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Abstract. The concept of the Logarithm of the Odds (LogOdds) is frequently
used in areas such as artificial neural networks, economics, and biology. Here,
we utilize LogOdds for a shape representation that demonstrates desirable prop-
erties for medical imaging. For example, the representation encodes the shape
of an anatomical structure as well as the variations within that structure. These
variations are embedded in a vector space that relates to a probabilistic model.

We apply our representation to a voxel based segmentation algorithm. We do
so by embedding the manifold of Signed Distance Maps (SDM) into the linear
space of LogOdds. The LogOdds variant is superior to the SDM model in an
experiment segmenting 20 subjects into subcortical structures.

We also use LogOdds in the non-convex interpolation between space condi-
tioned distributions. We apply this model to a longitudinal schizophrenia study
using quadratic splines. The resulting time-continuous simulation of the schizo-
phrenic aging process has a higher accuracy then a model based on convex inter-
polation.

1 Introduction

Statistical shape representation in medical imaging applications is an important and
challenging problem. The challenge arises from a number of issues including the need
for a representation which lends itself to efficient statistical inference while simulta-
neously capturing the intrinsic properties of shapes. Signed distance maps (SDMs) are
a popular shape representation that have recently been utilized in combination with
principal components analysis (PCA) for statistical shape modeling. Examples of such
approaches include [1,2,3,4,5] that, with some variation, essentially treat SDMs as ele-
ments of the vector space R

N (N being the number of voxels), perform PCA over a set
of example SDMs and then fit a statistical model to the resulting PCA coefficients. The
resulting model is then useful for inference in a variety of tasks including segmentation
and longitudinal studies of shape variation. The primary advantage of the approach is
that it projects high-dimensional SDMs into a lower dimensional representation which
lends itself to concise statistical modeling and inference. The utility of such approxi-
mate modeling has been demonstrated successfully in varying degrees. One drawback
of this approach as noted by [5], however, is the implicit approximation of the manifold
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of SDMs as a linear vector space. Consequently, samples or compositions of samples
from the inferred statistical models are in general not valid SDMs. This detail is usually
dealt with by further approximation, necessitating an additional computational step, that
projects samples from the distribution over PCA coefficients back onto the manifold of
shapes. Additionally, like many shape models [6], SDMs do not capture space condi-
tioned probabilities (SCP). SCPs are often used in voxel-based segmentation (such as
[7,8,9,10]) to describe the anatomical variations within a population. Here we suggest
an alternative representation, the log-odds maps (LogOdds), that explicitly addresses
the issues above.

LogOdds maps form a vector space and as such can be composed via linear meth-
ods while simultaneously maintaining the intrinsic properties of shapes. This allows for
computationally efficient approaches to modeling and inference without the need for
projecting the representation back onto the manifold of shapes. There is a straightfor-
ward mapping of the LogOdds representation to SCPs as each entry in the LogOdds
representation is the logarithm of the odds over an anatomical label versus the alter-
native. The specific parameterization of LogOdds maps presented here provides a no-
tion of certainty about the boundary of the inferred shape. Thus, LogOdds not only
describe the shape of a single structure but also capture some aspects of variations
within a structure across populations and expert segmentations. SDMs can be used
directly as LogOdds maps, consequently no additional computational burden is in-
curred by their use. For example, entries with zero correspond to the boundary of the
structure under either interpretation. The computational burden of mathematical op-
erations over SCPs is reduced by performing them in the vector space of LogOdds.
Arsigny et al. [11] have made the same observation with respect to using the log-
arithm on tensor data, although the logarithms of tensor data are not comparable to
LogOdds.

