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discriminator (QGD). The combination of the CFAR and the 
QGD was tested in realistic SAR environments and the results 
show a large improvement of the false alarm rate with respect to 
the two-parameter CFAR, both with high resolution (1 ft) fully 
polarimetric SAR and with one polarization, 1 m SAR data. 
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In a typical target detectionhecognition task 
an automatic target recognition (ATR) system is 
required to search large areas of clutter containing 
relatively few targets. Because it is prohibitive to 
run computationally intensive target recognition 
algorithms in the entire image it is necessary to 
divide the ATR task into submodules, commonly 
a front-end prescreener followed by a classifier 
[I]. The goal of the front-end prescreener is to 
identify points of interest which contain potential 
targets. Functionally, the front-end prescreener is 
divided into the subtasks of rejecting imagery without 
potential targets (detection) and screening of false 
alarms (discrimination) which are mostly created 
by bright clutter areas (tree tops) and man-made 
clutter. The two-parameter CFAR (constant false alarm 
rate) detector has been widely utilized in synthetic 
aperture radar ( S A R )  imagery [l]. The goal of the 
discriminator is to eliminate as many false alarms as 
possible from the CFAR output. 

In this work the local amplitude features used for 
the CFAR test are further combined to construct a 
quadratic discriminant function, which is known to 
be optimal for classification of Gaussian distributed 
classes. We call this discriminator the quadratic 
gamma discriminator (QGD) because the local 
intensity features are extracted with a 2-D extension 
of the integrands of the gamma function. The QGD 
utilizes the same local ampIitude features to classify 
the CFAR outputs in the classes of targets and 
nontargets. Since the CFAR is already implemented 
in practical ATR systems, the addition of the QGD 
increases the choices for discriminators with very little 
extra computational effort. 

The analyzing functions for extracting local 1 st- 
and 2nd-order statistics are 2-D radially symmetric 
gamma functions, a direct extension of their 1-D 
counterpart [2], which have been successfully applied 
in various adaptive signal processing problems. 
The 1-D gamma filter is built around a cascade of 
recursive delays, whose impulse responses are the 
gamma bases. The recursive parameter serves as an 
additional degree of freedom that adapts the scale of 
the gamma basis to the characteristics of the signal. 
In addition, this previous work on gamma filters [2] 
makes adaptation equations readily available. 

ATR system, followed by a description of the QGD 
by specifying the 2-D gamma functions. We then 
address how the feature set used by the prescreener 
is computed using these functions. Next, the QGD 
structure is presented and we show how the QGD 
generalizes the conventional two-parameter CFAR 
detector. A method of computing detector parameters 
is described which is essentially a training process 
based on exemplars from both classes. Finally, we 

We start with a brief description of the Lincoln 
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Fig. 1 Main stages of Lincoln ATR system. 

show some detection results. Performance tests 
have been cor.ducted by MITLincoln Laboratory 
involving a realistic data set that better represents the 
actual large area detection problem. The results of 
these experimsnts in the form of receiver operating 
characteristic (ROC) curves are also presented here. 

It. LINCOLN SAR ATR SYSTEM 

A. System Oderview 

Lincoln Laboratory was one of the pioneers in 
developing an-end-to-end high resolution ATR system 
exploiting two-dimensional SAR imagery [ 11. The 
SAR data was collected with a 33 GHz (Ka-band) 
high resolution (1 ft x 1 ft), fully polarimetric sensor 
developed by Loral [3]. The sensor is mounted in a 
Gulfstream G 1 aircraft and has been utilized to collect 
large sets of iinagery containing both tactile targets, 
man-made and natural clutter. 

