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A Bayesian model for joint segmentation and registration
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A statistical model is presented that combines the registration of an

atlas with the segmentation of magnetic resonance images. We use an

Expectation Maximization-based algorithm to find a solution within

the model, which simultaneously estimates image artifacts, anatomical

labelmaps, and a structure-dependent hierarchical mapping from the

atlas to the image space. The algorithm produces segmentations for

brain tissues as well as their substructures. We demonstrate the

approach on a set of 22 magnetic resonance images. On this set of

images, the new approach performs significantly better than similar

methods which sequentially apply registration and segmentation.
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Introduction

To better understand brain diseases, many neuroscience studies

focus on the anatomical differences between control and diseased

subjects. In order to find these differences, scientists often analyze

medical images for brain structures which seem to be influenced by

the disease. The analysis is frequently based on segmentations of

the structures of interest that are mostly performed by human

experts. However, this manual process is not only very expensive,

but in addition, it increases risks related to inter- and intra-observer

reliability (Kikinis et al., 1992). Neuroscientists are keenly

interested in automatic methods, which often rely on prior

information, to perform this task (Collins et al., 1999; Leventon

et al., 2000; Marroquin et al., 2003; Fischl et al., 2004; Pohl et al.,

2004a; Ashburner and Friston, 2005). With notable exceptions,

these methods first register the prior information, i.e., an atlas, to

the medical image and then segment the medical image into

anatomical structures based on that aligned information. The goal

of this work is to unify this process into a single Bayesian
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framework in order to overcome biases caused by commitment to

the initial registration.

When automatic segmentation methods are guided by prior

information, they frequently are used to segment anatomical struc-

tures defined by weakly visible boundaries in medical images. For

example, the intensity properties of the thalamus in T1-weighted

magnetic resonance (MR) images are very similar to those of the

neighboring white matter (Fig. 1). Algorithms cannot rely on the

MR images alone in order to distinguish these two structures.

However, the ventricles, the dark structures above the thalamus, are

more easily identified. In order for the ventricles to guide the

detection of the boundary between the thalamus and the white

matter, automatic segmentation algorithms use spatial priors

(Mazziotta et al., 1995; Thompson et al., 1996). These spatial

priors capture the relationship between structures such as the fact

that the ventricles are above the thalamus.

As mentioned previously, most atlas-based algorithms perform

registration and segmentation sequentially (Cocosco et al., 2003;

Van Leemput et al., 1999; Fischl et al., 2002). In this paper, we

present an approach that exploits complementary aspects of both

problems. In the example of the thalamus, segmentation simplifies

the registration of the region defined by ambiguous intensity

patterns between thalamus and white matter (Pohl et al., 2004a).

On the other hand, aligning an atlas aids the detection of thalamus

as discussed previously.

The idea of joining registration and segmentation has been

utilized by boundary localization techniques using level set rep-

resentation, such as Leventon et al. (2000) and Tsai et al. (2003),

which align an atlas to the subject and simultaneously estimate the

shape of a structure. These methods relate both problems to each

other by extending the definition of the shape to include its pose.

This paper describes an integrated segmentation and registration

approach related to voxel-based classification methods, which

considers the anatomical structure associated with each voxel within

a Bayesian framework (Wells et al., 1996; Van Leemput et al., 1999;

Marroquin et al., 2003; Pohl et al., 2004a). These voxel-based

classification methods explicitly model image artifacts in order to

segment large data sets without manual intervention.

Voxel-based classification methods that have coupled registra-

tion and segmentation of misaligned spectral images include

(Wyatt and Noble, 2002; Xiaohua et al., 2005). Here, however,
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Fig. 1. Panel (a) shows an MR image (1.5-T MRI system (GE Medical

Systems, Milwaukee), three-dimensional Fourier transformation spoiled

gradient-recalled acquisition sequence, echo time (TE) = 5 ms, repetition

time (TR) = 35 ms, repetition = 1, nutation angle = 45, field of view = 24

cm, acquisition matrix = 256 � 256 � 124, voxel dimension = 0.9375 �
0.9375 � 1.5 mm) of the area around the thalamus, which in this image is

the structure below the dark ventricles. The corresponding manual

segmentation of the thalamus is shown in panel (b). From the intensity

pattern in panel (a), the boundary of the thalamus and the neighboring white

matter is not clearly defined.
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our purpose is to align an atlas to MR images and separate the

images into anatomical structures, as also suggested by (Ashburner

and Friston, 2005). The proposed non-rigid registration framework

of Ashburner and Friston (2005) performs a local deformation of

the atlas space under the assumption that the atlas is globally

aligned to the image space. This is an assumption which does not

hold in practice and which we address in our approach.

Section 2 describes the Bayesian framework that models the

relationship between the unknown segmentation, the observed MR

image data, and the registration parameters. The registration

parameters capture the deformation between atlas and image space.

The solution within our joint registration and segmentation

framework is defined by a Maximum A posteriori Probability

(MAP) estimation problem and is found by adopting an instance of

the expectation maximization (EM) algorithm (Dempster et al.,

1977; McLachlan and Krishnan, 1997).

In Section 3, we specify a hierarchical description of the registration

parameters. Global registration parameters capture the correspondence

between the entire atlas and image space. Structure-dependent

registration parameters represent the local deformations within a

region of an anatomical structure. This hierarchical model simplifies

the correspondence problem between atlas and image space.

We describe in Section 4 a robust implementation of our

algorithm, where the registration parameters capture affine map-

pings. In Section 5, we perform an experiment comparing the

robustness of this implementation to other EM segmenters. In this

experiment, the automatic methods outline a set of 22 MR images

into the major brain tissue classes as well as the thalamus, which is a

structure with indistinct boundaries. When comparing the automatic

results to manual segmentations, our new method significantly

outperforms the other implementations.
1 It is common in discussions of statistical estimation to refer to

parameters, which are not of primary importance, as nuisance parameters

in formulating an estimation problem. For the purposes of this work, the

relevant nuisance parameters are the values of the intensity correction at

every voxel.
A Bayesian model combining registration and segmentation

The accuracy of segmenting structures that have indistinct

boundaries in MR images, using tissue classification methods,

significantly depends on properly modeling image artifacts and

accurately registering prior information to the subject. In this

section, we develop a unified framework which performs registra-

tion, segmentation, and image artifact estimation simultaneously.
In this paper, we are primarily interested in studying the

dependencies between segmentation and registration. We therefore

view image artifacts as nuisance parameters1, which, if known,

would greatly simplify the segmentation of MR images. For

example, nuisance parameters can represent the image inhomoge-

neity caused by the acquisition of the MR images or the subject

specific intensity histogram of an anatomical structure. The proper

modeling of these nuisance parameters is an ongoing discussion in

neuroimaging (Wells et al., 1996; Leventon, 2000; Kapur, 1999;

Marroquin et al., 2003; Ashburner and Friston, 2005).

