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Abstract

The logarithm of the odds ratio (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology, as an
alternative representation of probabilities. Here, we use LogOdds to place probabilistic atlases in a linear vector space. This represen-
tation has several useful properties for medical imaging. For example, it not only encodes the shape of multiple anatomical structures
but also captures some information concerning uncertainty. We demonstrate that the resulting vector space operations of addition and
scalar multiplication have natural probabilistic interpretations.

We discuss several examples for placing label maps into the space of LogOdds. First, we relate signed distance maps, a widely used
implicit shape representation, to LogOdds and compare it to an alternative that is based on smoothing by spatial Gaussians. We find that
the LogOdds approach better preserves shapes in a complex multiple object setting. In the second example, we capture the uncertainty of
boundary locations by mapping multiple label maps of the same object into the LogOdds space. Third, we define a framework for non-
convex interpolations among atlases that capture different time points in the aging process of a population.

We evaluate the accuracy of our representation by generating a deformable shape atlas that captures the variations of anatomical
shapes across a population. The deformable atlas is the result of a principal component analysis within the LogOdds space. This atlas
is integrated into an existing segmentation approach for MR images. We compare the performance of the resulting implementation in
segmenting 20 test cases to a similar approach that uses a more standard shape model that is based on signed distance maps. On this data
set, the Bayesian classification model with our new representation outperformed the other approaches in segmenting subcortical
structures.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical shape representation in medical imaging appli-
cations is an important and challenging problem. Many
anatomical structures, such as the right superior temporal
gyrus shown in Fig. 1, have ambiguous boundaries in MR
images as their intensity profiles are nearly indistinguishable
from their neighbors. This causes variations among expert
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Fig. 1. The MR image on the top shows the right superior temporal gyrus. The corresponding segmentations by six experts (A–F) are shown below.
Significant difference between the segmentations are visible. The third row shows the corresponding signed distance maps that can capture the boundary of
each segmentation but not the uncertainty about the boundary location across the raters.
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segmentations of the same structure (Fig. 1, second row).
Capturing the intrinsic properties of the shape in this con-
text is difficult, as flexible and efficient statistical models
are needed to represent both the properties of the shape
and its variability.

The approaches to shape representation in this context
may be broadly categorized as explicit or implicit. In an
explicit framework, the shape is represented by a set of,
usually connected, primitives (e.g., points, triangles, medial
nodes) that model the object. The model is then augmented
with statistical information capturing the variability of
shapes within a class or population. This approach has
been used in many applications, including point distribu-
tion models (Bookstein, 1996), active shape models (Cootes
et al., 1994), medial representations (Styner et al., 2004;
Pizer et al., 2003), or spherical harmonics (Brechbühler
et al., 1995). The explicit approach directly represents the
surface of the shape, however, implementations may
require significant application-specific attention, for exam-
ple to generate suitable meshes for representing an object.

In the implicit category, level set functions are used to
model anatomical structures. For example, Signed Dis-
tance Maps (SDMs) represent shape by defining the
boundary as a zero-level set and the values of the remain-
ing voxels by their shortest (usually Euclidean) distance to
the boundary (Leventon, 2000; Tsai et al., 2003; Yang
et al., 2004; Pohl et al., 2006; Golland et al., 2005; Kohlber-
ger et al., 2006). The representation is simple to implement,
and to some extent, obviates the need for establishing cor-
respondences among objects, though the density of the rep-
resentation may incur additional computational burden.

A single SDM for an object, however, does not encode
variability such as segmentation disagreements among
experts. A popular solution is to perform Principal Com-
ponents Analysis (PCA) over a set of example SDMs and
then fit a statistical model to the resulting PCA coefficients
(Cootes et al., 1998). The resulting model can be used in a
variety of tasks including segmentation (Leventon, 2000;
Tsai et al., 2003; Yang et al., 2004), or longitudinal studies
of shape variation (Kohlberger et al., 2006). The primary
advantage of the approach is that it projects high-dimen-
sional SDMs into a lower-dimensional representation that
provides efficient statistical modeling and inference. One
major drawback of this approach as noted by Golland
et al. (2005) is that it is not obvious how to impose a vector
space structure on SDMs (i.e. defining vector operations
that are closed under the set of SDMs). For example, if
we interpret SDMs as vectors of real numbers then the
addition of two SDMs generally does not lead to an
SDM. This is usually dealt with by projecting samples from
the distribution given by the PCA coefficients back onto
the manifold of valid SDMs (Golland et al., 2005).

In this paper, we present a new shape representation,
called LogOdds, that embeds SDMs in a vector space
and relates them to Probabilistic Atlases (PA) that define
a probability of a label being present throughout the image
domain. For the probability p of a binary variable, the
LogOdds (also called logit) is the logarithm of the ratio
between the probability p and its complement 1 � p. It is
a well established technique in areas such as neural net-
works (Minsky and Papert, 1988), economics (McFadden,
1973), and logistic regression (Giudici, 2003).

We relate LogOdds to the certainty of objects’ bound-
aries in images. Like SDMs, LogOdds encode the bound-
ary of the shape via a zero-level set that now represents
the set of voxels with the highest uncertainty of being
assigned to fore- or background. Unlike SDMs, the rest
of the space is defined by the logarithm of the odds of a



1 Note, that for M ¼ 2;Pð�Þ is also called the Sigmoid function.
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structure to be present at that location under the assump-
tion that voxels in an image are independently distributed.
This relationship with the odds of the presence of an ana-
tomical label provides a natural way to capture boundary
uncertainty. Importantly, the space of LogOdds is closed
under addition and scalar multiplication, and as such, it
can be used for efficient and straightforward statistical
modeling and inference of shape.

We note that a variety of models in medical imaging
depend on the logarithm transformations, such as the sca-
lar logarithm on the determinants of deformation tensors
(Ashburner and Friston, 2000), and the matrix logarithm
on tensors (Arsigny et al., 2007). Our work was inspired
by these approaches, although, to our knowledge, it is
the first time LogOdds are utilized in the context of shape
description.