In Section 2, we review and establish some of the relevant properties of LogOdds
maps. We also provide a probabilistic interpretation for mathematical operations of the
vector space. In Section 3, we demonstrate the utility of LogOdds in two experiments.
In the first experiment, a Bayesian classifier [12] segments 20 sets of MR images into
subcortical structures. Each subject is automatically segmented using the deformable
atlas based on both SDMs and the LogOdds representation, and the results are com-
pared. The second experiment is based on a longitudinal schizophrenia study in which
an atlas represents the aging process of that population. The atlas is comprised of three
SCPs representing different time points in the development of the population. We gen-
erate a non-convex interpolation between the three time points within the space of
LogOdds with superior results to a convex interpolation within the original space of
SCPs.

2 LogOdds and Its Properties

In this section we review some properties of LogOdds representations. In so doing,
we focus on the use of the LogOdds for statistical inference over shapes. Specifically,
we establish mappings between various representations and the means by which one
performs probabilistic computations on LogOdds representations.
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(a) Binary Map (b) SDM D (c) SCP of D

Fig. 1. The binary map of the circle in (a) corresponds to the SDM D in (b). In D , positive values
(bright) define the circle, while negative values (dark) represent the background. Panel (c) shows
the corresponding SCP. Voxels inside the circle have probabilities greater 0.5.

2.1 An Introduction to LogOdds

The LogOdds of a probability p ∈ P � {p|p ∈ [0,1], i.e. p is a probability} is the loga-
rithm of the odds between the probability p and its complement p̄ = 1− p:

logit(p) � log

(
p

1− p

)
= log p− log(1− p).

In the classification problem of medical images, for example, p is the probability that
a voxel is assigned to a particular anatomical structure, while the complement p̄ is
the probability of assignment to any other structure. The function logit(p) is simply
the logarithm of their ratio. The LogOdds space is defined as L � {logit(p)|p ∈ P}.
Consequently, L = R and L

n defines a vector space through its equivalence to R
n. The

inverse of the log odds function logit(·) is the standard logistic function

P (t) � 1
1 + e−t .

P (·) maps each element t ∈ L to a unique probability p ∈ P, thus, the function logit(·)
and its inverse comprise a homomorphism between P and L. Again, the equivalence of
L

n to P
n is straightforward when P (·) is applied element-wise to L

n.
SDMs are elements of L

n. The value of the SDM [D]x at a voxel x is the distance
from x to the closest point on the boundary. Figure 1(b) shows an example of a SDM
corresponding to the binary map in Figure 1(a). It can be shown that any monotonic
transformation V (·) of D is in L

n. An obvious choice is the identity transformation
[V (D)]x � [D]x. In the LogOdds space, [D]x is a representation for the probability
px � P ([D]x) ∈ P that voxel x is assigned to the foreground. The corresponding vector
p � (p1, . . . , pn) therefore comprises a SCP of the foreground, where n is the number
of voxels in the image. The relationship between SDMs and SCPs define a meaning-
ful probabilistic model. The foreground is represented by the positive values of SDM
corresponding to probabilities greater 0.5 in the SCP (see Figure 1 (c)). Conversely,
negative values of the SDM define the background, which maps to probabilities less
than 0.5.
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2.2 The Relationship Between LogOdds and SCPs

We now make use of the Euclidean space L
n to induce a vector space on P

n. This results
in a probabilistic model for addition and scalar multiplication in the log odds space L

n.
The derivations are performed with respect to L,P for simplicity. It is easily extend to
L

n,Pn by performing the operations individually for each vector entry.

Addition in P : Based on the relationship between P and L, the probabilistic addition
⊕ of p1, p2 ∈ P is equivalent to the logistic function of the addition of the logarithm of
odds logit(p1) and logit(p2):

p1 ⊕ p2 � P (logit(p1)+ logit(p2)) =
p1 · p2

p1 · p2 +(1− p1)(1− p2)
(1)

As P is closed under ⊕, (P,⊕) forms an Abelian group with 0.5 as the neutral element
and (1− p) the additive inverse of the element p. The complement of p1 ⊕ p2 is the
probabilistic addition of the complements of p1 and p2, that is