Due to their complex dependencies, it is difficult to extract the

nuisance parameters h and the registration parameters R from the

MR images I without explicit knowledge of the unknown true

segmentation. However, this problem is greatly simplified when the

solution is determined within an EM framework. In this framework,

the solution is formulated as an incomplete data problemmarginalizing

over all possible segmentations T . The remainder of this section

derives an instance of the EM algorithm bymodeling the dependencies

between the nuisance parameters h, the registration parametersR, the

hidden labelmap T , and the observed image data I .
To determine h and R within this framework, we define the

following MAP estimation problem:

ðĥh;R̂RÞ ¼ argmax
h;R

log P h;R jIð Þ: ð1Þ

In general, this results in a system of equations for which there

is no analytical solution.

We simplify the problem by adding the labelmap T to the

model. The unknown labelmap T assigns each voxel in the image

to an anatomical structure. Combining T with the known intensity

histograms of anatomical structures produces images, which then

can be compared to the observed MR images I in order to

determine the solution to Eq. (1). We can restate Eq. (1) by

marginalizing with respect to all possible labelmaps T

ðĥh;R̂RÞ ¼ argmax
h;R

log
�X

T
P h;R;T jIð Þ

�
: ð2Þ

Next, we incorporate the conditional labelmap probability

P T jI ;h V;RVð Þ, where h V;RVð Þ are estimates of ðĥh;R̂RÞ, into Eq. (2)

ðĥh;R̂RÞ ¼ argmax
h;R

log

 X
T

P h;R;T jIð ÞP T jI ;h V;RVð Þ
P T jI ;h V;RVð Þ

!

¼ argmax
h;R

log ET j I ;h V;RV
P h;R;T jIð Þ
P T jI ;h V;RVð Þ

� �
: ð3Þ

The purpose of these operations is to put Eq. (3) into a form

such that we can exploit the following bound derived via Jensen’s

Inequality (Neal and Hinton, 1998)

log ET j I ;h V;RV
P h;R;T jIð Þ
P T jI ;h V;RVð Þ

� �
� ET j I ;h V;RV log

P h;R;T jIð Þ
P T jI ;h V;RVð Þ

� �
: ð4Þ

The right side of Eq. (4) defines a lower bound on the objective

function (the left side). The EM approach uses this lower bound to

find a local maximum to the objective function. The Expectation



Fig. 2. A graphical model defining our Bayesian framework as presented in

Eq. (8). In this model, the observed image data I is directly linked to the

labelmap T and the nuisance parameters h. In addition, the labelmap T is

linked to the registration parameter R.
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Step (E-Step) establishes a new objective function or the lower

bound (McLachlan and Krishnan, 1997)

Q h;Rð Þ; h V;RVð Þ½ �� ET jI ;h V;RV log
P h;R;T jIð Þ
P T jI ;h V;RVð Þ

� �
: ð5Þ

The Maximization Step (M-Step) updates the approximations h V
and RV with the maximum of the lower bound

h V;RVð Þ@ argmax
h;R

Q h;Rð Þ; h V;RVð Þ½ �: ð6Þ

For many problems, Eq. (6) defines a simpler maximization

problem than Eq. (3).

Finding the solution to Eq. (6) is still complicated, as we

simultaneously estimate the nuisance parameters h and registration

parameters R. We will make certain simplifying assumptions.

Before we do so, we rewrite Eq. (6) by applying Bayes’ rule

h V;RVð Þ@ argmax
h;R

ET jI ;h V;RVðlog P I jT ;h;Rð Þ þ log P RjT ;hð Þ

þ log P hjTð Þ � log P T jI ;h V;RVð Þ � log P Ið Þ þ log P Tð ÞÞ

and dropping terms that do not depend on h;Rð Þ

h V;RVð Þ@ argmax
h;R

ET jI ;h V;RVðlog P I jT ;h;Rð Þ þ log P RjT ;hð Þ

þ log P hjTð ÞÞ: ð7Þ

The optimization procedure decomposes nicely as a conse-

quence of the following independence assumptions (see Fig. 2):

First, we assume that I is independent of R conditioned on T and

h. We therefore characterize each anatomical structure with a

stationary intensity distribution which is not influenced by the

mapping between atlas and image space such as described by the

models (Wells et al., 1996; Van Leemput et al., 1999; Kapur, 1999;

Ashburner and Friston, 2005). Based on the same argument, we also

assume R is independent of h conditioned T . Finally, we assume

independence of h and T .2 Note that in the graphical model shown

in Fig. 2, the link joining the registration parameters R with the

labelmap T could be reversed by the use of Bayes’ rule, which

would yield an equivalent model (this conditioning of T on R is

used below in the development of the EM iteration).

Based on the three independence assumptions, Eq. (7)

simplifies to

h V;RVð Þ @ argmax
h;R

ET jI ;h V;RV log P I jT ;hð Þþ log PðRjTð Þ

þ log P hð ÞÞ: ð8Þ

We demonstrate the utility of the independence assumptions in

the experiment of Section 5 when we segment the MR images of

22 subjects into white matter, gray matter, cerebrospinal fluid, and
cerebrospinal structures.

In its current form, Eq. (8) contains the expected value, which

sums over all possible settings of T . To further simplify the
2 Note, if we incorporate a nuisance parameter model into our algorithm

that does not fulfill these independence requirements, e.g., we use spatial

varying intensity distributions as suggest by Fischl et al. (2004), then we

perform the maximization for the nuisance and registration parameters

sequentially. The resulting algorithm belongs to the class of generalized-

EM algorithms, which have the same convergence properties as EM.
problem, we assume spatial independence of T and independence

between R and h on the basis of the previous discussion. Eq. (8),

which characterizes the EM approach, is restated as the sum over all

voxel locations x of the expected value with respect to indicator

random vector Tx a e1; . . . ;eNf g. The vector ea is zero at every

position but a, where its value is one. For example, if Tx ¼ ea then

voxel x is assigned to the anatomical structure a. If we now assume

that the two conditional probabilities P I jT ;hð Þ and P RjTð Þ are
defined by the product of the corresponding conditional probabil-

ities over all the voxels in the image space, then we can rewrite Eq.