This article is organized as follows: in Section 2, we
provide the mathematical definition and properties of
LogOdds, as well as their relationship with PA. In Section
3, we discuss examples for mapping label maps into the
LogOdds space. First, we show how a single label map
can be transformed into a LogOdds representation. Sec-
ond, we show how the uncertainty associated with manual
tracings can be captured in the LogOdds space. Third, we
show how the vector space properties of LogOdds can be
used to create a continuous PA of an aging brain. In
Section 4, we incorporate our new shape model into an
Expectation-Maximization (EM) segmentation algorithm
(Wells et al., 1996). The shape model is obtained by per-
forming PCA on LogOdds maps of manually-segmented
structures of the brain. At this point we assume that the
trainings set consists of aligned segmentations so that
PCA captures the variability within the label maps after
alignment. Twenty subjects are segmented using our Log-
Odds shape model, an SDM based shape model and a
precomputed PA as suggested by Van Leemput et al.
(1999), Pohl et al. (2004). The quality of each segmenta-
tion technique is evaluated against manual segmentations
by human experts. Overall, the LogOdds shape model
helps to achieve higher accuracy than the other two
representations.

2. LogOdds and its properties

In this section we review important properties of the
(multinomial) LogOdds representation. Medical imaging
often makes use of PA of anatomical structures using dis-
crete distributions. Discrete distributions are defined with
respect to random variables that take on several discrete
values. Unfortunately, these discrete distributions are diffi-
cult to combine (e.g. to create statistical models) as the
space of discrete distributions is not closed under addition
and scalar multiplications. One can, however, establish a
one-to-one mapping between these distributions and the
space of LogOdds, which is a vector space. One can thus
perform standard arithmetic or statistics in this space and
map the results back into the space of discrete distribu-
tions. The next few sections explain how this mapping is
defined. Moreover, we show how one can define probabilis-

tic addition and scalar multiplication operators that induce a
useful vector space structure on discrete distributions.

2.1. An introduction to LogOdds

LogOdds are an example of a class of functions that
map the space of discrete distributions (Kendall and Buck-
land, 1976) to Euclidean space. Let PM be the open prob-
ability simplex (the space of discrete distributions) for M

labels:

PM , p j p ¼ ðp1; . . . ; pMÞ 2 ð0; 1Þ
M ^

X
i¼1;...;M

pi ¼ 1

( )

¼ p j p ¼ p1; . . . ; pM�1; 1�
X

i¼1;...;M�1

pi

 !
2 ð0; 1ÞM

( )
:

Note that PM is an M � 1 dimensional space as the Mth
entry can be computed from the first M � 1 entries. Fur-
thermore, the space is open avoiding the degenerative dis-
tributions that are certain about the assignments. For the
specific case of M ¼ 2;P2 is the Bernoulli distribution
P , f p j p 2 ð0; 1Þg (Evans et al., 2000). Many binary clas-
sification problems use the Bernoulli distribution where p
represents the probability that a voxel belongs to a partic-
ular anatomical structure and its complement �p ¼ 1� p the
probability of the voxel being in the background.

The multinomial LogOdds function logitð�Þ : PM ! RM�1

of a discrete distribution p 2 PM is defined as the logarithm
of the ratio between the i-th and last entry of p:

½logitðpÞ�i , log
pi

pM

� �
;

with i 2 {1, . . . ,M � 1}. For the Bernoulli distribution, this
function simplifies to the logarithm of the ratio between the
probability p and its complement:

logitðpÞ , log
p

1� p

� �
¼ log p � logð1� pÞ:

The inverse of the log odds function logit(Æ) is the gener-
alized logistic function1

PðtÞ½ �i ,
eti

Z ; for i 2 f1; . . . ;M � 1g
1
Z ; if i ¼ M

(
;

where Z , 1þ
P

j¼1;...;M�1etj is the normalization factor.
Let LM�1 be the M � 1 dimensional space of LogOdds

induced from PM :

LM�1 , flogitðpÞjp 2 PMg:
We note that LM�1 is equivalent to a (M � 1)D real vec-

tor space and is thus a vector space.



Fig. 2. Displaying the impact of a 2 R on the results of the probabilistic

scalar multiplication ~ with a PA. The first row shows a 2D PA. The result
of the operation with a = 0.5 and a = 2 are shown in the second row.
When a is small the slope of the PA is gentle, indicating higher uncertainty
of the boundary location as also shown by the graph of the corresponding
entropy in the third row. When a is large the slope steepens and the
entropy is characterized by a thinner ridge.
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2.2. The relationship between LogOdds and PA

The function logit(Æ) and its inverse comprise a homeo-
morphism between PM and LM�1 so that we can borrow
the vector space structure on LM�1 to induce one on PM .

2.2.1. Addition in PM

The probabilistic addition p1 ¯ p2 in PM is constructed by
mapping p1 and p2 into the LogOdds space, performing the
addition between logit(p1) and logit(p2), and then mapping
the result back into the PM via the logistic function. We
can show that this operation is equivalent to a normalized
multiplication of two discrete probabilities within PM :

p1 � p2 , Pðlogitðp1Þ þ logitðp2ÞÞ

¼ 1P
i¼1;...;M

p1i
� p2i

p11
� p21

; . . . ; p1M
� p2M

� �
: ð1Þ

Note that probabilistic addition ¯ is closed in PM so that
(PM ;�Þ forms an Abelian group with the zero element
being the uniform distribution ð 1

M ; . . . ; 1
MÞ. The additive

inverse of a discrete probability p 2 PM is its complement

�p, defined as ½�p�i ,
1
½p�iP

j¼1;...;M
1
½p�j

, for all i 2 {1, . . . ,M}.

