ′,S ′)← argmaxB,S ET |I ,B ′,S ′(logP(B,S |T ,I )+ logP(T |I ))

= argmaxB,S ET |I ,B ′,S ′ (logP(I |T ,B,S)+ logP(B,S |T )− logP(I |T ))

= argmaxB,S ET |I ,B ′,S ′ (logP(I |T ,B,S)+ logP(S |T ,B)+ logP(B|T ))

(3)

The optimization procedure decomposes nicely as a consequence of the following in-
dependence assumptions: First, we assume independence ofI with respect toS con-
ditioned onT andB because our model characterizes each anatomical structure by a
stationary intensity distribution [11, 14]. Next, we assume independence ofS with re-
spect toB conditioned onT , as the image inhomogeneities do not influence the shape
of a structure. Finally, we assume independence ofB with respect toT and that the
two conditional probabilitiesP(I |T ,B) andP(S |T ) are defined by the product of the
corresponding conditional probabilities over all the voxels in the image space. Thus,
Equation (3) simplifies to

(B ′,S ′)← argmaxB,S ET |I ,B ′,S ′(logP(I |T ,B)+ logP(S |T )+ logP(B))

= argmaxB,S∑xETx|I ,B ′,S ′ [logP(I |Tx,B)+logP(S |Tx)]+ logP(B)
(4)

The labelmapT = (T1, . . . ,TM) is composed of the indicator random vector
Tx ∈ {e1, . . . ,eN}, wherex represents a voxel on the image grid. The vectorea is zero
at every position buta, where its value is one. For example, ifTx = ea then voxelx is
assigned to the structurea. We now define the E-Step of our EM implementation as

Wx(a) , ETx|I ,B ′x,S ′(Tx(a)) = 1·P(Tx = ea|Ix,B ′x,S ′)+0 ·P(Tx(a) 6= ea|Ix,B ′x,S ′).

If we assume thatS is independent ofB then

Wx(a) = P(Ix|Tx(a)=ea,B ′x,S ′)·P(Tx(a)=ea|B ′x,S ′)
P(Ix|B ′x,S ′) = P(Ix|Tx(a)=1,B ′x)·P(Tx(a)=1|S ′)

P(Ix|B ′x,S ′) (5)

and Equation (4) reduces to

(B ′,S ′)←argmaxB,S∑x∑aWx(a)[logP(I |Tx = ea,B)+ logP(S |Tx = ea)]+ logP(B).

Now, the M-Step solves the following two separate MAP problems



S ′ ← argmaxS∑x∑aWx(a) logP(Tx = ea|S)+ logP(S) (6)

B ′ ← argmaxB∑x∑aWx(a) · logP(I |Tx = ea,B)+ logP(B) (7)

A variety of closed-form solutions for Equation (7) have been proposed in the literature
such as by [14] and [11]. The remainder of this paper therefore focuses on Equation (6).

In summary, we find a local maxima to the difficult MAP estimation problem of
Equation (1) by solving the simpler Equation (2), derived from an EM formulation.
Based on independence assumptions, our instance of the EM algorithm iterates between
the E-Step, which calculatesW via Equation (5), and the M-Step, which solves the
MAP problems of Equation (6) and Equation (7).

3 Logistic Maps for Shape Probabilities

The solution of Equation (6) greatly depends on the shape representation that defines
the space ofS and the probabilities that define the relationship of the attributes within
our model. This section gives an example for a derivation of this equation. Before we
do so, we briefly review the shape representation defined by the signed distance map.

Note, while we adopt a PCA representation of shape information, the final estimate
is not restricted to the PCA parameterization of shape. This is facilitated by the use of
the logistic function as described in Section 3.2. Consequently, our model captures a
broader class of shapes than those methods that are restricted to the PCA model.

3.1 Shape Representation

As mentioned, the results of level set methods [7, 8, 17] using a PCA model on signed
distance maps inspired us to introduce shape constraints in an EM framework. We fol-
low the suggestion by Tsai [7], who applies PCA to all structures simultaneously to
capture the covariation between structures. We initially model the shapes of all struc-
tures of interest by the distance mapD. D(x) is a vector of dimension equal to the
number of structures of interests. It defines the distance of voxelx to the boundary of
each structure. Positive values are assigned to voxels within the boundary of the object,
while negative values indicate voxels outside the object.