(8) as

h V;RVð Þ@ argmax
h;R

X
x

ETxI ;h V;RV log PðI jT ;hð Þ

þ log P RjTð Þ þ log P hð ÞÞ
¼ argmax

h;R

X
x

X
a

P T x ¼ ea jI ;h V;RVð Þ

I ½log P I x jT x ¼ ea;hxð Þ þ log P RjTx ¼ eað Þ þ log P hð Þ�
¼ argmax

h;R

X
x

X
a

Wx að Þ½log P I x jTx ¼ ea;hxð Þ

þ log PðRjTx ¼ eaÞ þ log P hð Þ�: ð9Þ

The weights, which will be calculated in the E-Step instead of

Eq. (5), capture the posterior probability of the structure a being

present at voxel x and are now defined as

Wx að Þ� P Tx ¼ ea jI ;h V;RVð Þ

¼ P I x jTx ¼ ea;h Vxð Þ I P T x ¼ ea jRVð Þ
P I x jhxV;RVð Þ : ð10Þ

As each factor in Eq. (9) only depends on either R or h, the
M-Step updates the approximations of the inhomogeneities and

the registration parameters separately

RV@ argmax
R

X
x

X
a

Wx að Þ log P Tx¼ea jRð Þ þ log P Rð Þ ð11Þ

h V@ argmax
h

X
x

X
a

Wx að Þ log P I jTx¼ ea;hð Þ þ log P hð Þ: ð12Þ

The EM algorithm iterates between the E-Step (Eq. (10)) and the

M-Steps (Eqs. (11) and (12)) until the lower bound function

converges to a local extrema, which is guaranteed by the EM

framework if the iteration sequence has an upper bound (McLachlan

and Krishnan, 1997).

Based on Eq. (11), the algorithm adjusts the registration

parameters so that the atlas matches the weights defined by the

E-Step. However, the weights might mislead the algorithm in cases

where the alignment between atlas and image coordinate system

is difficult. For example, the MR image of Fig. 3 shows a subject

with an unusual head position. In this case, the weights wrongly

assert that the neck is part of the brain. This causes the algorithm

to adjust the nuisance parameters so that intensity histogram of



Fig. 3. For this MR image, our approach achieved a suboptimal result as it

failed to differentiate the neck from the brain (outlined by the line). We refer

to the text for a detailed discussion.
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the neck is equivalent to the ones inside the brain. The

registration parameters scale the atlas of the brain to cover both

brain and neck. The algorithm, therefore, converges to a

suboptimal solution, which does not separate the neck from the

brain.

In summary, this section defined the problem of mapping the

atlas to the image space as a MAP estimation problem. Finding the

solution to this problem is generally too difficult, so we iteratively

solve the simpler lower bound optimization problem of Eq. (4) in

an instance of an EM algorithm. Even computing the solution to

the optimization problem is generally too complicated as we have

to simultaneously maximize the underlying objective with respect

to the nuisance parameters h and the registration parameters R. We

therefore split Eq. (4) into two separate estimation problems for h
and R by making certain simplifying independence assumptions.

The resulting EM approach is composed of an E-Step determining

the W of Eq. (10) and the M-Step, which solves the estimation

problems of Eqs. (11) and (12). While the solution to Eq. (12) has

been discussed in detail in the literature (Wells et al., 1996;

Leventon, 2000; Kapur, 1999; Marroquin et al., 2003; Ashburner

and Friston, 2005), the next section focuses on determining the

registration parameters of Eq. (11).
Fig. 4. The graph represents the hierarchical affine registration framework develop

captures the global deformations of the atlas coordinate system to the image spac

aligned to the structure-specific coordinate system in the image space by applyin
A hierarchical registration model

To solve the estimation problem of Eq. (11), we define the regis-

tration parameters R, the conditional log probability log P T jRð Þ,
and the prior probability P Rð Þ. We model the parameters R as a

hierarchical registration framework, which distinguishes between

global- and structure-dependent deformations. We then apply the

registration framework to the estimation problem and determine its

solution with another optimization algorithm.

The hierarchical registration parameters R capture the corre-

spondence between atlas, brain, and structures within the brain.

The mapping of the atlas to the image space is performed by an

interpolation function r R; xð Þ, which maps voxel x into the

coordinate system defined by R. r R;Ið Þ can be rigid, affine, or

more general non-rigid. As a rigid registration can be interpreted as

a special case of an affine transformation, we focus our discussion

on affine and non-rigid registration methods.

The parameters R can be structure-dependent or -independent.

The structure-independent parameters capture the correspondence

between atlas and image space without knowledge of the

underlying brain anatomy. If constrained to affine interpolation,

the degrees of freedom of R are too low to capture the

characteristics of individual brain structures (Pohl et al., 2002;

Srivastava et al., 2004). The alternative is a more general non-rigid

framework, which often has problems aligning structures with

weakly visible boundaries (Pohl et al., 2004b). Instead, we favor an

approach that registers each anatomical structure based on the

specific requirements of that structure.

Our structure-dependent registration parameters treat the

relationship between the atlas and image space for each structure

independently. However, this independence assumption does not

hold in practice. Our registration problem is mostly characterized

by the structure-independent misalignment between the coordinate

system of the image space (represented by the position of the head)

and the atlas coordinate system. Thus, the difference between

different structure-dependent parameters should be relatively small.

We therefore propose a registration framework that consists of

structure-dependent and -independent parameters.

We model dependency across structures with a hierarchical

registration framework R ¼ RG;RCð Þ as shown in Fig. 4. RG are

the global registration parameters, which describe the non-

structure-dependent deformations between atlas and image. The
ed throughout this section. In this approach, the registration parameter RG

e. Ra represents the structure-specific alignment of structure a. The atlas is

g the interpolation function r RG;Ra; Ið Þ.



Fig. 5. Examples of space conditioned probabilities of anatomical structures. In our framework, these probabilities are represented by fa(I). Blue indicates low

and red high probability with respect to presence of a structure at that voxel location.
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structure-dependent parameters RC� R1; . . . ;RNð Þ are defined in

relation to RG and capture the residual structure-specific deforma-

tions that are not adequately explained by RG. In the remainder of

this work, we refer to Ra, the ath entry of RC , as the registration

parameters specific to structure a with a Z {1, . . . , N}.