We end this section by discussing the relationship
between probabilistic addition and Bayes’ rule. Bayes’ rule
may be written as follows:

P ðA ¼ ijBÞ ¼ LðA ¼ ijBÞP ðA ¼ iÞP
j¼1;...;M

LðA ¼ jjBÞPðA ¼ jÞ ;

where L(A = ijB) , P(BjA = i) is the likelihood of the obser-
vations conditioned on the data. When viewed as a function
of i, this is probably not a probability, because, for example,
it may not integrate to one. We can, if we choose, normalize
the likelihood via Z ,

P
j¼1;...;M L ðA ¼ jjBÞ so that it does

integrate to one, and this does not change the resulting pos-
terior probability. In this case we may use the result of
Eq. (1) to carry out the arithmetic of Bayes’ rule as

LðAjBÞ
Z
� P ðAÞ

� �
i

¼
P ðA ¼ iÞ � P ðBjA¼iÞ

ZP
k¼1;...;M

PðA ¼ kÞ � PðBjA¼kÞ
Z

¼ P ðA ¼ ijBÞP
k¼1;...;M

PðA ¼ kjBÞ ¼ P ðA ¼ ijBÞ:

To summarize, we may obtain the LogOdds of the pos-
terior probability of a label, given an image, by adding the
LogOdds of a label-wise prior to the LogOdds of the nor-
malized likelihood.

2.2.2. Scalar multiplication in PM

To induce a vector space structure on PM , we also need
to define a scalar multiplication operator. As with the
probabilistic addition, the probabilistic scalar multiplication

a~p in Pn
M is defined as the logistic function of the product

between a and the LogOdds logit(p):
a~p , Pða � logitðpÞÞ ¼ 1P
i¼1;...;M

pa
i
ðpa

1; . . . ; pa
MÞ:

It can be shown that this is equivalent to exponentiating
the discrete distribution with a and normalizing it. The
technique of exponentiating and normalizing probabilities
is frequently used in areas such as Markov Random fields
(Besag, 1986). We now have constructed the vector space
(PM ;�;~) with the identity element of the scalar multipli-
cation being 1, the complement of p is defined as
�p ¼ �1~p. By construction, this vector space is equivalent
to (LM�1;þ; �).

Fig. 2 shows the effect of probabilistic scalar multiplica-

tion on a typical PA used in imaging. A PA captures the
probability of a label being present at voxels throughout
the image domain (assuming voxels are independently dis-
tributed). In Fig. 2, the PA A 2 Pn represents a circle with
uncertainty associated with its boundary and the actual
contour composed of the voxels x with Ax = 0.5. When this
atlas is multiplied by a, the slope of the PA in the region of
the boundary is changed (see Fig. 2 second row). When the
absolute value of a is greater than 1, the slope gets steeper,
but it gets smoother when jaj < 1. The steepness of the
slope also corresponds to the certainty within the boundary
location as shown by the local Entropy (Shannon, 1948)
plots of Fig. 2. Thus, a can be used to control the certainty
of a location of a boundary.



2 For the binary maps, we focused on the PAs of the foreground as the
PAs of the background are simply their complement.
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This completes our discussion on how the homeomor-
phism between LogOdds Ln

M�1 and discrete distributions
Pn

M induces a vector space structure on Pn
M . Probabilistic

addition and scalar multiplication operators can be defined
and used to perform statistical computations in Pn

M . We
note that any other invertible function from Pn

M to
Rðm�1Þ�n could have been used to induce a vector space
structure on Pn

M . However, if we use the logit-function,
the vector operations have a particularly useful meaning.
Probabilistic addition closely relates to Bayes’ rule, and
the scalar multiplication corresponds to the certainty of
boundary locations in a PA.

3. Representing shapes via LogOdds

We now apply the LogOdds technique to represent
shapes given: a single label map, a set of label maps of
the same structure traced by different experts, and a set
of label maps of an aging population. First, we interpret
SDMs, a frequently used implicit shape representation in
medical imaging, as an element of the LogOdds space. This
allows us to transform SDMs to PAs through the general-
ized logistic function Pð�Þ. We also present an alternative
approach consisting of first creating a PA via Gaussian
smoothing and then transforming it into a LogOdds
through logit(Æ). These representations are quite similar in
the case of a simple Bernoulli distribution, but interesting
differences can be observed in more complex discrete distri-
butions. Then, we encode a set of expert segmentations of
anatomical structures and their uncertainty within Log-
Odds maps. The final example involves the interpolation
of longitudinal data capturing the progression of schizo-
phrenia in eight patients.

In the remainder of this article, we use data provided by
the Psychiatry Neuroimaging Laboratory, Brigham and
Women’s Hospital, Harvard. MR images are acquired
with a 1.5-T General Electric scanner (GE Medical Systems,
Milwaukee) and a contiguous spoiled gradient-recalled pulse
sequence (repetition time = 35 ms, echo time = 5 ms, one
repetition, 45� nutation angle, 24-cm field of view, number
of excitations = 1, matrix = 256 · 256 [192 phase-encoding
steps] · 124). Voxels were 0.9375 · 0.9375 · 1.5 mm. Data
are formatted in the coronal plane and analyzed as 124
coronal 1.5-mm-thick slices.

We use the following mathematical conventions
throughout this article:

– The 3D image domain is composed of n voxels with index
1 to n. The index of a voxel represents the order in which
it appears by stacking the columns of the image domain
on top of each other (such as Tsai et al., 2001). A volume
X over the image domain is therefore seen as an n-dimen-
sional vector, where Xj denotes the jth vector entry of X.

– X(i) represents a vector that is linked to the specific
instance i. For example, if X , {X(A), . . . ,X(F)} is a set
of segmentations generated by experts A to F then
X(C) corresponds to the segmentation of expert C.
– Bn
M , f1; . . . ;Mgn is the space of label maps with M

labels.
– Ln

M�1 represents the corresponding LogOdds space that
captures the shapes of the label maps. Elements of
Ln

M�1 are called LogOdds maps.
– Pn

M represents the space of PAs (Probabilistic Atlases)
that define a probability of a label being present
throughout the image domain. This space assumes that
the voxels of the image domain are independently dis-
tributed in Pn

M .