Fig. 1 shows the three main stages of the 
Lincoln ATR system: detection, discrimination and 
classification 111. The role of detection is to find 
regions in the imagery that can contain potential 
targets, and it is built around a CFAR detector. 
The CFAR is triggered by cells that display an 
intensity significantly different from the immediate 
surroundings. Since metallic objects in the open 
produce high intensity scatters at these frequencies, 
this test is an sffective compromise to separate 
metallic objects from most of the background clutter 
when the computational bandwidth of the end-to-end 
system is conr,trained (as it must be in practical 
systems) [4]. ‘The false alarms (Le., CFAR detections 
that do not correspond to the objects of interest) are 
further reduced by the next stage, the discriminator. 

complementing the amplitude test implemented by 
the two-parameter CFAR, such as texture (including 
fractal dimension), size, contrast, and polarimetric 
features [l]. We propose here to use the QGD as an 
additional discriminator with the advantage of low 
computational cost and high performance. This stage 
basically rejects high radar returns from natural clutter 
(such as tree tops) and many man-made discretes. 
The remaining: detects are further scrutinized in the 
classifier that rejects man made discretes and is able to 
classify the otjects of interest. 

This staged system has the appeal of providing 
good performance and an efficient implementation. In 
fact the CFAR is a computationally simple algorithm 
and the only cne in the ATR signal processing chain 

The discriminator utilizes many features 

that must run over the entire imagery. The following 
stages just analyze the cells that trigger the CFAR, 
so more computationally demanding but also more 
accurate algorithms can be implemented. The CFAR 
has to work at or very close to 100% detection 
probability. The number of false alarms created 
by the detection stage dictates the computational 
bandwidth of the entire system. Presently the Lincoln 
Laboratory system achieves 0.3 false alarms per km2 
for a probability of detection of 90% [5].  

B. Polarimetric Whitening Filter 

One of the advantages of radar for surveillance 
is the all-weather, 24 h capability of the sensor, 
which is unlike optical or infrared sensors. The 
shortcoming is the lack of resolution due to the 
wavelength and the intrinsic noise produced by the 
image formation which is called speckle. A useful 
improvement in SAR processing was the invention 
of the polarimetric whitening filter or PWF [6, 71, 
A cell in fully polarimetric SAR is represented by 
an 8 component vector x formed by four (complex) 
polarized measurements (VV, HV, HH, VH), where 
VV stands for vertical sendvertical receive, HV 
horizontal sendvertical receive, etc. PWF is a linear 
projection of the fully polarimetric data x which 
produces an intensity cell y with a minimum amount 
of speckle. The goal is to design a weighting matrix 
W that minimizes the variance normalized by the 
mean of the radar return, 

where + denotes the Hermitian transpose. The 
formulation of this optimization problem with 
Lagrange multipliers shows that this solution whitens 
the polarimetric measurements. So PWF has the dual 
role of reducing the data (from an 8-dimensional 
vector to a real value) and producing a scalar 
projection where the speckle is minimized. 

C. CFAR Prescreening 

The process of target prescreening should be a fast 
and robust computational algorithm based on a few 
local statistical measurements. Intensity of a test cell 
relative to the local mean and variance is one such 
useful prescreener that has been shown to work well 
for identifying potential targets in SAR images [ 11. 
Under the assumption that the radar returns from 
clutter are Gaussian distributed a test that declares 
as targets test cells whose amplitudes stand out from 
their surroundings according to 

y = -  (2) 
xo -K > TCFAR (target) 
0 5 TCFAR (clutter) 
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Fig. 2. CFAR detector stencil. 

behaves as a CFAR detector. The assumption of 
Gaussian distributed clutter is not met in high 
resolution millimeter wave SAR, but experience has 
shown that (2) is an effective test for detecting targets 
in clutter [l]. In (2) xo is the intensity of the single 
pixel under analysis, X and IS are estimates of the 
mean and standard deviation of the clutter in the local 
neighborhood of xo, and TCFAR is the threshold. An 
important characteristic of this detector is the so-called 
guard area which ensures that the clutter statistics are 
collected at some distance away from the cell under 
test, thus prohibiting target pixels from contaminating 
the estimate of clutter mean and standard deviation 
(see Fig. 2). 