The similarity between structure-specific parameters is encoded in

Eq. (11) through the prior probability P Rð Þ. Section 4 defines R
explicitly and models P Rð Þwith a simple Gaussian distribution. This
model enforces tight bounds on RC and weak constraints on RG.

To further specify the model, we now define the conditional

probability P Tx ¼ ea jRð Þ, which is the spatial prior probability of

structure a in the image space. In our model, this prior is composed

by an atlas of the spatial distributions across all structures. The

spatial distribution for a single structure a is represented in our

model by fa(I).
Fig. 5 shows examples of fa(I) for the right and left thalamus as

well as the remaining gray matter in the images space. These

examples were generated by computing the overlap of between the

segmentations of structures of interest according to (Warfield et al.,

2001). Blue indicates low and red high probability of the structure

at that voxel location.

fa(I) is defined in the coordinate system of the atlas space, which

is in general different from the image space. We align the atlas to the

image space by making use of the interpolation function

r RG;Ra;Ið Þ. The conditional structure probability is then defined as

P Tx ¼ ea jRð Þ� faðr RG;Ra;xð ÞP
aV

fa V r RG;RaV;xð Þð Þ ; ð13Þ

which is the conditional probability of the presence of an

individual structure normalized by the spatial prior probability
Fig. 6. We applied the EM approach to the MR image (a) and the misaligned spatia

is shown in panel (c), which is the weightsW of the E-Step, and (d), which is the i

between atlas and image space is especially apparent in the region of the ventricles

arrowheads.
of all structures. The normalization across all structures is

necessary as the coordinate system of each structure is

characterized by the structure-dependent registration parameters

Ra. Unlike global affine registration methods, this results in

structure-dependent coordinate systems that are not aligned with

each other. In other words, multiple voxels in the atlas space can

be mapped to one location in the image space.

Substituting Eq. (13) into Eq. (11) changes the MAP estimation

problem to

RV@ arg max
R

X
x

�X
a

Wx að Þ I
�
log fa r RG;Ra; xð Þ½ �

� log
X
aV

fa V r RG;Ra V; xð Þ½ �
��
þ log P Rð Þ

¼ arg max
R

X
x

�X
a

Wx að Þ I log fa r RG;Ra; xð Þ½ �
�

� log
�X

a

fa r RG;Ra; xð Þ½ �
�
þ log P Rð Þg

�QðRÞ ð14Þ

The spatial conditioned probabilities fa r RG;Ra;xð Þð Þ are not

sufficient to account for all occurrences within the model. For

example, the product Wx að Þ I log fa r RG;Ra;xð Þð Þ is not defined in

the case where Wx að Þ 6¼ 0 and fa r RG;Ra;xð Þð Þ ¼ 0. To overcome

this problem, one can simply add a uniform distribution to the

spatial conditioned probabilities by replacing log fa r RG;Ra;xð Þð Þ
with log fa r RG;Ra;xð Þð Þ þ �Þ. Note, that our approach is relatively

insensitive to the exact value of the �.
The objective function Q(I) measures the disagreement between

fa(I) and WaðÞ (see Fig. 6). We show in Appendix A that the MAP

estimation is composed by the Kullback–Leibler (KL) divergence
l atlas of white matter and gray matter in panel (b). The result of the analysis

nitial objective function Q(I) of the M-Step. The impact of the misalignment

, whose location are pointed out in the image space and in the atlas space by
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D(I||I) with respect to the labelmap T and the prior P Rð Þ of the
registration parameters R:

RV@ argmin
R

D WT jjP T jRð Þð Þ � log P Rð Þ:

Ignoring the log prior log P Rð Þ, the solution of the estimation

problem is the registration parameters R, which minimize the

difference between the weights WT (see Appendix A) and the

spatial prior P T jRð Þ with respect to all labelmaps T , in the KL

sense.

The example of Fig. 6 shows how the misalignment between

atlas and image space impacts the analysis of the EM approach.

The intensity of the images corresponds to the value of the

underlying function with white indicating high and black low

values. In this example, we especially focus on the region around

the ventricles. Arrowheads point out their location in the MR
Fig. 7. The first three rows show a sagittal, axial, and coronal view of an MR volum

The segmentations to the right are the intermediate results of our approach. The im

coronal view. Red indicates large and blue small disagreement measured by the ob

close to the neck are correctly outlined, which is also indicated by red and yellow in

space so that disagreement is mostly due to the smooth boundaries of the spatial
image in (a) and the atlas space in (b), which shows the combined

spatial atlas of white matter and gray matter. The misalignment

between (a) and (b) impacts the weights W of the brain in (c) as it

detects the ventricles twice—once according to the location of the

image and once according to the spatial prior. The initial objective

function Q(I) defined by the M-Step in (d) detects this ambiguity as

it measures the disagreement between spatial prior of the brain fa(I)
in (b) and the weights Wa Ið Þ in (c). The objective function shows

large disagreement in the area around the location of the ventricles

in the image space as (b) assigns this region to the brain and (c)

does not. In order to resolve this disagreement, the EM approach

aligns the atlas to the image space as we will observe later in the

example of Fig. 7.

In summary, we developed an EM approach based on the

newly defined registration parameters R. The E-Step calculates

the weights W at voxel x of Eq. (10) based on the aligned spatial
e. The thalamus and the caudate are outlined in black in these MR images.

ages in the bottom row are the corresponding objective function Q(I) in the

jective function values. Initially, only the ventricles and cerebrospinal fluid

the objective function. In the final iteration, the atlas is aligned to the image

priors.
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priors fa r RGV ;RaV ;Ið Þð Þ, intensity I, and the approximation of the

nuisance parameters hV:

Wx að Þ ¼ P IxjT x ¼ ea;h Vxð Þ I P T x ¼ eajRVð Þ
P I xjh Vx;RVð Þ

¼ P I xjTx ¼ ea;h Vxð Þ I faV r RVG;RVa ;xð Þð ÞP
aV
P I xjTx ¼ e Va;h Vxð Þ I faV r RVG;RVa V;xð Þð Þ ð15Þ

The M-Step updates the approximation of the nuisance

parameters hV and registration parameters RV based on the current

weights W. These parameters will be described in more detail in

the next section. The update rule forR is defined by Eq. (14) as the

maximum of objective functions Q(I)

RV@ argmax
R

Q Rð Þ

¼ argmax
R

X
x

X
a

Wx að Þ I log fa½r RG;Ra;xð Þð � þ �Þ
�

� log
X
a

fa r RG;Ra;xð Þ½ � þ �
� ��

þ log P Rð Þ:

The solution to this update rule depends on the underlying model

with respect to RG and Ra, which is discussed in detail in the next

section.
An implementation of the joint registration and segmentation

model

This section describes an implementation of the previously

derived EM approach. We give an example for the interpolation

function r(I, I, I), the corresponding registration parameters R, the

prior of the registration parameter P Rð Þ, and the maximization

algorithm to solve the MAP estimation problem defined in Eq. (14).