3.1. Signed distance maps, LogOdds and probabilistic atlases

LogOdds maps in Ln
1 define the boundary of a shape as a

zero-level set function. One subset of maps in Ln
1 are SDMs

that also conform to the Eikonal equation (Rauch, 1991)
with uniform speed. Thus, SDMs can always be interpreted
as LogOdds maps, but the reverse is in general not true. The
corresponding signed distance map transformation
Dð�Þ : Bn

2 ! Ln
1 can be seen as a direct mapping between bin-

ary maps and the LogOdds space. Transformed to Pn
2, these

maps define probabilistic atlases, where voxels inside the
object are represented by probabilities higher than 0.5 for
the foreground and voxels outside with probabilities higher
than 0.5 for the background. In the case of discrete data, the
mapping DM�1 : Bn

M ! Ln
M�1 is defined by combining a set

of SDMs into a vector DM�1ðBÞ ¼ ðDðB1Þ; . . . ;DðBM�1ÞÞ,
where Bj 2 Bn

2 is the binary map corresponding to label j

in B. This mapping is illustrated for a few label maps in
the second row of Fig. 3. Within the LogOdds space, SDMs
not only represent shapes but also define a set of PAs in Pn

M

(see middle row2 of Fig. 4), which are generated via the gen-
eralized logistic function Pð�Þ. These PAs characterize the
inside of an object with higher probabilities than voxels out-
side the object.

The proper choice of PAs depends on the application.
For example, one can generate PAs directly via Gaussian
smoothing of each binary map Bj. This results in maps with
values between zero and one. We then have to normalize
the resulting maps to create a discrete distribution map,
called GAUSS, that sums to one at each voxel location.
An example of such a PA is shown in the last row of
Fig. 4, where we used a Gaussian filter of standard devia-
tion 10. The corresponding LogOdds (last row of Fig. 3)
are generated via the logarithm of odds function logit(Æ).

In the case of Bernoulli distributions, these representa-
tions are very similar (first two columns of Figs. 3 and
4). However, once we turn to discrete distributions, stron-
ger differences appear. The PAs generated from SDMs
show distortions at the interface between the two circles
(see second row of Fig. 4 (Light Gray and Dark Gray)).
These distortions decrease when the distance between the
two objects increases. This suggests that SDMs may not



Fig. 3. The first row shows two binary maps and a multicategorical label map. The corresponding SDMs are shown in the second row. The contours nicely
preserve the original shape. The third row shows the LogOdds map defined by the logit function of the Gaussian smoothed binary maps (GAUSS) (see
third row of Fig. 4). These maps are very similar to the SDMs for the binary maps. For the label map of the two circles (Light Gray and Dark Gray),
however, the corresponding contours of the LogOdds maps are influenced by the neighboring circle.

Fig. 4. The first row shows the binary and label maps of Fig. 3. The second and third rows are the PAs generated from the SDMs in Fig. 3 (second row)
and the PA defined by Gaussian smoothing of the binary maps (GAUSS). While the contours of GAUSS preserve the original shape, the PAs generated
from SDMs do not for the label map of the two circles (Light Gray and Dark Gray). Thus, in this example, SDMs are not well suited for capturing
uncertainty about boundary location.
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be the best LogOdds representation of discrete data for
representing close objects. Of note, if linear operations
are performed on the SDMs, the result will be a LogOdds
but likely not an SDM, making its interpretation in terms
of shape difficult. For Gaussian PAs on the other hand,
the two distributions are not impacted by each other
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regardless of distance between the objects or the setting of
the Gaussian filter. Thus, Gaussian PAs seem to better cap-
ture the shape of the two circles (see third row of Fig. 4
(Light Gray and Dark Gray)) as they were directly
designed for the space of discrete probabilities.

The main advantage of the LogOdds framework is that
if one wants to perform standard statistical analysis on
shape, any form of PA can be used, as long as it is made
up of valid discrete distributions.

3.2. Defining rater-specific LogOdds maps

For many anatomical structures, manually tracing its
boundary from an MR image is a serious challenge, as
the MR signal does not provide enough contrast to clearly
see the outline of the structure. This causes variations
among expert segmentations of the same structure (see
Fig. 1). In this section, we show how PAs and thus Log-
Odds can be constructed to capture this variability.

Our representation makes use of the STAPLE algorithm
presented in Warfield et al. (2006). The method takes the
set of binary maps traced by experts and turns them into
SDMs. It then estimates a reference SDM via STAPLE
based on the agreement between the experts’ SDMs. We
compute the performance parameters of each expert E by
calculating the mean, lðEÞ, and the variance, rðEÞ, of the
voxel-wise difference between the SDM of the expert,
DðEÞ, and the reference SDM, DðRÞ. The mean indicates
an overall over- or under-estimation of the size of the struc-
ture by the expert, and the variance captures his ability to
trace consistently. Given this model, the probability of a
distance value DðEÞx at voxel x for expert E is defined by
the Gaussian distribution N ðDðEÞx �DðRÞx � lðEÞ; rðEÞÞ.

Assuming that the voxels in the image are independently
distributed, the probability of a voxel x being inside the
object given DðEÞ, lðEÞ and rðEÞ is then defined as:

P ðDðRÞx P 0jDðEÞx ; lðEÞ; rðEÞÞ

¼
Z

yP0

N DðEÞ � y � lðEÞ; rðEÞ
� �

dy

¼
Z

y6DðEÞx

N ðy � lðEÞ; rðEÞÞdy ¼ U
DðEÞx � lðEÞ

rðEÞ

� �
;

3 2 1 0 1 2 3
0

0.2

0.4

0.6

0.8

1
A (μ:0.134,σ:0.760)
B (μ:0.321,σ:0.688)
C (μ:0.332,σ:0.583)
D (μ:0.825,σ:1.203)
E (μ:0.229,σ:0.383)
F (μ:0.483,σ:0.680)