We first turn a set of manual segmentations into signed distance maps and then apply
PCA to the maps in order to determine the modes of variations of each structure. The
resulting shape model is represented by the eigenvector or modes of variation matrix U,

eigenvalue matrixΛ, andD := (DT
1 , · · · ,DT

N)T , whereDa is the mean distance map of
the anatomical structurea. To reduce the computational complexity for the EM imple-
mentation, U andΛ are only defined by the first K eigenvectors. In our case K represents
99 % of the eigenvalues’ energy, which corresponds to the first five eigenvectors.

The shapes in a specific image are described by the expansion coefficients of the
eigenvector representation, which are the shape parametersS = (S1, · · · ,SK). S relates
to the distance maps byDS = D +U · S , whereDS captures the distance maps of all
structures of interest. We refer to the distance map of a specific structurea defined
by shapeS as DS ,a = Da +Ua · S , whereUa are the entries in U corresponding to
structurea. This type of shape representation is only appropriate for defining local shape



deformations as the space defined by signed distance maps is not a linear vector space.
Thus,DS ,a is a local approximation to the manifold of distance maps.

We end this brief description of the shape model by defining the prior over the shape
parameters as

p(S) =
1√

(2π)K |Λ| exp

(
−1

2
STΛ−1S

)
, (8)

which is based on the hidden Gaussian assumption in PCA.

3.2 Estimating the Shape

In this section, we define the relationship of the unknown labelmapT and the shape
parameterS captured by the conditional probabilityP(Tx = ea|S) of Equation (6). The
task is not straight-forward because unlike active contour methods, we also model the
unknown labelmapT and the image inhomogeneitiesB explicitly. The shapeS cap-
tures global characteristics of structures, whileT andB characterize local properties.
Motivated by the need to combine global and local information, we describe the use of
the logistic function of the distance transform. The logistic function provides an implicit
representation of the shape and an explicit space-conditioned probability model.

As mentioned previously, our model captures the relationship between the shape
parametersS (which corresponds to a signed distance map) and the labelmapT through
the conditional probabilityP(Tx = ea|S). Since the random variableTx is discrete, we
define the conditional probability in terms of a generic shape functionA(·, ·) as

P(Tx = ea|S)≡ A(a,DS ,a(x))
∑a′ A(a,DS ′,a(x))

.

Given the motivation above, a natural choice for this formulation is the logistic function

A(a,v)≡ 1
1+e−cav ,

which maps the distance map to the range [0,1]. For example, ifDS ,a(x) is positive,
then the voxel is inside the object andA(a,DS ,a(x)) ∈ (0.5,1]. The variations within
A(a,DS ,a(·)) depend onca, which captures the certainty of the method with respect to
the shape model. Uncertainty about the shape model is represented by relative small
ca. This results in a wide slope of the spatial distribution (see Figure 1), which allows
greater mobility of the boundary. Largeca define spatial priors with steep slopes, which
tend to position the boundary of a structure.

The probability of the segmentation conditioned on the shape is now defined as

P(Tx = ea|S) =
((

1+e−caDS ,a(x)
)
·
(

∑a′
1

1+e−ca′DS ,a′ (x)

))−1

, (9)

so that the MAP estimation problem of Equation (6) transforms to

S ′←argmaxS−∑x∑aWx(a)
(
log

(
1+e−caDS ,a(x)

)
+log

(
∑a′

1

1+e−ca′DS ,a′ (x)

))
+logP(S)

=argminS∑x

[
∑aWx(a) log

(
1+e−ca′DS ,a′ (x)

)
+log

(
∑a′

1

1+e−ca′DS ,a′ (x)

)]
+

1
2

S tΛS
(10)



Segmentation Distance Map A(a, ·) with ca < 1 A(a, ·) with ca > 1

Fig. 1.The image to the left is a labelmap of a circle whose corresponding distance map is shown
to its right. Based on the distance map, two different logistic functions are plotted. The first
logistic function is defined by a large slope (ca < 1) and the second plot represents a logistic
function with a steep slope (ca > 1).