Average pixel intensity radially away from a 
test cell is clearly a useful source of information. 
Delicate issues are the accuracy of the local 
statistical estimation and the assumption of 
Gaussian distributions. We introduce a novel target 
discriminator that also exploits this local intensity 
neighborhood level information by employing a 
class of analyzing functions which can be adaptively 
scaled (and shaped) so as to capture the regions 
(around the test cell) containing more discriminatory 
information. In contrast to the two-parameter CFAR 
detector, where the decision rule and the guard 
band radius are assigned a priori based on ad-hoc 
considerations (target size), we relax this constraint 
and allow all parameters of the discriminator to be 
optimized through a training process to maximize 
the separability of the two classes. Particularly in 
SAR where the target detail controls the reflectivity, 
physical dimensions alone should be used as mere 
indicators of a suitable guard band. 

I l l .  QUADRATIC GAMMA DISCRIMINATOR 

A. Gamma Functions for Local Feature Extraction 

A circularly symmetric 2-D gamma kernel family 
g n , J W  given by 

is used to estimate local statistics in concentric bands 
around the test cell (0,O). In (3) the integers k and 
2 are the two space coordinates, N specifies the 
square region of support (1 and C is a normalization 
constant (unit volume under the surface). As in the 

01- Effect of changing p (ordev5) 

om- 

Fig. 3 .  Gamma function parameters. 

1-D case (Fig. 3 ) ,  the shape of the functions gn,+(k,Z) 
is controlled by the kernel order n and the parameter 
p [12]. The 2-D functions in (3) are obtained by 
rotating these 1-D curves around the radius zero 
axis. For n = 1 the 2-D gamma function is a radially 
symmetric decaying exponential, and with increasing 
n = 2,3,. . . the functions form rings around the origin 
with increasing radius. For each n > 1 the parameter 
p controls the effective radius where the peak occurs 
as well as the width of each concentric ring, since the 
peak of the ring occurs at a radius given by n / p .  

The gamma kernels provide an interesting 
compromise between global and local approximators: 
the kernel is a family of local approximators with 
different shapes, spanning an ever increasing region 
of support when n is increased. Suppose the goal is to 
approximate a two-dimensional function x(k ,  I) in the 
region R as 

M 

(4) 
n=l 

where x ( k ,  I) is the approximation to x(k ,  I) and M < 
N .  M is the number of basis functions and normally 
is defined a priori. A gamma kernel of order M < N 
with the appropriate p parameter can expand the area 
about the fiducial point where the function x(k ,  I) 
is well approximated by i ( k , l ) .  In fact, as shown 
in Fig. 3(b), p controls the region of support of the 
kernel for a given order, so we call p the scale of 
the approximation. In an adaptive signal processing 
framework, the p parameter can be automatically 
adjusted to provide the best performance for a given 
approximation metric even after the decision of 
the order has been made. More details about the 
properties of the gamma kernels can be found in [21 
which treats the 1-D case, but the properties extend to 
the 2-D case using (3). 

Thinking about the stencil as effecting an image 
projection into a set of local bases is very appealing 
because it brings approximation theory to stencil 
design. The 2-D gamma kernels can construct a 
predefined radially symmetric stencil, Le., a mask over 
the input image space. Fig. 4 shows the amplitude 
mask constructed with the combination of gl,+ and 
gI5,+ (for simplicity, the dependence on k,Z is dropped 



Fig. 4. Stenci. for QGD which combines two gamma kernels 
~n = 1,n = 15) for p1 = p,5 = 0.6. 

from the notation). This stencil resembles the CFAR 
stencil. In this application gl,p implements the mask to 
estimate the ir,tensity of the cell under test, and g15,/1 
the mask to estimate the intensity in the surrounding 
neighborhood. 

In our experiments, only two gamma kernels 
of orders 1 ani  15 were used to preserve the 
analogy with the two-parameter CFAR detector. 
For applications where sudden change of amplitude 
around a pixel location represents characteristics of 
the targets, a combination of kernels gl,p and glS,+ will 
provide the required mask to implement the CFAR 
test. An added advantage of the gamma stencil is 
that the scale parameter p controls the extent of the 
kernels (i.e., the size of the region used to estimate 
the local image intensity) and may be adapted for 
best performance depending upon the target and the 
clutter characttristics. This is useful since there are 
indications that some regions around the test cell 
contain more discriminatory information than others, 
as the need for the guard band in CFAR detector 
suggests. Here we will be independently adapting the 
scale for each gamma kernel, i.e., we will have two 
scales determined by p1 and pis. 