Fig. 5. The performance of each of the six expert segmentations is represented
step function (shown in light gray). Their corresponding log odds map gener
indicates high certainty that the voxel is assigned to the background and foreg
the assignment of the voxel.
where UðyÞ , 1
2
½1þ erfð yffiffi

2
p Þ� is the Gaussian cumulative

distribution and erf(Æ) the error function.
We can now interpret the map defined by the voxel

entries P ðDðRÞx P 0jDðEÞx Þ as a rater-specific PA embedded
in Pn

2. A natural definition of the mapping function T of
a binary map BðEÞ drawn by an expert to LogOdds space
would therefore be the LogOdds of the conditional
probability:

T ðBðEÞ; lðEÞ; rðEÞÞx , logit P ðDðRÞx P 0jDðEÞx ; lðEÞ; rðEÞÞ
� �

¼ log
1þ erf D

ðEÞ
x �lðEÞffiffi

2
p

rðEÞ

	 

1� erf D

ðEÞ
x �lðEÞffiffi

2
p

rðEÞ

	 

2
64

3
75: ð2Þ

Fig. 5 shows the graph of the Gaussian cumulative func-
tions computed from manual segmentations of the superior
temporal gyrus by six experts (see Fig. 1). The perfect seg-
mentation would result in a step function (see light gray
curve in Fig. 5). All experts seem to perform similarly,
except for expert D who is not only far from the truth
but also unreliable, and expert E who shows great consis-
tency and high accuracy. Similar observations can be made
by looking at the corresponding LogOdds maps to the
right of the graph, as the slope of the map indicates the
overall accuracy of the expert. The map of expert E is close
to a binary map indicating a high degree of agreement to
the reference standard, whereas expert D shows a much
softer LogOdds map.

3.3. Defining a time continuous atlas based on a finite number

of samples

Neuroscientists often carry out longitudinal studies to
better understand the aging process of a population. These
studies are frequently defined by a set of subjects that have
been scanned at different time points. We now explore the
use of the LogOdds function for interpolating longitudinal
data between time points.

This example is based on a longitudinal data set consist-
ing of eight schizophrenic patients. Each patient has been
scanned three times with an average separation of 14
months between the first and second scan, and an average
by a Gaussian cumulative function (left graph). The ideal distribution is a
ated using Eq. (2) can be observed on the right. Dark blue and dark red
round respectively. All other colors represent statistical uncertainty about
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23 months separation between the second and third scan.
For each time point, we generate a PA by first aligning
the 24 MR images towards their central tendency using
affine transformations computed from the population regis-
tration framework of (Zöllei et al., 2005). Afterward, we
segment the gray matter from each aligned MR image using
an atlas-based EM segmentation algorithm (Pohl et al.,
2004). We then compute the PA of an anatomical structure
at a given time point based on the overlap of the eight cor-
responding gray matter segmentations. The first row of
Fig. 7 shows a sample slice of the PA at three time points.

We can interpolate among atlases in either PA or Log-
Odds space. However, one should not perform linear oper-
ations directly on PAs, unless one restricts these operations
to convex combinations (CC). As longitudinal data are
generally composed of a few time points, only a very lim-
ited set of CCs can be applied to this type of data. More-
over, computing CC of PAs in the original space does
not preserve the characteristic of certain Gaussian distribu-
tions over space as shown in Fig. 6. In this example, the PA
of a population is defined by a Gaussian distribution with
mean A at time point 0 and B at time point 1. We therefore
expect an interpolation between time point 0 and 1 to pre-
serve the ‘‘hump’’ characterizing the distribution (see top
graph, right column). This shape disappears at time point
0.5, when computing the CC of the two distributions within
the PA space (see middle graph, right column). We can
address this issue, however, by mapping the PAs into the
LogOdds space and performing the CC there (see bottom
graph, right column).

Most importantly, LogOdds give us the ability to use
non-convex interpolation techniques. For longitudinal
data, this provides us with a much richer class of interpo-
lation functions than are available through CCs. An area
of particular interest is the region around the thalamus
(Fig. 7a) where an increase in volume can be observed over
time in the PA. The second row of Fig. 7 shows a magnified
Fig. 6. The graph to the left shows the probabilistic atlas of a population at ti
space with mean A at time point 0 and B at time point 1. The result of the
multimodal distribution in Pn

2 and a normal distribution in Ln
1.
version of the PA of the thalamus region (a), and the cor-
responding linear (b) and quadratic spline interpolations
(c). In the graphs, the z-axis and the symbolize the proba-
bility, the x-axis is the time axis, and the y-axis represents
the row of voxels highlighted by the black line in Fig. 7a.
Unlike (b), the quadratic interpolation is differentiable over
time, which could enable us to extract additional parame-
ters from the data such as the rate of change in the aging
process of the population.

This completes the discussion of three examples that
show the advantages of this representation over existing
technologies. We first related SDMs to LogOdds and com-
pared them to an alternative that was based on smoothing
by spatial Gaussians. We then captured the uncertainty of
boundaries by combining multiple segmentations of the
same image to one LogOdds map. The last example
described a framework for increasing the temporal resolu-
tion of PAs by interpolating the atlases within the LogOdds
space.

4. Including a deformable shape atlas into a Bayesian

classifier

In this section, we evaluate the power of LogOdds by
studying PAs in the context of segmentation. We first build
a statistical shape atlas by performing Principal Compo-
nent Analysis (PCA) on a set of LogOdds (Section 4.1).
We then present three different ways to transform this atlas
into a PA to be used in an EM segmentation algorithm
(Section 4.2). One approach is to define the PA as the mean
shape described by the atlas, another is to interpret it as a
level set of the shape defined by the mean and variations of
the PCA, the final design is to transform the whole PCA of
LogOdds into a discrete distribution through the logistic
function. The performance of each model is evaluated by
segmenting the caudate nucleus and thalamus in 20 data
sets. The accuracy of each automatic segmentation is com-
me point 0 and 1. The atlas is characterized by a Gaussian distribution in
convex combination of these distributions at time point 0.5 resembles a



Fig. 7. The first row shows a sample slice of an interpolation of a longitudinal schizophrenia study. Each image represents a PA of the gray matter at a
specific point in time of the study. low probability of the gray matter. The second row shows the PA of the thalamus (a) with black indicating the voxels
that are interpolated over three time point in (b) and (c). Graph (b) was produced by linear interpolation, while the smoother quadratic spline interpolation
is shown in (c).
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puted by its overlap to experts’ segmentations. In this
experiment, the logistic function of the PCA representation
consistently achieves better results.