1− p1⊕ p2 =
(1− p1) · (1− p2)

p1 · p2 +(1− p1)(1− p2)
= (1− p1)⊕ (1− p2)

Using suitably normalized likelihoods, the composition is equivalent to Bayes’ rule.
Let the prior of the random variable X be p1 � P(X) = 1−P(X̄) and the corresponding

normalized likelihood be p2 � P(A|X)
P(A|X)+P(A|X̄) = 1− P(A|X̄)

P(A|X)+P(A|X̄) , then

p1 ⊕ p2 =
P(X) P(A|X)

P(A|X)+P(A|X̄)

P(X) P(A|X)
P(A|X)+P(A|X̄) + P(X̄) P(A|X̄)

P(A|X)+P(A|X̄)

=
P(A|X)P(X)

P(A)
= P(X |A)

Scalar Multiplication in P : The probabilistic scalar multiplication � within the space
of P is equivalent to scalar multiplication, ∗, in the vector space L. Similar to ⊕, the
multiplication between the scalar α ∈ R and probability p ∈ P is the logistic function
of the product between α and the LogOdds logit(p)

α� p � P (α∗ logit(p)) =
1

1 + e−α·log( p
1−p )

=
1

1 +
(

1−p
p

)α =
pα

pα +(1− p)α

(P,⊕,�) defines a vector space, which is equivalent to (L,+,∗). The complement of
the probabilistic scalar multiplication α� p is equivalent to the scalar multiplication of
the complement or negating α:

1−α� p =1− pα

pα +(1− p)α =
(1− p)α

pα +(1− p)α =α�(1− p)=
1

1 +
(

1−p
p

)−α =−α� p

Figure 2(a) shows the influence of α on α� p. Changing α has the effect of increas-
ing (α > 1) or decreasing (α < 1) the certainty of the boundary of a SCP. Probabilistic
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α
�

p

p

αl � SCPl ⊕ αr � SCPr = SCPres

αl < αr ⊕ =

αl > αr ⊕ =

(a) (b)

Fig. 2. (a) the effect of α on α� p. (b) Resulting SCP SCPres from combining 2 SCPs of circles
(SCPl and SCPr) with different centers, radii, and α values.

addition and scalar multiplication are illustrated in Figure 2 (b) using a synthetic shape
description example. The figure depicts level sets of SCPl,SCPr ∈ P

n that describe cir-
cles which differ in their means, radii, and boundary certainty (as captured by αl,αr).
Figure 2 (b) shows how α effect the composition of the maps via the ⊕ operator. In
the first row of Figure 2(b) αl = 20 (left circle) and αr = 30 (right circle). The distance
between the level sets are seen to be closer for the right circle. Additionally, the compo-
sition of SCPs using ⊕ results in a combined SCP, which is biased towards the circle on
the right. In the second row of Figure 2(b) the values of αl and αr are reversed resulting
in a bias towards the circle on the left. Despite having different radii, if αl = αr the level
sets of the combined SCP are ellipses, although the foci of the ellipse will depend on
the relative radii.

In summary, we discussed basic properties of the vector space of log-odds L
n relating

them to the vector space of probabilities P
n via the logistic function. This provided a

probabilistic interpretation of scalar multiplication and vector addition in L
n. We used

LogOdds to describe binary maps of shapes. We note that the representation can be
extended to multiple label maps.

3 Applications in Medical Imaging

We now apply LogOdds to two relevant applications in medical imaging. The first ex-
periment measures the robustness of a shape based segmentation algorithm. In the sec-
ond experiment, we build a temporal interpolation function from data of a longitudinal
study. Both examples are based on MR images acquired by a 1.5-T MRI system (GE
Medical System, three-dimensional Fourier transformation spoiled gradient-recalled
acquisition, matrix=256×256×124, voxel dimension=0.9375×0.9375×1.5mm).