B. Local Features and the Decision Rule 

The role of the QGD is to further separate targets 
from nontargets in the cells that trigger the CFAR. 
However, unlike other discriminators used in SAR, 
the QGD uses the same features as the CFAR but 
constructs a quadratic discriminant function of the 
local image intensity of the cell under test and its 
surroundings estimated by the gamma stencil. An 
efficient way to implement a quadratic discriminant 
is to compute first the second order expansion of 
the original features and subsequently combine them 
linearly [ 81. 

of a cell under test (the fiducial point) by centering 
gamma kernels on that cell and taking the inner 
product with the kernels over 0 of the image 
amplitude x arid the local image power x2. Here, we 

Features are extracted from the local neighborhood 

consider x to be a scalar reflectivity measure derived 
from fully polarimetric SAR data obtained using the 
PWF [4]. We now introduce a more compact notation 
and we specify the local image features as projections 
of amplitude and power onto gamma kernels, 

i,jcCl 
(5) 

i,j& 

where n = 1,15 for a total of 4 features. Note that 
( 5 )  can be interpreted as 2-D finite impulse response 
(FIR) filtering operations of the original image and 
its power with the gamma stencil gn,p(k,Z) in locations 
specified by the CFAR detector. The output yn,@ can 
be viewed as an estimate of the 1st-order moment 
of the local image amplitude, while y:,, can be 
interpreted as the 2nd-order moment estimation which 
are sufficient to compute the local variance. 

Following our goal of implementing a quadratic 
discriminant by feature expansion of all the first- 
and second-order terms we expand the original four 
features into an 8 value feature vector 

This feature vector enables a direct computation of 
the local neighborhood variance as needed in the 
two-parameter CFAR (2) [l]. As explained in the 
following section, these terms enable a one-to-one 
comparison of the gamma discriminator and the 
two-parameter CFAR detector and are also used to 
study the benefits of using adaptive feature extraction 
and adaptive weights. 

At this stage of our research we are using the 
quadratic decision function which is specified by a 
linear weighting of the quadratic features of (6) ,  

> T (target) 

<_ T (clutter) (7) 

where the weights (wl, w2,. . . , ws) are obtained during 
a training procedure. The discrimination between 
the two input classes (targets and clutter) is done 
using a single threshold T .  In order to validate the 
quality of the discriminant function proposed in (7), 
T will be varied in the tests to create an ROC curve. 
Following the validation in realistic data sets, T is 
selected such that the required probability of detection 
is achieved. The above equations are summarized in 
the discriminator structure (Fig. 5) which consists 
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Fig. 5. QGD structure. PWF and PWF' represent inputimage 
plane and its square. 

of the feature extraction block followed by feature 
expansion and the decision block. 

discriminant function is a quadratic function of the 
image amplitude features extracted by the gamma 
stencil. 

We call this classifier the QGD, since the 

C. Gamma Discriminator Generalizes the CFAR 
Detector 

To draw a parallel between the gamma 
discriminator decision function (7) and the two 
parameter CFAR detector (2), we first observe that X 
and g2  are estimates of the local mean and variance 
around the test cell (indexed by 0). The standard 
deviation can be computed from the first and the 
second moments as 

G = Jn. (8) 

Next we rewrite the condition for target detection by 
cross multiplying and squaring both sides of the two 
parameter CFAR equation (2) 

xi - 2 x 0 ~  + z2 - T ~ ~ ~ ~ x ~  + T ~ ~ ~ ~ x ~  > 0. (9) 