4.1. Generating a deformable atlas via PCA on Ln
M�1

We generate the deformable atlas by first turning a set
of k manual segmentations {B(1), . . . ,B(k)} into SDMs
fF ð1Þ; . . . ;F ðkÞg. Note that the segmentations have been
aligned to each other through registering the corresponding
images via (Zöllei et al., 2005). At this stage, our representa-
tion is very similar to that of (Tsai et al., 2003; Leventon,
2000; Yang et al., 2004; Golland et al., 2005). However,
we interpret these SDMs as LogOdds maps and can thus
embed the representation within a vector space. As such,
we can perform PCA on the training set fF ð1Þ; . . . ;F ðkÞg
(Gentle, 1998). The deformable atlas is now defined by the
eigenvector or modes of variation matrix U and
F , ðF T

1 � � �F T
M�1Þ

T , where F a is the mean vector of Log-
Odds of label a.

The deformable atlas ðF ;UÞ encodes shapes
FðhÞ 2 Ln

M�1 within that atlas space by the expansion coef-
ficient h with F ðhÞ ¼ F þ U � h. We refer to the LogOdds
maps of a label a defined by h as

FðhÞa ¼ F a þ Ua � h; ð3Þ
where matrix Ua is the entry in U corresponding to structure
a. We define Ua;i 2 Ln

1 as the ith eigenvector of structure a.

4.2. A shape-based segmenter for MR images

We now make use of the shape atlas by integrating it
into a voxel-based classifier for the segmentation of ana-
tomical structures with weakly visible boundaries in MR
images. The method is an extension of a class of voxel-
based classification methods (Wells et al., 1996; Van
Leemput et al., 1999; Kapur, 1999; Marroquin et al.,
2003; Pohl et al., 2004). These classifiers simultaneously
estimate the image inhomogeneity b and determine the
underlying label map T based on the observed MR image
I . We extend this model by incorporating the expansion
coefficients h of the PCA model into the estimation pro-
cess. We provide a full derivation of the new algorithm
in Appendix A.

Briefly, the resulting EM-implementation is defined by
two steps. The Expectation-Step (E-Step) computes the
weights for each structure a and voxel x. The weights are
defined by the product between the label map probability
P ðT xðaÞ ¼ eajh0Þ conditioned on the shape parameter h 0

and the intensity probabilities P ðI xjT xðaÞ ¼ ea; b
0
xÞ condi-

tioned on voxel x being assigned to label a with image
inhomogeneity b0x:

WxðaÞ / PðI xjT x ¼ ea; b
0
xÞ � PðT x ¼ eajh0Þ: ð4Þ

The Maximization Step (M-Step) estimates the inhomo-
geneities b 0 and shape h 0 based on the weights Wx. The esti-
mates for the shape parameters are the solution to the
following MAP estimation problems:

h0  arg maxh

X
x

X
a
WxðaÞ � log P ðT x ¼ eajhÞ þ log PðhÞ:

ð5Þ

The solution of Eq. (5) depends on the definition of
the conditional probability PðT x ¼ eajhÞ that captures the
relationship between the shape parameters h and the label
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Fig. 8. Different views of a 3D model of the thalamus (dark gray) and the
caudate (light gray). The model is based on a segmentation generated by
EM-P. The graph to the right summarizes the results of our experiment.
For both structures EM-P performs much better than EM-H and EM-N.
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map T . We now present three different interpretations
of P ðT x ¼ eajhÞ based on the shape atlas described in
Section 4.1.

The first probabilistic model of P ðT x ¼ eajhÞ is based on
the assumption that the deformable shape atlas represents
a family of level set functions whose zero level sets are the
object’s boundary. This representation reduces FðhÞa to a
binary map via the Heaviside function:

HðvÞ ,
1; if v P 0

0; otherwise

�
:

A natural definition of the conditional probability is
therefore

PHðT x ¼ eajhÞ ,
HðFðhÞa;xÞ

Z ; for a 2 f0; . . . ;M � 1g
1
Z ; a ¼ M

(

ð6Þ

with normalization factor Z ¼ 1þ
P

a0¼1;...;M�1HðF ðhÞa0;xÞ
and M being the background. In general, Eq. (6) defines
a distribution over space with a very steep slope along
the boundary of the structure. This causes the EM imple-
mentation to overemphasize the shape atlas compared to
the image data, when computing the weights in the E-Step
(see Eq. (4)).

The second probabilistic model interprets the result of
the PCA as members of the LogOdds space Ln

M�1. Accord-
ing to Section 2.1, the inverse of the multinomial logit of
the LogOdds entry FðhÞa;x defines the probability that
voxel x is assigned to label a so that

PPðT x ¼ eajhÞ , PðFðhÞÞa;x

¼
eFðhÞa;x

Z ; for a 2 f1; . . . ;M � 1g
1
Z ; if i ¼ M

(
:

ð7Þ

We define the normalization Z , 1þ
P

a0¼1;...;M�1eF ðhÞa0 ;x .
The conditional probability is now characterized with a
more gradual slope along the boundary of the structures,
allowing for more flexibility in determining the contour
of the object.

The third probabilistic model is similar to the previous
one, but the shape parameter h = 0 is fixed. Thus, the PA
for this model is defined as the multinomial logit of the
mean LogOdds function F

P N ðT x ¼ eaÞ , PðFð0ÞÞa;x ¼ PðF Þa;x

¼
eFa;x

Z ; for a 2 f1; . . . ;M � 1g
1
Z ; if i ¼ M

(
ð8Þ

with Z , 1þ
P

a0¼1;...;M�1eFa0 ;x . This model ignores the
modes of variations of the atlas and is thus quite similar
to static PAs already proposed by Van Leemput et al.
(1999) and Pohl et al. (2006).