3.1 The Accuracy of a Segmenter with Respect to the Deformable Shape Atlas

We investigate the impact of our shape representation on the accuracy of a voxel-based
segmenter [12]. The algorithm is guided by a deformable shape atlas that represents
shape variation by PCA on SDMs. We analyze two implementations of the algorithm,
which differ in the interpretation of the maps D generated by the PCA atlas.
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Front Side Test Results

Fig. 3. Different views of a 3D model of the thalamus (gray), the caudate (black), and the ven-
tricles (light gray). The model is based on a segmentation generated by IMPL-P . The graph to
the right summarizes the results of our experiment. For both structures IMPL-P performs much
better then IMPL-H .

The first implementation (IMPL-H ) views D as level set functions in a higher di-
mensional space. Each entry [D]a,x of the SDM assigns the voxel x to the inside or
outside of a structure a using the Heaviside function H (·). H (v) is one if v ≥ 0 and

zero otherwise. A natural definition of the SCP is [SCPH ]a,x � H ([D]a,x)
∑a′ H ([D]a′,x)

, where

∑a′ H ([D]a′,x)) is the sum over all structures. In general, [SCPH ]a corresponds to a
SCP with a steep slope along the structure’s boundary. Thus, the algorithm segments
the structure according to [SCPH ]a, which only allows shapes within the PCA subspace.

The second implementation (IMPL-P ) interprets the maps D as a vector of LogOdds
L

n. According to Section 2, the logistic function P ([D]a,x) defines the probability that
voxel x is assigned to structure a. This approach is extended to multiple structures by

defining the SCP as [SCPP ]a,x � P ([D]a,x)
∑a′ P ([D]a′,x)

. [SCPP ]a is characterized by a gradual slope

along the boundary of the structure. This provides the algorithm with some flexibility
in determining the course of the contour – it allows the image evidence to nudge the
resulting shape somewhat away from the PCA subspace.

Both variations were used to segment 20 test cases into ventricles (light gray), the
thalamus (gray), and caudate (black) (see Figure 3). Afterward, we compare the auto-
matic segmentations of the thalamus and caudate to the manual segmentations via the
Dice metric [13]. We focus on these two structures as they are characterized by dif-
ferent types of shapes (see Figure 3) and are partly invisible on MR images. Thus, the
accuracy of the implementations is highly impacted by the shape model.

The graph in Figure 3 shows the result of the experiment for IMPL-H (thalamus:
85.3 ±1.2% , caudate: 74.3 ±1.6%; mean DICE score ± standard error) and IMPL-P
(thalamus: 88.4 ±1.0%, caudate: 84.9 ±0.8%). For both structures, IMPL-P achieves
a much higher average score than IMPL-H . In addition, the segmentation results of
IMPL-P are characterized by low standard error (in comparison to IMPL-H ) indicat-
ing high predictive power of the segmentation results. The differing accuracy of the
implementations is mostly due to the different interpretations of the information in the
shape atlas. The atlas underrepresents the shape variations within a population due to
the limited amount of training data. The probabilistic model of IMPL-P addresses this
issue by providing flexibility around the boundary, while IMPL-H in constrained to the
limited-dimension PCA subspace.
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This shortcoming of the atlas only slightly impacts the segmentation of the thalamus
due its low shape variations within the healthy population. The bending of the horn
shaped caudate, however, can vary substantially among subjects. This may explain the
much lower score of IMPL-H in comparison to IMPL-P in case of this structure. We
note that the input for the PCA was restricted to SDMs, a particular choice LogOdds
function. The impact of different LogOdds classes on the segmentations would be in-
teresting but outside the scope of this paper.

3.2 Defining an Interpolation Function from Time-Related Data Samples

Neuroscientists carry out longitudinal studies to better understand the aging process of a
population. These studies are often defined by a set of subjects which have been scanned
repeatedly at specific time points. The variations of the population at a specific point in
time can be captured via SCPs. In this section, we explore the interpolation between the
SCPs within the space of LogOdds, which results in continuous time atlases.