The interpolation function r(I, I, I) of Section 3 can represent a

variety of mapping approaches. For simplicity, we choose a restricted

affine interpolation function. The global and structure-specific parame-

ters are defined asRz ¼ t
Y
t
z ; r

Y
t
z ; s

Y
t
z

� �
t
a R

9 with z Z {G, 1,. . ., N},

where G is the index of the global parameters and {1,. . ., N}

represents the list of indices for the structure-specific parameters. The

parameters capture displacement
Y
t z a R

3, rotation
Y
rz a R

3, and

scaling
Y
sz a R

3. The mapping is defined by the function

r I; I; Ið Þ : R9� 9� 3YR
3; RG;Ra;xð ÞYARG

I ARa
I x

t
;1

� �
t

where ARz
is an affine transformation matrix based on the parameter

setting Rz.

This framework makes no assumptions about the correspon-

dence between the atlas and the image space by uniformly

distributing the global registration parameter RG. As opposed to

RG, the structure or class specific parameters RC� R1; . . . ;RNð Þ
describe the residual of structure-specific deformations that are not

well explained by RG. In general, our model should penalize large

deviations ofRC from the expected mean, which is approximated by

the average structure-specific registration parameters of the training

data. We enforce this penalty by modeling the probability density

function of RC as a Gaussian distribution N lRC
;YRC

� 	
with

structure-dependent mean lRC
and variance YRC

based on the

mapping parameters of the training data. We choose a Gaussian

distribution, as small variance YRC
discourages large deformations

from the mean lRC
. In addition, Gaussian distributions simplify the

calculations in the M-Step (McLachlan and Krishnan, 1997).
Based on the previous modeling assumptions, the objective

function Q(I) of Eq. (14) is defined as

Q Rð Þ�
X
x

 X
a

Wx að Þ I log
h
fa ARG

I ARa
I x t ;1ð Þt

� 	
þ �
i

� log
X
a

fa ARG
I ARa

I xt;1ð Þt
� 	

þ �
� �!

� 1

2
RC � lRC

� 	t
Y
�1
RC

RC � lRC

� 	
: ð16Þ

To find a solution to the MAP problem defined by Q(I), we
decouple the search for RG and RS as their dependencies can

cause instability. It is generally difficult to determine a closed form

solution for this problem so that we estimate the solutions through

the Powell’s method (Press et al., 1992).

The second MAP estimation problem (Eq. (12)) of the M-Step

updates the approximation of the nuisance parameters

h V@ argmax
h

X
x

X
a

Wx að Þ I log P I jT x ¼ ea;hð Þ þ log P hð Þ:

In our implementation, the nuisance parameters h are defined by

the image inhomogeneity model of Wells et al. (1996). We choose

this model as it is quite simple but also flexible enough for the given

domain. Note that other models, such as Leventon (2000); Kapur

(1999); Marroquin et al. (2003); and Ashburner and Friston (2005),

are appropriate choices for the nuisance parameters. The choice of

model influences the behavior of our algorithm. In this paper,

however, we will not further investigate the impact of these

different models on our algorithm as we are primarily interested in

studying the dependencies between segmentation and registration.

One of Wells’ models defines the likelihood P I jT x ¼ ea;hð Þ of
Eq. (12) by the following Gaussian distribution:

P I xjT x ¼ ea;hxð Þ�N I x � hx � la;Y að Þ:

(la, Y a) represents the mean and variance of the intensity dis-

tribution of the anatomical structure a. As a consequence of this defi-

nition, Eq. (12) reduces to a system of linear equations. In Appendix

B, we explain in further detail the module of the image inhomoge-

neities and derive the solution of this system of linear equations.

The solution is the product of the weighted residual

R̄x ¼
P

aWa að ÞY�1a I x � lað Þ and a low pass filter represented by

the matrix H. The E-Step, characterized by Eq. (15), calculates the

weights

Wx að Þ ¼ N I x � hx � la;Y að Þ I fa r R VG;RVa;xð Þð ÞP
aV
N I x � hx � la;Y að Þ I faV r RVG;RVa V;xð Þð Þ ð17Þ
The entire implementation is summarized by the pseudo code

below:

Algorithm 1. Segmentation and Registration

repeat

E-Step: Update soft assignment according to Eq. (17)

Wx að Þ@ 1
Z
N I x � hx � la;Y að Þ I fa r RGV;RaV;xð Þð Þ

M-Step: Update parameter space

hV@ Estimation of the inhomogeneities by calculating H I R̄̄
RGV@ Result of Powell’s method with Q I ;RSVð Þð Þ
RSV@ Result of Powell’s method with Q RGV;Ið Þð Þ

until u’ and RV converge
define labelmap: T̂T x@ arg maxaWx að Þ

We end this section with an example illustrating the dependen-

cies between registration and segmentation. The first three rows of
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Fig. 7 show a sagittal, axial, and coronal view of a MR volume.

Black lines outline the thalamus and the caudate. The segmentations

to the right are the results of our algorithm after 1, 10, 30, and 60

iterations. To show the strength of our model, we initialized the

approach with an unusual position of the atlas space. This also

explains why the method needs 60 iterations instead of the normal

20 iterations until convergence.

The last row shows the objective function Q(I) corresponding
to the segmentations above. Red indicates high and blue low

disagreement between the atlas space and the weights of the M-

Step. Initially, the area around the ventricles and cerebrospinal

fluid close to the neck are highlighted in red, as they are

correctly segmented regions that disagree with their location

within the atlas space. As the method progresses, the overall

accuracy of the registration as well as segmentation increases.

The disagreement captured by the objective function in the final

iteration is mostly caused by the smooth boundaries of the spatial

priors.