Determining a closed form solution to this estimation problem is generally very difficult
so that we approximate its solution using Powell’s method [18].

In summary, the parametersS are seen within the context of a shape atlas created
by PCA on signed distance maps. We relate the shape model to the EM algorithm of the
previous section by definingP(Tx = ea|S) of Equation (6) as a composition of logistic
functions on distance maps. The E-Step of the EM algorithm calculates theW based
on the shape parametersS ′, intensityI , image inhomogeneitiesB ′, and voxelx

Wx(a) =
(

∑a′
P(Ix|Tx = ea′ ,B ′x)
1+e−ca′DS ′ ,a′ (x)

)−1

· P(Ix|Tx = ea,B ′x)
1+e−caDS ′,a(x)

The distribution ofP(Ix|Tx = ea,B ′x) depends on the underlying image inhomogeneity
model, which is an ongoing discussion [11, 14]. We choose the model by Wells et al.
[11] that definesP(Ix|Tx = ea,B ′x) by the Gaussian distributionN (B ′x+µa,ϒa). (µa,ϒa)
capture the mean and variance of the intensity distribution of the structurea.

The M-Step updates the estimates of the inhomogeneitiesB ′ and shapeS ′ based
on the weightsWx. The update rule ofB ′ (Equation (7)) reduces to a system of lin-
ear equations and is solved in closed form [11]. The shapeS ′ is updated according to
Equation (10) for which a solution is found via Powell’s method [18].

4 Validation

This section compares the accuracy of our new method with (EM-Shape) and without
shape modeling (EM-NoShape). Both methods segment 22 test cases into the three
brain tissue classes - white matter, grey matter and corticospinal fluid. As in Figure 2,
the right (pink) and left ventricle (turquoise) are extracted from the corticospinal fluid,
and the grey matter is further parcellated into right (red) and left (purple) thalamus,
and right (green) and left caudate (blue). We determine the accuracy of the approaches
by comparing the automatic segmentations of the thalamus and the caudate to manual
ones, which we view as ground-truth.

With respect to EM-Shape, the atlas of Section 3.1 represents the shape of the tha-
lamus, caudate, and the ventricles. The three brain tissue classes are excluded from the
dynamic shape model as their spatial distributions are defined by the spatial atlas of [15]
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Fig. 2. A 3D model generated by EM-Shape of the right (red) and left thalamus (purple), right
(green) and left caudate (blue), and the right (pink) and left ventricle (turquoise). The graph to
the right summarizes the validation results. For both structures EM-Shape clearly performs better
than EM-NoShape.

and not Equation (9). The model of EM-NoShape represents all anatomical structures
by the spatial atlas.

We focus on the thalamus and caudate as they are challenging structures to segment.
Purely intensity based segmentation methods, such as EM without spatial priors, cannot
outline these structures because part of the boundary is invisible on MR images. Conse-
quently, EM relies heavily on the prior information. In addition, the two structures are
characterized by very different shapes (see Figure 2). While the right and left thalamus
are shaped like an oval with a hook attached to it, the caudate is defined by long, thin
horns wrapped around the ventricles. The segmentation methods also segment the ven-
tricles because they are clearly visible on MR images. This structure further constrains
the space of possible solutions for EM-Shape as all structures of interest have to be in
proper proportion to each other.

To measure the quality of the automatic generated results, we compare them to
the manual segmentations using the volume overlap measure DICE [19]. The graph in
Figure 2 shows the average DICE measures and standard error for the two methods with
respect to the thalamus and caudate. For the thalamus, EM-Shape achieves a higher
average score (88.4±1.0%; mean DICE score± standard error ) than EM-NoShape
(87.3±1.2%). The impact of the shape model on the segmentation results is even more
apparent in the case of the caudate, where EM-Shape (84.9±0.8%) is significantly
better than EM-NoShape (82.7±1.2%). The greater accuracy of EM-Shape is attributed
to the shape atlas, which better captures the subject specific bending of the horn shaped
caudate than the spatial atlas.