Equation (9) can be interpreted as a restricted 
quadratic discriminant function with a fixed set of 
weights for a given TCFAR. We call (9) restricted 
because only some of the quadratic terms of the 
intensities are present here. The quantities that appear 
in this equation correspond closely to some of those 
used in gamma discriminator (7). Specifically, y l , p  
has the same role as xo, and yls,,  corresponds to the 
local mean X. Similarly, for the second moment we 
have correspondence between y& and X2. Hence the 
two-parameter CFAR corresponds to a QGD with the 
following weights: 

[O 0 0 -TzFAAR 1 1 +TzFAAR -2 01 

Hence, the QGD formulation preserves the similarity 
to the two-parameter CFAR detector (the types of 
features used) but has generalized it with respect to 
1) the shape of the kemels used for the mean and 
variance estimation, 2) the number of features, 3) the 
selection of the weights of the decision function which 
are not chosen a priori but are adapted with the goal 
of optimally separating targets from nontargets. 

Unlike the CFAR, the QGD parameters need 
to be optimized through a training procedure. For 

that reason we expect it to be able to achieve better 
discrimination performance, but the choice of the 
training data set becomes crucial. The linear and the 
bias terms which are used to complete the quadratic 
feature set bring an additional flexibility to the gamma 
discriminator in terms of sensitivity to absolute 
intensity measures. With the CFAR detector a target 
is detected when the intensity of a pixel exceeds 
its surroundings by some threshold relative to the 
local mean and standard deviation. A pixel with low 
intensity may therefore be classified as a detection 
if the surrounding clutter is smooth and has low 
amplitude [ 1 13. Although this is generally a valid 
assumption, it is also reasonable to assume that 
the absolute radar retum from a target could carry 
discriminatory information, especially when the 
SAR images are calibrated. By adding the terms 
Y l , p ,  Y l 5 , p  (corresponding to xo and X) and the bias 
term which is not present in the CFAR detector, 
we allow the discriminator to become sensitive to 
absolute intensity measures as well. We have noticed 
significant improvement in discriminant results when 
these terms were added, but it is not clear yet how 
robust they are with respect to radar calibration errors. 

D. Training From Exemplars 

Given a set of training images { ~ ~ , x ~ , x ~ , x ~ ~ ~ }  
centered around points of a known class (target or 
clutter) we compute the corresponding feature vectors 

rows of the matrix Fp(X) .  Since a large discriminator 
output is desired for test cells that belong to targets 
and a low output for clutter, we construct a vector 
d = [d0,d1,d2,. . . , d,-,] such that di = 1 for targets 
and 0 otherwise. Effectively this vector of desired 
response is a constraint for the optimization. Next, 
we compute the linear weight vector w by solving 
an overdetermined (assuming P > 8) system of linear 
equations 

where the optimal weights wo,, are found in the least 
squares sense as [9] 

{fp(xo>,f,(xl>,fp(X2)r.. v f , ( x p - 1 ) }  and mange them as 

d = F,(X)w (10) 

where (.)T and (.)-I represent matrix transpose and 
matrix inversion operations, respectively. Notice that 
this is a parametric least squares problem, since the 
solution depends on the parameter p. For the case of 
the gamma discriminator the optimization is nonlinear 
in p ( p  appears on the exponent of the kernel), which 
is normally much more delicate than the computation 
of the optimal weights 
local minima [2]. Since our primary objective was to 
evaluate the full potential of this novel feature set and 

due to the problem of 
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to study the eFfect of the adaptive scale parameter on 
performance, we circumvented the problem of local 
minima by employing an exhaustive search to find the 
optimal p. We computed 34 sets of optimal weights 
covering logarithmically the operating range of the 
parameter ,u (0 < p < 4). The optimal value is then 
simply picked as the minimum of the scanned curve 
representing the mean square error or another measure 
of performance (such as false alarms). 

E. Implementation Issues 

We designed a test procedure that emulates a real 
world situation where the discriminator output is 
computed for each pixel in the image. Computing 
the feature set at each pixel of the image amounts to 
correlating each of the two kernels yl,, and y15,fi with 
both the original image and the image squared. Each 
kernel assumes a role of an FIR filter with rectangular 
support (size 65 x 65). The four base features at point 
( k ,  I) are then obtained using translated gamma kernels 
as 

where n stands for the kernel order and takes the 
values n = 1,15, and p = 1,2 indicates either 1 st 
or 2nd moment. Correlations are computed in the 
frequency domain using fast Fourier transforms 
(FFTs) to obtain better computational efficiency. 
For processing large images and to avoid memory 
problems we divide the image into overlapping radix 
2 windows which are individually processed and 
combined using an overlap and save method [lo]. 