In summary, this section described an implementation of the

joint registration and segmentation algorithm. Affine registration

parameters represent the global and structure-specific deformations

between atlas and image space. The nuisance parameters capture

the inhomogeneity of the MR images caused by the acquisition of

these images. The next section discusses the accuracy of our

implementation in outlining the thalamus.

Comparative study on 22 test cases

The experiment described in this section compares the accuracy

of four EM implementations which differ in how they map the atlas

to the patient. The first approach (EM-NonRigid) maps the atlas to

the patient using an intensity based non-rigid registration approach

and then runs our EM implementation without registration

parameters (Pohl et al., 2004a). The second approach (EM-Affine)

is similar to EM-NonRigid but uses the affine mapping method by

(Warfield et al., 2001). The remaining two approaches are based on

our new algorithm, which solves the registration and segmentation

problem simultaneously. EM-Sim-Affine uses the same global

affine registration model as EM-Affine and EM-Sim-Hierarchical

incorporates the hierarchical registration approach of Section 3. All

four methods utilize the same atlas, which captures the spatial

distributions of the anatomical structures. The training data of the

atlas consist of semi-automatic as well as manual segmentations

of up to 80 different subjects3. The atlas is generated through

the approach suggested by Warfield et al. (2001), which aligns the

training subjects to a preselected training case and then measures

the overlap between the corresponding segmentations. Examples of

the atlas are shown in Fig. 5.

Each method segments 22 test cases (1.5-T MRI system (GE

Medical Systems, Milwaukee), three-dimensional Fourier trans-

formation spoiled gradient-recalled acquisition sequence, echo

time (TE) = 5 ms, repetition time (TR) = 35 ms, repetition = 1,

nutation angle = 45, field of view = 24 cm, acquisition matrix =

256 � 256 � 124, voxel dimension = 0.9375 � 0.9375 � 1.5 mm)

into the three brain tissue classes – white matter, gray matter, and

cerebrospinal fluid – and further parcellates gray matter into the

right and left thalamus. We evaluate the accuracy of the
3 The data were provided by the Schizophrenia Research Project, Surgical

Planning Laboratory, Brigham and Women’s Hospital, Harvard.
approaches by measuring the agreement of the automatic

segmentations of the thalamus to manual ones, which we view

as ground-truth. Note that our EM approach segments anatomical

structure by considering all neighboring structures. Thus, the

accuracy of segmenting the thalamus greatly depends on the

precise segmentation of white matter, the remaining gray matter,

and the cerebrospinal fluid.

We focus on the thalamus because it is a challenging

structure for registration and segmentation. Many fiber tracks

pass through the thalamus so that its intensity properties in MR

images are very similar to the neighboring white matter (Fig. 8).

Intensity based registration methods have difficulties aligning

this structure because of its weakly visible boundary. In our

experience, EM without spatial priors will fail and EM with

spatial priors heavily relies on these priors. Thus, registration

errors greatly influence the segmentation quality of our three

methods.

To measure the quality of the automatic generated results, we

compare them to the manual segmentations using the volume

overlap measure DICE (Dice, 1945). The results of the

experiment are summarized in the Fig. 9. The graph shows the

mean and standard error of the DICE measure for the three

algorithms in the 22 cases. For the thalamus, EM-NonRigid

performed worst (82.35 T 1.2% � average DICE score T standard

error) because the intensity based registration method is too

unreliable for structures with smooth boundaries. The method

generally overestimates white matter and underestimated the

thalamus in this region, which can be also observed by the

segmentation in Fig. 8 (EM-NonRigid). EM-Affine (87.28 T
1.2%) performs much better than EM-NonRigid, but the

method is sensitive towards initial misalignments. In Fig. 8 (EM-

Affine), this sensitivity causes a vertical offset in the segmentation

generated by EM-Affine. Note that the average DICE score of

EM-Affine for the thalamus is already excellent as we experienced

large disagreement even between different expert segmentations.

However, EM-Sim-Affine and EM-Sim-Hierarchical, the app-

roaches based on our new framework, achieve a higher average

score than the other two methods.

EM-Sim-Affine is more robust (88.65 T 0.4%) than EM-Affine

even though both methods use the same affine registration

framework. This empirically demonstrates the utility of performing

registration in an EM segmenter. EM-Sim-Affine is constrained by

the dependency between segmentation and registration. In com-

parison to EM-Affine, these constraints further reduce the space of

possible solutions, which simplifies the search for the optimal

solution. In addition, the spatial priors of the structures are directly

mapped to the segmentation model. In contrast, EM-Affine and

EM-NonRigid align an MR image in the atlas space to the image

of the patient. They use the resulting deformation map to align

the spatial priors, which inherently increases the risk of

systematic biases in the model.

EM-Sim-Hierarchical (89.40 T 0.3%), however, significantly

outperforms the other three approaches. The hierarchical regis-

tration framework has greater flexibility than the single global

affine registration models of EM-Affine and EM-Sim-Affine. We

believe that the structure-specific registration framework of

EM-Sim-Hierarchical better incorporates the anatomical know-

ledge gained from the segmentation domain than the continuous

model of EM-Sim-Affine.

We end the discussion by further investigating the previously

made observation with respect to the ventricles. As pointed out in



Fig. 8. The images zoom in on the automatic segmentations of the thalamus region. In the MR image as well as 2D segmentations, the thalamus is outlined

in black. The registration results of EM-Affine shows an offset in the vertical direction and EM-NonRigid greatly underestimates the thalamus. Our two

new approach EM-Sim-Hierarchical (EM-Sim-Hier) and EM-Affine achieve the most accurate segmentations, which was generally true in the 22 test cases

(see Fig. 9).
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Section 3, the ventricles are very important in guiding the joint

registration and segmentation method. In order to validate this

statement, we repeat the previous experiment. This time gray matter,

white matter, and the ventricles are combined into one structure.

This change in our model causes the registration cost function to

ignore the misalignment of the location of the ventricles between

atlas and image space (see also Fig. 6). As a result, the average

DICE score for the thalamus reduces by 5.2% and the standard error

increases by a factor of 2.5. We therefore conclude that the accuracy

of our new approach greatly depends on anatomical structures that

are easily identifiable in the segmentation problem.