We constructed three different EM implementations that
only differ in the mapping of the shape atlas to PAs that is
captured by the definition of P ðT x ¼ eajhÞ. The first and
third mapping (Eqs. (6) + (8)) were influenced by represen-
tations of shape variations commonly used in the literature
and the second mapping (Eq. (7)) embodied the contribu-
tion of this paper. In the next section, we measure the
robustness of the three implementations to provide the
reader with a meaningful comparison of our LogOdds rep-
resentation to well-established techniques. We note, how-
ever, that many other definitions of P ðT x ¼ eajhÞ are
possible.

4.3. The accuracy of Bayesian classifier

We now investigate the impact of the three implementa-
tions on the accuracy of the segmentation algorithm. We
base the implementation EM-H on the level set representa-
tion captured by Eq. (6), the implementation EM-P on our
new shape representation as defined by Eq. (7), and the
implementation EM-N (see also Pohl et al., 2004) on the
static PA as described by Eq. (8). All three implementa-
tions segment the caudate nucleus and the thalamus in 20
test cases. These two structures are of special interest for
evaluation as they are characterized by very blurry bound-
aries in MR images. They are also characterized by differ-
ent types of shapes, the thalamus being very round and the
caudate more elongated.

We determine the quality of the automatic segmenta-
tions by comparing them to manual segmentations using
a measure of overlap, the Dice coefficient (Dice, 1945).
The score resembles the overlap between manual and auto-
matic segmentation with a higher score given to those auto-
matic segmentations that have greater overlap to the
manual ones. The graph in Fig. 8 shows the average Dice
measures and standard error for the three implementa-
tions. If we interpret the manual segmentations as the gold
standard then the average Dice score represents the accu-
racy of the implementation. The standard error is a mea-
sure of reliability with a small error indicating low
fluctuation in performance of the approach. The discrep-
ancy in performance is especially striking between EM-H
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and EM-P. For both structures, EM-P achieves a signifi-
cantly higher average score (thalamus: 88.4 ± 0.8%,
caudate: 84.9 ± 0.8%; mean DICE score ± standard error)
than EM-H (thalamus: 85.3 ± 1.2%, caudate: 74.3 ± 1.6%)
as the range of scores defined by the means and standard
errors of each structure do not overlap between the two
implementations. EM-P also performs much better than
EM-N (thalamus: 87.3 ± 1.2%, caudate: 82.7 ± 1.2%) with
a significantly higher score for the caudate and better aver-
age score and lower standard error for the thalamus. We
also note that EM-N achieves a much higher average score
than EM-H.

We think there are several reasons why EM-P is more
accurate than the other algorithms, although their main
drawback is that they do not properly capture variations
within the population of shapes. EM-N only incorporates
a static model of the shape variations, and is thus restricted
to impose a shape constraint that only models the mean of
the population. For the thalamus, this limitation only
slightly reduces the accuracy of the approach (in compari-
son to EM-P) because the shape of the structure hardly
changes across the healthy population. The opposite, how-
ever, is true for the caudate, where the accuracy of the
approach is much lower than reported for EM-P. The cau-
date’s elongated shape wraps around the ventricles, which
can greatly differ in size.

The Heaviside function induces a shape model that is
too strong compared to the image model, even when modes
of variations are taken into account. The intensity informa-
tion is especially important for segmenting the caudate as
the elongated shape is more easily determined by the
clearly visible boundary to the neighboring ventricles. Since
the approach largely ignores the intensity information, it
produces less reliable results than EM-P. We believe
EM-P to be a more flexible approach as it captures more
variability and uncertainty, and thus only imposes the
shape model when boundaries are weakly visible in the
MR image.

In summary, we presented a statistical framework for
the segmentation of anatomical structures in MR images.
The framework is guided by the low-dimensional PCA
shape model of Section 4.1 as the shape representation is
turned into PA. We derived three different implementations
that only differed within the probabilistic model. We ran
each implementation on 20 test cases segmenting the thal-
amus and caudate. The segmentation algorithm based on
our new representation EM-P performs much better than
EM-H that is based on a level set representation, or EM-
N that uses a ‘‘conventional’’ PA such as described by
Van Leemput et al. (1999) and Pohl et al. (2006).

5. Discussion and conclusion

In this article, we use LogOdds maps to induce a vector-
space structure on PAs (Probabilistic Atlases). LogOdds
not only provide us with a framework to perform probabi-
listic addition and scalar multiplication but can also be
interpreted as implicit representations of the shape of
objects. We also show that Signed Distance Maps (SDMs)
can be viewed as a subset of the space of LogOdds maps so
that the corresponding PAs can model shape. We demon-
strate that LogOdds based on SDMs may not be the best
implicit shape representation, especially when dealing with
multi-categorical data, and propose an alternative model
based on Gaussian smoothing.

We provide example applications in which LogOdds are
used as shape representation, to (i) capture uncertainty
among expert raters, (ii) build a time continuous atlas,
and (iii) incorporate shape priors into a brain segmentation
algorithm. The performance of this representation is evalu-
ated by comparing it with other shape-driven segmentation
algorithms. The LogOdds model consistently outperforms
competing techniques.

This article did not discuss a set of criteria for choosing
the optimal conversion of label maps into LogOdds.
Based on our experience, these criteria will depend on
the application as well as the training data. For example,
if the training set consists of segmentations representing
small spatial variations, combining the segmentations into
one LogOdds map similar to Section 3.2. is probably bet-
ter than deriving a PCA model, such as was done in
Section 4.1. If we had such a set of criteria we could then
test the accuracy of the mapping more directly than we
proposed in Section 4.3.