The initial DICE score of EM-Shape is generally lower than that of EM-NoShape
because the shape model misrepresents the patient specific structures. For example,
Figure 3 shows the outcome of EM-Shape after every fifth iteration. Initially, the seg-
mentation is noisy, which indicates discrepancy between the initial shape model defined
by the mean shape and the patient specific shape. With each iteration, the arch of the
caudate widens and the segmentations get smoother. After 20 iterations the method
converges to a solution that generally outperforms EM-NoShape.



Initial Segmentation After 5 Iterations After 10 Iterations After 20 Iterations

Fig. 3. The 3D models are based on the segmentations generated by our new method through 20
iterations. The method is initialized with the mean shape of each structure. The very noisy initial
segmentation is an indication of the disagreement between the mean and the patient specific
shape. As the algorithm proceeds the shape of the caudate and thalamus adjusts to the patient
specific situation. After about 20 iterations the algorithm converges to a smoother segmentation.

As mentioned, it is difficult to determine the exact shape of a structure with weakly
visible boundaries. From the MR images, the size of the oval and the position of the
hook of the thalamus are often not clearly defined. The top-left image of Figure 4 shows
an example of such a scenario. The segmentations are the results of the two automatic
segmentation methods where black indicates the outline of the human expert. In this
example, EM-NoShape underestimates the hook of the thalamus, which we found to
be true throughout this experiment. EM-Shape can better cope with this problem as the
shape model adds global constraints to the local analysis of the intensities. An example
of a global constraint is the explicit definition of shape dependencies across anatomical
structures. This causes the shape of the thalamus to be proportional to one of the easily
segmentable ventricles. This impacts the accuracy of EM-Shape as it further constrains
the space of possible segmentations.

The other structure of interest in this experiment is the caudate. The structure is
adjacent to the putamen, another subcortical structure with an identical intensity dis-
tribution. In the MR image of the middle column of Figure 4, the putamen is located
on the outside of image. Neither the intensity pattern nor the spatial prior can properly
separate these two structures, as indicated by the noisy segmentations of EM-NoShape.
The outliers visible in EM-NoShape violate the shape constraints of EM-Shape as the
boundary has to satisfy the conditions set by the ventricles and the thalamus.

For both structures, EM-NoShape did not adequately segment the ends of the struc-
ture. In the right column of Figure 4, EM-NoShape underestimates the tip of the cau-
date. The opposite is true for the thalamus where EM-NoShape overestimates the ends.
Again, spatial and intensity distributions do not allow discrimination between anatom-
ical structures in this area. In summary, on the 20 test cases our shape based method
EM-Shape was performing much better than EM-NoShape, which uses a spatial atlas
instead of a shape atlas.
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Fig. 4.The figure is a collection of different subcortical regions. The black lines in the automatic
segmentations are the thalamus or caudate outlined by the human expert. The left column shows
a MR image with corresponding segmentations of the oval shaped body of the thalamus with
attached hook. The middle column shows part of the caudate which is adjacent to the putamen,
another subcortical structure with identical intensity distribution. The right column shows the top
of the caudate which is generally is underestimated by EM-NoShape. In all three examples, EM-
NoShape performs worse than EM-Shape because the discriminatory power of spatial prior and
intensity pattern is too low to determine the boundary of the structure.

5 Summary and Conclusions

We presented a statistical framework for the segmentation of anatomical structures in
MR images. The framework is guided but not restricted to the low-dimensional PCA
shape model as the shape representation is turned into space-conditioned probability
model using the logistic function. The approach is especially well suited for struc-
tures with weakly visible boundaries as it simultaneously estimates the image inho-
mogeneities, explicitly models the boundaries through a deformable shape model, and
segments the MR images into anatomical structures. Our approach was validated by
automatically segmenting 20 test cases and comparing the results to a similar EM im-
plementation without shape priors. In general, our new method performs much better.
The improvement is primarily due to explicit modelling of the shape constraints along
the boundary of anatomical structures.
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