The gamma discriminator needs a training set, 
both for targets and clutter. Adaptive systems can 
fine tune their parameters for optimal performance, 
but the training data sets have to contain realistic 
coverage of tke variety of target and clutter conditions 
the discriminator will find in practice. This coverage 
of all possible conditions may be difficult, primarily 
if the adaptive system has a large number of free 
parameters. However, the QGD has only 8 parameters, 
which means that the input space is projected into 
a small size feature space, where much of the 
variability of the input data is reduced through 
projection. Hence, in our opinion, an adaptive system 
with a small number of parameters (such as the 
gamma discriminator) can be effectively trained with 
manageable training set sizes. A rule of thumb we use 
is that the training set should have a size of at least 
10 times the rumber of free parameters and cover a 
diverse set of operating conditions. 

The selection of training exemplars for the 
target class is rather straightforward. Image chips 
(65 x 65) of the different types of targets (with 
the targets centered) are extracted from the data 

base. The selection for the clutter class is a little 
more involved because the training set should have 
exemplars that are both representative of the class 
and help discriminate between targets and clutter. For 
instance the training information of low reflectivity 
clutter is not as important as high reflectivity clutter 
such as tree tops. An understanding of the gamma 
discriminator is therefore necessary to establish the 
best training set. The results presented below show 
that this is achievable under realistic conditions of 
targets in clutter. 

IV. TEST RESULTS 

A. Importance of Scale in Discrimination 

In our preliminary experiments, the gamma 
discriminator was optimized on a training set extracted 
from the MIT Lincoln Laboratory mission 90 pass 
5 ,  33 GHz SAR data set collected in Stockbridge, 
New York. This fully polarimetric high-resolution 
(1 ft x 1 ft) data was preprocessed using an optimal 
whitening technique known as the PWF which 
combines the HH, HV, and VV polarization 
components into minimum-speckle imagery [4]. 

the reduction in false alarms achievable with the 
QGD. However, we would also like to understand 
how estimating the local statistics at different scales 
affects the performance of the gamma discriminator. 
Therefore, this first set of results should not be 
considered testing of the QGD, but simply a 
quantification of some of its characteristics. Recall 
that the scale can be controlled by the selection of 
the parameter p. The performance of the 1-D gamma 
filter is dependent upon ,u [2] so we would like to also 
quantify its effect for image processing. Due to the 
unavailability of actual tactical targets in mission 90 
data we emulated the testing framework by choosing 
vehicles (cars) in the SAR imagery to represent our 
"target" class. We identified and labeled 16 stationary 
vehicles located in frame 7 of the mission 90 data. 
Due to the low number of vehicles available we used 
all of them in training, creating 10 training exemplars 
from each vehicle by slightly displacing the center 
of the chip. Most of the vehicles were taken from a 
parking lot and they represent a difficult detection 
problem due to their close proximity. The clutter 
class was also taken from mission 90 S A R  data. Open 
fields and tree tops were primarily used to represent 
the clutter class; a total of 302 clutter chips were 
extracted. 

Equation (1 1) was used to compute the weights 
of the discriminant function at each value of pI5 as 
described previously. The curves in Fig. 6 demonstrate 
how the selection of pI5 affects the discriminator 
performance in terms of two different criteria, false 
alarms (left curve) and mean square error (MSE) 

The ultimate objective of the test was to quantify 
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Fig. 6. Performance curves as function of pis. Dashed line 

represents CFAR performance on same data. 

between the desired response (1 for targets and zero 
for clutter) and the gamma discriminator output. 