We note that modeling shape through LogOdds,
although very powerful, has its limitations. Our framework
is built with the assumption that voxels in an image are
independently distributed. This is likely not the case in
highly structured data often observed in medical images.
This should be addressed to make the method more power-
ful. Moreover, like most implicit representations, LogOdds
do not explicitly capture variations within shape positions
and orientations. Thus, our current model assumes proper
alignment of the segmentations in the training data. The
interpretation and application of LogOdds capturing spa-
tial variation before alignment is a topic we would like to
explore in the future. Explicit representations, such as m-
reps or point distribution models, capture this information
more naturally and may provide a more intuitive interpre-
tation of shape. However, they may require a relatively
high degree of customization to apply the corresponding
statistical models to existing applications. The LogOdds,
on the other hand, require very little adaptation, as a set
of (pre-aligned) segmentations is all that is needed to build
a statistical shape model. The ease of use and initialization
of our framework makes it a very attractive model for
applications in which shape plays an important role.
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Appendix A. Deriving a PCA-based EM implementation

It is generally difficult to determine a solution within a
model accurately representing the relationship between b,
h, T , and I . If, however, the label map T would be known
then the estimation of b and h would be simplified. This
dependency is known in the machine-learning community
as an incomplete data problem. A popular algorithm for
estimating solutions within incomplete data problems is
the expectation-maximization algorithm (EM) (McLachlan
and Krishnan, 1997).

In the EM framework, the label map T defines the
unknown data, I represents the observed data, and the
parameter space consists of h and b. At each iteration,
the method improves the estimates (b 0,h 0) of the true solu-
tion ðb̂; ĥÞ by solving the following Maximum A Posteriori
estimation problem (MAP)

ðb0; h0Þ  arg max
b;h

ET jI ;b0;h0 ðlog P ðb; h; T jIÞÞ: ðA:1Þ

The expected value is defined as EAjBðf ðCÞÞ ,
P

APðAjBÞ
f ðCÞ. We use the notation

P
A as the sum over all possible

values of A. We note that the above equation describes an
existing class of EM segmentation algorithms (Wells et al.,
1996; Van Leemput et al., 1999; Kapur, 1999; Marroquin
et al., 2003; Pohl et al., 2004) when leaving out the shape
parameter h.

We further formalize the label map T in order to con-
tinue our discussion of Eq. (A.1). The label map
T ¼ ðT 1; . . . ; T MÞ is composed of the indicator random
vector Tx 2 fe1; . . . ; eNg, where x represents a voxel on
the image grid. The vector ea is zero at every position but
a, where its value is one. For example, if Tx ¼ ea then voxel
x is assigned to the structure a.

It was shown in Pohl et al. (2005, 2006) that Eq. (A.1)
simplifies to

ðb0; h0Þ  arg max
b;h

X
x

X
a
ET xjI ;b0x;h0 ðT xðaÞÞ

� ½log PðI jTx ¼ ea; bÞ þ log P ðhjTx ¼ eaÞ�
þ ðlog P ðbÞ þ log P ðhÞÞ ðA:2Þ

that is the sum over all structures and voxels of the addition
of two terms. The first term is composed of the product of
the expected value of the label map, ET xjI ;b0x;h0 ðTxðaÞÞ, and
the sum between the log likelihood of the inhomogeneity,
log P ðI jTx ¼ ea; bÞ, and log probability of the label map
conditioned on the shape, log P ðhjTx ¼ eaÞ. The second term
is the addition of the log prior of the image inhomogeneity,
logP(b), and the shape, logP(h).
The EM algorithm solves Eq. (A.2) in two steps. The
Expectation-Step (E-Step) computes the weights WxðaÞ ,
ET xjI ;b0x;h0 ðTxðaÞÞ for each structure a and voxel x. As shown
in Pohl et al. (2005), the weights are the product between
the label map probability P ðTxðaÞ ¼ eajh0Þ conditioned on
the shape parameter h 0 and the intensity probabilities
PðI xjTxðaÞ ¼ ea; b

0
xÞ conditioned on voxel x being assigned

to a and the image inhomogeneity b0x:

WxðaÞ / PðI xjTx ¼ ea;b
0
xÞ � P ðTxðaÞ ¼ eajh0Þ:

The Maximization Step (M-Step) estimates the inhomo-
geneities b 0 and shape h 0 based on the weights Wx. The esti-
mates are determined as the solution of Eq. (A.2) that
defines the following two MAP estimation problems:

b0  arg maxb

X
x

X
a
WxðaÞ � log PðI jTx ¼ ea;bÞ þ log PðbÞ;

ðA:3Þ
h0  arg maxh

X
x

X
a
WxðaÞ � log PðTx ¼ eajhÞ þ log PðhÞ:

ðA:4Þ

We note that Eq. (A.3) was originally presented by Wells
et al. (1996). Since then a variety of models with closed-form
solutions have been proposed in the literature (Van Leem-
put et al., 1999; Marroquin et al., 2003; Ashburner and
Friston, 2005). For this implementation, we choose the
model by Wells et al. (1996) that defines P ðI xjTx ¼ ea; b

0
xÞ

by the Gaussian distribution N ðb0x þ la;!aÞ. (la,!a) cap-
tures the mean and variance of the intensity distribution
of the structure a (see also Pohl et al., 2006).

Appendix B. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.media.2007.
06.003.

References

Arsigny, V., Fillard, P., Pennec, X., Ayache, N., 2007. Geometric means
in a novel vector space structure on symmetric positive-definite
matrices. SIAM Journal on Matrix Analysis and Applications 29,
328–347.

Ashburner, J., Friston, K., 2000. Voxel-based morphometry – the
methods. NeuroImage 11, 805–821.

Ashburner, J., Friston, K., 2005. Unified segmentation. NeuroImage 26
(3), 839–851.

Besag, J., 1986. On the statistical analysis of dirty pictures. Journal of the
Royal Society Series B 48 (3), 259–302.

Bookstein, F., 1996. Landmark methods for forms without landmarks:
morphometrics of group differences in outline shape. Medical Image
Analysis 1 (3), 225–243.
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