We have demonstrated that our new approach EM-Sim-

Hierarchical and EM-Sim-Affine achieve higher accuracy than

the methods we denoted as EM-Affine and EM-NonRigid as a

consequence of the fact that our approach directly maps the spatial

priors of the structures to the segmentation model. In contrast, EM-

Affine and EM-NonRigid align an MR image in the atlas space to

the image of the patient (Pohl et al., 2004a), using the resulting

deformation map to align the spatial priors. This inherently

increases the risk of systematic biases in the model. Furthermore,

EM-Sim-Hierarchical performs significantly better then the other
Fig. 9. The graph shows the average DICE score over 22 cases for the

pipeline based approaches EM-Affine and EM-NonRigid, and approaches

based on our integrated framework EM-Sim-Affine and EM-Sim-Hierar-

chical. EM-Sim-Affine achieves a higher score than the pipeline based

approaches and EM-Sim-Hierarchical significantly outperforms the other

three approaches for the thalamus.
three methods as the hierarchical registration model utilizes well

the anatomical knowledge gained from the segmentation domain.

Conclusion

We presented a statistical framework combining atlas regis-

tration and segmentation of MR images. Unlike other voxel-based

classification methods, our framework models these problems as

a single MAP estimation problem. We implemented the frame-

work as an instance of an EM algorithm using a hierarchical

affine mapping approach for anatomical structures. Our approach

was validated by automatically segmenting 22 sets of MR images

into the major brain tissue classes and the thalamus, a structure

with indistinct boundaries. Using manual segmentations, we then

compared our results to other EM implementations which

sequentially register and segment. The study empirically demon-

strated the utility of combining registration and segmentation in

an EM framework. In addition, our hierarchical registration

approach achieved a significantly higher score than the single

continuous registration models.
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Appendix A. Relationship between MAP estimate of

Registration Parameters and KL Divergence

We now derive the equality between the MAP estimation

problem of Eq. (14) and minimization of the KL divergence D(I||I)
with respect to the labelmap T :

argmax
R

X
xaM

"X
a

PðWx að ÞÞ I log P Tx ¼ ea jRð Þ
#
þ log P Rð Þ

¼ argmin
R

D WT jjP T jRð Þð Þ � log P Rð Þ
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where WT is the product of the weights Wx over the entire image

space conditioned on T .

For simplification, we use the following notation for the sum

over all labels at the voxel xX
T x

P Tx jI ;h V;RVð Þ I log P TxjRð Þ

�
X
a

P Tx ¼ eajI ;h V;RVð Þ I log P Tx ¼ ajRð Þ:

In addition, we represent the set of voxels of the image space

with M ¼ 1; . . . ;nf g.The MAP estimation of Eq. (14) is therefore

defined as

RV@argmax
R

X
xaM

X
T x

P T xjI ; h V;RVð Þ I log P TxjRð Þ
" #

þ log P Rð Þ:

The total probability theorem states that

X
T1 ;...;T x � 1 ;T x þ 1;...;T n

Y
yaM / xf g

P TyjI ;h V;RV
� 	

¼ 1;

where we use the notation
P

T 1;...;T z

�
P
T 1

...

P
T z

. We now extend the

product of the estimation problem with the previous sum and apply

the following fact a I
P
l

bl =
P
l

a I bl:

RV@ argmax
R

X
xaM

"X
T x

P TxjI ;h V;RVð Þ I log P TxjRð Þ

I

 X
T 1;...;T x � 1;T x þ 1 ;...;T z

Y
yaM / xf g

P T yjhV;RV
� 	!#

þ log P Rð Þ

¼ argmax
R

X
xaM

"X
T x

X
T1;...;T x � 1 ;T x þ 1;...;T n

log P TxjRð Þ

I
Y
yaM

P TyjI ;h V;RV
� 	#

þ log P Rð Þ

We rephrase the estimation problem by combining the sums

over the labeling of the image

RV@ argmax
R

X
xaM

" X
T 1;...;T n

Y
yaM

P T yjI ;h V;RV
� 	

I log P TxjRð Þ
#

þ log P Rð Þ:

We replace
P
T

�
P

T 1;...;T n

and again make use of the factP
l

a I bl ¼ a I
P
l

bl:

R V@argmax
R

X
T

� Y
yaM

P TyjI ;h V;RV
� 	

I

�X
xaM

log P TxjRð Þ
��

þ log P Rð Þ:

In Section 2, we assumed spatial independence of the labelmap

T so thatY
yaM

P TyjI ;h V;RV
� 	

¼ P T jI ;h V;RVð Þ

and

X
xaM

log P TxjRð Þ ¼ log
Y
xaM

P T xjRð Þ ¼ log P T jRð Þ:
Thus, the estimation problem changes to

RV@ argmax
R

X
T

P T jI ;h V;RVð Þ log P T jRð Þ þ log P Rð Þ

¼ argmax
R

�
X
T

P T jI ;h V;R Vð Þ log
P T jI ;h V;RVð Þ

P T jRð Þ � log P T jI ;h V;RVð Þ
� �� �

þ log P Rð Þ

We drop from the estimation problem the constant log

P T jI ;h V;RVð Þ with respect to R and replace the summation over all

possible labelmaps with the KL divergence:

RV@ argmin
R

X
T

P T jI ;h V;RVð Þ log P T jI ;h V;RVð Þ
P T jRð Þ

� �
� log P Rð Þ

¼ argmin
R

D P T jI ;h V;RVð ÞjjP T jRð Þð Þ � log P Rð Þ

If we now define the weights with respect to a specific labelmap

T as

WT �
Y
x

WT
x Tx ¼

Y
x

P TxjI ;h V;R Vð Þ ¼ P T jI ;h V;RVð Þ

then the KL divergence

D P T jI ;h V;RVð ÞjjP T jRð Þð Þ ¼ D WT jjP T jRð Þð Þ

measures the disagreement between the weights and spatial priors,

in the KL sense.

Appendix B. Modeling Image Inhomogeneities

One set of parameters determined in the M-Step of our

algorithm is the estimate of the image inhomogeneity h V. The

estimate h V is updated at each iteration according to Eq. (12)

h V@ argmax
h

X
x

X
a

Wx að Þ I log P I jTx ¼ ea;hð Þ þ log P hð Þ:

In this appendix, we describe a closed form of the estimator and

a fast approximation of it.