This experiment is based on a longitudinal data set consisting of eight Schizophrenic
patients. Each patient was scanned three times with an average 14 month separation
between first and second scan, and 23 month separation between the second and third
scan. We generate the SCPs of each time point by first aligning the 24 MR images
towards their central tendency using the population registration method by Zöllei et
al. [14]. Afterward, we segment each aligned MR image into three brain tissue classes
using Pohl et al. [15]. We then compute the SCP of an anatomical structure and time
point based on the eight corresponding segmentations.

We can interpolate among atlases in either SCP or LogOdds space, however, with
SCPs, to remain valid, we are limited to using convex combinations (CC), while we
may use the broader class of linear combinations in the LogOdds vector space. In the
following we will compare two temporal interpolation methods that are suited to the
analysis of a small number of time points. One uses linear CCs of SCP, while the other
uses a quadratic spline interpolation (that is not a CC) of LogOdds. It maps the SCPs
to LogOdds’ space via the logistic function, applies the quadratic spline function and
transfers the interpolated function back into the space of SCPs.

The first row of Figure 4 shows sample slices of the quadratic spline interpolation
of the SCPs of gray matter. Bright indicates high and dark low probability of the gray
matter. An area of particular interest is the region around the thalamus (in the center of
the image) as the corresponding SCP changes substantially throughout the scans.

The second row of Figure 4 shows a magnified version of the SCP of the thalamus re-
gion (a), and the corresponding CC (b)+(d) and quadratic spline interpolations (c)+(d).
In the graphs, the z-axis symbolizes the probability, the x-axis is the time axis, and the
y-axis represents the row of voxels highlighted by the black line in Figure 4 (a).

The graph of Figure 4 (b) is the CC of the SCPs from the three time points. The
smoother interpolation in Figure 4 (c) is generated from quadratic splines within the
LogOdds space. Unlike (b), this interpolation is differentiable over time.

In order to compare the accuracy of the interpolations, we repeat the experiment
but now compute both functions just on the basis of the first and third scan. Samples
of the results are shown the graphs of Figure 4(d)+(e). We then calculate the sum of
squared errors of the two interpolations by comparing them to the SCP of the second
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(a) (b) (c) (d) (e)

Fig. 4. The first row shows a sample slice of the quadratic spline interpolation of a longitudinal
schizophrenia study. Each image represents an SCP of the gray matter at a specific point in time
of the study. Bright indicates high and dark low probability of the gray matter. The second row
shows the SCP of the thalamus (a) with black indicating the voxels that are interpolated over
three time point in (b)+(c) and two time points in (d) +(e). Graph (b)+(d) were produce by convex
interpolation, while the smoother quadratic spline interpolation is representation (c)+(e).

scan. The quadratic spline interpolation achieves a 2% lower error for the gray matter
and 5% lower error for the white matter in comparison to the CC. The quadratic spline
interpolation may achieve this higher accuracy because it is smoother.

In this section, we applied our representation to the automatic segmentation of MR
images as well as the interpolation of longitudinal data sets. We note that LogOdds
maps can be used for a variety of other problems in medical imaging. For example, we
have found the representation very helpful for capturing the variations between expert
segmentations, though we do not discuss this topic here due to space limitations.

4 Conclusion

We presented a new shape representation called LogOdds. The representation can en-
code a single shape as well as its variations. A generalization of distance maps, this
representation defines a vector space with a probabilistic interpretation.

We evaluate LogOdds within a voxel based segmentation algorithm. 20 subjects are
automatically segmented into subcortical structures using the LogOdds and signed dis-
tance map model. The algorithm performs best with our new shape representation as
LogOdds better capture the boundary constraints of anatomical structures.

In a second experiment, we use quadratic splines to interpolate SCPs from a lon-
gitudinal schizophrenia study. The splines are computed within the LogOdds space to
simplify the calculations. We show that this models achieves a higher accuracy than the
convex combination of SCPs in the original space.
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