A distinguishing aspect of these plots is the 
nonconvex shape of both curves. The number of 
false alarms rises to 235 for pi5 = 0.09 and has a 
minimum of 9 for p15 = 1.38, increasing again to 35 
for pI5 = 4.0. This behavior is not monotonic. It could 
be due to the reduced number of training exemplars, 
but this is exactly the same behavior we encountered 
in the 1-D case for system identification [2] where 
plenty of data was available. Therefore we conclude 
that in this family of kernels, the performance is a 
nonconvex function of the scale. The scale at which 
the target and clutter statistics are estimated affect the 
performance of the gamma discriminator. Hence, a 
detection algorithm that has the ability to choose the 
region of support (scale) where features are estimated 
seems very important for improved performance. 

During training with an on-line algorithm, it is 
difficult to adapt directly the parameter p with the 
false alarm rate, but techniques have been developed 
to train p with the information of the output MSE 
between the desired response and the output of the 
discriminator [2]. This curve is shown in Fig. 6 (right 
plot). For this case (Pd = 98%) we can see that the 
minimum of the MSE corresponds to the minimum 
of the false alarm rate, Le., adapting p with the MSE 
will yield the minimum false alarm rate. However, 
we found that this is not always the case when the 
probability of detection is set at other values (notably 
Pd = 100%). Another aspect to mention is the broad 
minimum which means that there are a range of scales 
(values of p) for which the system performance is 
adequate. Alternatively, this implies that a range of 
target sizes can be accommodated with the same 
stencil parameters without affecting performance 
appreciably. 

implemented according to [l], and tested on the same 
segment of SAR data. Fig. 6 shows the number of 
false alarms of the two parameter CFAR (dashed line) 
for Pd = 98%. The gamma discriminator produces a 
smaller number of false alarms than the two-parameter 
CFAR for a large range of p values (0.3 < p < 4). 

The two-parameter CFAR detector was 
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Fig. 7. Detection of vehicles in parking lot. Each square 
represents a detection. 

A sample detection result for a section of frame 
7 of the Lincoln Laboratory SAR data set is shown 
in Fig. 7. In this image the discriminator output is 
intensity coded, with brighter values indicating likely 
targets. Here, the threshold was set so that all vehicles 
are detected (Pd = 100%) and at the same time the 
number of false alarms remains rather low. In this 
experiment, a simple clustering algorithm was used 
to merge multiple detections that were close to each 
other, which yields a more representative count of 
false alarms. 

8. Large Scale Tests with Military Targets 

The tests just described were conducted at the 
Computational NeuroEngineering Laboratory (CNEL) 
with the exclusive goal of providing the necessary 
knowledge of how the QGD handled the imagery, 
how it should be adapted and to test our algorithmic 
implementation. Under a contract from DARPA, the 
QGD algorithm was shared with Lincoln Laboratory 
for a realistic testing. The results are presented below. 

The data for the first test case consisted of high 
resolution (1 ft x 1 ft) fully polarimetric SAR imagery 
preprocessed using PWF. The QGD was trained 
on two target types using spotlight data and also 
man-made discretes from stripmap clutter data. A total 
of 135 target images (chips) were chosen for training; 
these were 5 deg apart in aspect angle (Le., 5, 10, 15 
deg, etc.). The clutter data used for training consisted 
of 100 typical man-made discretes. Evaluation of 
this test case was performed using spotlight target 
and stripmap clutter data. As in the training stage, 
spotlight data of two targets that were 5 deg apart in 
aspect angle (Le., 3, 8, 13, 18 deg, etc.) were used 
for testing. The test clutter data consisted of 4,727 
stripmap clutter chips extracted from a total of 56 
square Km in area. Thus, the test data set for this 
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Fig. 8. Discrimination performance of Gamma discriminator 
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Fig. 9. Comparison of two parameter CFAR and QGD for 1 
polarization, 1 m data. 

experiment was composed of 139 target chips and 
4,727 clutter 'ships. 