We use a model of the intensity inhomogeneity that is based on

Wells et al. (1996). In addition, the probability of the intensity of

image I at voxel x conditioned on the anatomical structure and the

image inhomogeneity is modeled by the Gaussian distribution

P I jT x ¼ ea;hð Þ � N I x � hx � la;Yað Þ. The prior of the image

inhomogeneity P hð Þ � N h;YBð Þ is defined as a very large zero-

mean multi-variate Gaussian that has a value at every voxel. The

structure-specific intensity parameters (la, Ya), and the covariance

of the image inhomogeneity model YB, are not adjusted within the

EM iteration.

We now specify Eq. (12) with respect to this model. The log

conditional probabilities of Eq. (12) are now

log P I jTx ¼ ea;hð Þ ¼ log
1

Z
e�

1
2
I x�hx�lað ÞtY�1a I x�hx�lað Þ

� �

¼ � log Z � 1

2
I x � hx � lað ÞtY�1a I x � hx � lað Þ

and

log P hð Þ ¼ � log Z � 1

2
htY�1B h:
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Defining

QB hð Þ�
X
x

X
a

Wx að Þ I x � hx � lað ÞtY�1a I x�hx�lað Þ þ htY�1B h;

Eq. (12) becomes

h V@ argmax
h

QB hð Þ: ðB:1Þ

An attraction of these Gaussian modeling assumptions is that

Eq. (B.1) can be solved in closed form. The objective function of

Eq. (B.1) is defined as so that the necessary zero gradient condition

of the maximum h V at each voxel x is expressed by

0 ¼ B

Bhx
QB hð Þh ¼ hV: ðB:2Þ

For each voxel x Eq. (B.2) resolves to a system of linear

equations:

0 ¼ B

Bhx
QB hð Þ ¼

X
a

Wx að Þ I Y�1a I I x � hx � lað Þ þ Y
�1
B I h


 �
x

¼
X

a
Wx að Þ I Y�1a I x � lað Þ

�
X

a
Wx að Þ I Y�1a

� �
I hx � Y

�1
B I h


 �
x
: ðB:3Þ

If we now define the weighted residual at voxel x as

R̄ xð Þ �
X
a

Wx að Þ I Y�1a I I x � lað Þ ðB:4Þ

and the non-zero entries of the matrix Ȳ̄
�1 along the diagonal by

the submatrix

Ȳ
�1
xx �

X
a

Wx að Þ I Y�1a

then Eq. (B.3) simplifies to

Ȳ
�1

I hþ Y
�1
B I h ¼ R̄:

The solution to Eq. (B.1) may be written as

h V¼ Ȳ
�1 þ Ȳ

�1
B

� ��1
I R̄: ðB:5Þ

Even though Eq. (B.5) defines a closed form solution to our

initial estimation problem of Eq. (12) it is, in general, computa-

tionally very challenging to solve a linear system of this size (the

voxel count). However, a major savings in computation can be

achieved when modeling assumptions are made so that

(Ȳ̄�1+ Ȳ̄B
�1)�1, which is a linear operator on the residual image,

is a spatially stationary unity-gain low-pass filter.

This approach depends on the assumption that each structure a

has the same variance Y a = Ỹ. Eq. (B.3) now simplifies to

0¼
X
a

Wx að Þ I ỸY �1 ðI x�laÞ�
X
a

Wx að ÞỸY �1
 !

I hx� Y
�1
B I h


 �
x

¼ ỸY
�1 I

X
a

Wx að Þ I I x�lað Þ�
X
a

Wx að Þ
 !

I hx� ỸY I Y�1B I h

 �

x

! 

¼ ỸY
�1 I

X
a

Wx að Þ I I x�lxð Þ�hx� ỸY I Y
�1
B I h


 �
x

� �
: ðB:6Þ
In the case of unequal class variances it is not feasible to

implement, in this style, an exact estimator that has spatial

stationarity, however, it has proven to be a useful approximation

in such applications.

We now define the weighted residual for the simplified case as

R̄ðxÞ �
X
a

Wx að Þ I I x � lað Þ ðB:7Þ

and denote with I the identity matrix. Thus, Eq. (B.6) becomes

hþ ỸY � Y
�1
B I h ¼ R̄:

(‘ is the Kronecker product) and the solution for h is defined as

h ¼ I þ ỸY � Y
�1
B

� 	�1
I R̄:

Within the EM iterations, the residual R̄̄ represents an

estimate of the image inhomogeneities that is based on the

current results of the E-Step as captured by the weights W. One

important characteristic of image inhomogeneities is that they

are slowly varying functions of space. R̄̄, however, is corrupted

by the white noise in the image and therefore does not share

this property. Consequently, one may view (I + Ỹ � Y B
�1)�1 as

acting like a low pass filter in order for hV to have the properties

of an image inhomogeneity field. We characterize such a filter

by the following properties of its frequency response (the

Fourier transform of its impulse response): it has value one at

spatial frequency zero and the magnitude decreases as the

frequency moves away from zero (a unity DC gain low pass

filter).

We now analyze the impact of this characterization on our

statistical model. We focus on the prior probability P(h).
First, we assume that Ỹ = c I I to simplify the analysis. Let

H � (I + c I Y B
�1)�1, then Y B

�1 � 1
c (H

�1 � I). Thus, the

prior probability is approximated by

P hð Þ ¼ 1

Z
I e�

1
2
h t
Y
�1
B h ,

1

Z
I e�

1
2
h t 1

c
H�1 � Ið Þh:

If, as suggested above, we choose a unity DC gain spatial low

pass filter for the linear operator H, then being the inverse of the

low pass filter, H�1 is a filter with response one at spatial

frequency zero and increasing magnitudes as the frequency

moves away from zero. Thus, (H�1 � I) is a high pass filter

with response zero at frequency zero and increasing values for

frequencies away from zero. Bearing these properties of the

implied inverse covariance in mind, we can see that the implied

prior on bias fields, P(h), assigns the highest probability to

constant bias fields (the exponent will be zero), relatively large

values to h with low spatial frequency components and

decreasing probabilities for h with higher spatial frequencies.

Thus, our modeling choices imply a prior model that is consistent

with observed bias fields in that it discourages high frequency

components in the image inhomogeneities. In our experiments we

have used rectangular smoothing filters for H . In some

applications, the filter is applied several times, which approx-

imates Gaussian smoothing.
Appendix C. Supplementary data

Supplementary data associated with this article can be found in

the online version at doi:10.1016/j.neuroimage.2005.11.044.

doi:10.1016/j.neuroimage.2005.11.044
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