The QGD was evaluated by running the data 
through the C'FAR algorithm first and only the chips 
that triggered the CFAR were evaluated by the QGD. 
Then, the ROC curves were obtained by computing 
the cumulative number of false alarms out of each 
algorithm. At a Pd = 100% the CFAR algorithm 
detected 139 targets and had 2,499 false alarms, 
whereas the cutput of the CFAWQGD while also 
detecting 139 targets, reduced the above-mentioned 
false alarm number to 483 (see Fig. 8). 

The second test case used single channel (HH) 
stripmap imagery with a resolution of 1 m x 1 m. The 
training set for the QGD algorithm consisted of 52 
target chips and 150 clutter chips that represented two 
types of targets and man-made clutter. The evaluation 
of the algorithm was performed using 75 target chips 
and 44,599 clutter chips, corresponding to detects of 
the two parameter CFAR algorithm when analyzing 
a 231 square Km of area. Fig. 9 shows the results in 
the form of an ROC curve. At Pd = loo%, the two 
parameter CFAR algorithm had 39,709 false alarms, 
while the conibination CFAWQGD algorithm also 
detected all 75 targets and had only 19,037 false 
alarms. 

These two experiments constitute a partial, 
although extensive, test of the performance of the 
gamma discriminator. They indicate that the algorithm 
is capable of generalizing the information utilized in 
the training set. Further testing of the QGD with other 
types of clutter and other selection of tactical targets 
is necessary to better characterize its performance. 
Since the original features of the QGD are the same 
as the CFAR, the better discriminant characteristics 
of the gamma discriminator are either due to a better 
estimation for the mean and standard deviation for 
targets and clutter, or to the larger feature space. 
We are presently investigating this topic. In tests 
conducted at the CNEL, the QGD applied directly 
to the imagery produced disappointing results, with 
many false detections in apparently low intensity 
smooth areas. This means that the QGD has higher 
sensitivity than the CFAR but is less specific, so the 
combination of the two as proposed here should be 
utilized. 

V. SUMMARY AND CONCLUSIONS 

We have presented a new discriminator module 
for SAR based on a 2-D extension of the gamma 
functions. The appeal of this discriminator is that 
it uses the same features extracted for the CFAR 
(intensity and power of the cell under test and its 
surroundings). The implementation that we chose uses 
only a subset of the gamma functions (g,  and g15). 

It was derived by analogy with the two parameter 
CFAR detector to enable a straightforward comparison 
with this widely used algorithm. In the gamma 
discriminator, the estimates of the local statistics are 
obtained by convolution with the g ,  (cell under test) 
and g, ,  kernels (local neighborhood) which have a 
free parameter that controls the scale and that can 
be adapted during training with the output error. 
Preliminary testing of the gamma discriminator in the 
Computational NeuroEngineering Laboratory shows 
the importance of the scale in the performance. The 
Lincoln Laboratory tests show that the combination 
CFAWQGD can improve the false alarm rate of the 
two-parameter CFAR detector without affecting the 
probability of detection. In the 1 polarization 1 m 
data, the combination CFAWQGD outperformed any 
of the alternate front-end prescreeners, but in general 
we recommend that the QGD should be utilized as 
an extra discriminator to reduce the number of false 
alarms. Novak reports [12] that the output of the QGD 
is weakly correlated with the other discriminators, 
which means that the QGD enhances the present set 
of discriminators for SAR. We are very encouraged 
with these results, and plan to investigate further 
the performance of the gamma discriminator and 
introduce several improvements. 

One aspect that requires further testing is the 
generalization properties of the QGD to changes in 
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vehicle size or clutter type. An important question 
is to find out which conditions (particularly clutter 
types) must be included in the training set for 
unconstrained use of the discriminator, and how the 
performance is affected by these extended clutter 
mixtures. Likewise, the size and type of the tactical 
targets should also cover a larger selection and the 
effect on performance quantified. The performance 
curve of Fig. 6 shows that the gamma kernels should 
accommodate vehicles of different sizes without 
drastic performance degradation, but further tests of 
robustness are necessary. One has to remember that 
it is possible to use more than two gamma kernels 
to compensate any eventual drop in performance. If 
the radar resolution changes, the kernels have to be 
readapted. 
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