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ABSTRACT

Understanding the dependency structure of a set of variables is a
key component in various signal processing applications which in-
volve data association. The simple task of detecting whether any
dependency exists is particularly difficult when models of the data
are unknown or difficult to characterize because of high-dimensional
measurements. We review the use of nonparametric tests for char-
acterizing dependency and how to carry out these tests with high-
dimensional observations. In addition we present a method to as-
sess the significance of the tests.

1. INTRODUCTION

Determining the presence and structure of dependency between a
set of variables is an important task in many sensor network, image
processing, and computer vision applications. For example, the
problem of data association arises frequently in sensor networks.
When multiple sensors and sources are present, it may be neces-
sary to determine which observations from different sensors cor-
respond to the same target. This is particularly challenging when
a prior model is either unavailable or only weakly specified. Such
issues naturally arise when the goal is to estimate the dependency
structure between sets of high-dimensional measurements; for ex-
ample, when analyzing video streams for a multi-camera sensor
network. When applicable, a joint learning/estimation approach is
appealing, but the online case requires learning the signal distribu-
tions while simultaneously performing a test for dependency.

By formulating the online problem as a hypothesis test be-
tween different factorizations of the variables and treating the dis-
tributions involved as nuisance parameters, one finds that the rele-
vant quantities can be interpreted as estimates of mutual informa-
tion (MI) and more generally, Kullback-Leibler (KL) divergence.
Direct estimation of these quantities is typically infeasible for high-
dimensional data. In such cases machine learning techniques and
bootstrap or permutation statistics can be used to find information-
preserving subspaces and estimate lower bounds on MI and KL
divergence. These lower bounds can be used in place of the opti-
mal likelihood ratio as a measure of statistical dependency.

It is also desirable to have not only have an estimate of the sig-
nificance of any such information measure. This is difficult with-
out a prior model. However, in similar fashion bootstrap and per-
mutation tests may utilized to assess the level of confidence. Such
tests are complicated by the presence of the optimization (learn-
ing) step in estimation. We describe how one may still obtain an
accurate significance level.

The use of information measures and nonparametric statistics
in hypothesis testing and machine learning have a long history.

Information theoretic measures of dependence for parametric dis-
tributions are described in Kullback [1]. Patrick and Fischer[2]
represent an early example of using kernel density estimators to
project high-dimensional measurements to low-dimensional repre-
sentations, albeit in a different context. Our approach combines the
flexibility of nonparametric estimates with information-preserving
subspaces in a dependency scenario. Bootstrap sampling and per-
mutation statistics have been used to obtain confidence intervals
[3] and to test for independence [4]. However in those cases, the
subspace was prespecified instead of being learned.

2. FACTORIZATION TESTS

A class of hypothesis tests referred to as factorization tests were
introduced in [5]. The goal of such tests is to choose among depen-
dency hypotheses in the absence of a parameterized model. Each
hypothesis describes a particular graphical representation over the
set of variable. Partitions of the variables into disjoint mutually
independent subsets is a special case.

In this paper we focus on testing between fully dependent and
fully independent factorizations which leads to a straightforward
definition of significance for our factorization test where the null
hypothesis (H0) is that the variables are independent. Given N
independent and identically distributed observations x = {xn}
for n ∈ {1...N} each of which is the output of K sensors such

that xn =
h
x1

n
T

x2
n

T
. . . xK

n
T

iT

the (normalized) likelihood ratio

for distinguishing between H1 (dependent) and H0 (independent)
is:

L({xn}) =
1

N

X
n

log
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1
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log
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k p(xk
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(1)

which has the following asymptotic behavior as N → ∞

L({xt}) =

8<
:

D
“
p(x|H1)

˛̨˛̨
p(x|H0)

”
; H1 is true

−D
“
p(x|H0)

˛̨˛̨
p(x|H1)

”
; H0 is true

(2)
That is, in the limit the optimal likelihood ratio test converges to
KL divergence. When we have the model for our data under both
hypotheses we simply plug our data into Equation 1 to calculate
the likelihood ratio and choose H1 if its value is positive or H0

otherwise (assuming equal priors).

V - 10850-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005



2.1. Nonparametric Online Factorization Test

If we replace each density in Equation 1 with densities, p̂(), esti-
mated from training data using consistent density estimators, then
we have a nonparametric factorization test that, in the limit, con-
verges to the performance of the optimal test. However, a more
interesting case is when we estimate the models and perform the
hypothesis test from the same sample draw. In this case we have
access to only one dataset, which necessarily comes from either
H1 or H0. This makes our test considerably more difficult.

If our observed data comes from H1 and we estimate densities
from this data, our estimates p̂Hi() under the factorization consis-
tent with hypothesis Hi converge to:

p̂H1
(x) → p(x|H1)

p̂H0
(x) →

Y
k

p(xk|H1)
(3)

conversely if observed data comes from H0:

p̂H1
(x) → p(x|H0)

p̂H0
(x) → p(x|H0)

(4)

Plugging in these estimates into the likelihood ratio gives an esti-
mate that in the limit under H1 becomes

L̂({xt}) =
1

N

X
n

log
p̂H1

(xn)

p̂H0
(xn)

(5)

≈
(

D
“
p(x|H1)

˛̨˛̨ Q
k p(xk|H1)

”
; H1 true

0 ; H0 true
(6)

We see that by performing an online test which estimates distri-
butions from the sample under test yields some loss in separation
between the two hypotheses and that the test becomes an estimate
of the KL divergence in Equation 6. This loss is similar to the is-
sues that arise in generalized likelihood ratio (GLR) tests [6]. In
the special case of two variables (x1 and x2) this quantity is equiv-
alent to measuring mutual information (MI).

3. FEATURE-BASED DIVERGENCE ESTIMATION

Direct estimation of the divergence term in Equation 6 is hampered
by the infeasibility of high-dimensional density estimation. How-
ever, for any deterministic function T (x), the lower bound lower
bound on the divergence of H1 and H0 is easily shown using the
data processing inequality [7]:

D
“
p(T (x)|H1)

˛̨˛̨
p(T (x)|H0)

”
≤ D

“
p(x|H1)

˛̨˛̨
p(x|H0)

”
(7)

The approach adopted here is to optimize the feature/function T (x)
so as to maximize the left side of Equation 7. Nonparametric den-
sity estimation over samples of T (x) is feasible provided the di-
mensionality of the mapping is chosen to be low enough.

3.1. Sufficiency

To help gain some intuition about the optimization, suppose that
the dependency in our observations is explained (at least approx-
imately) by some lower dimensional latent variable θ. The cor-
responding generative model is a Markov chain: H → θ → x.

For a particular hypothesis H we generate a low dimensional vari-

able θ = [θ1 θ2 . . . θk]
T

that captures the dependency between
a set of k sensors. These low dimensional variables θk generate a
high-dimensional observations xk.

The optimization to maximize the left side of Equation 7 finds
a feature T (x) which extends the chain to H → θ → x → T (x).
If this feature satisfies Equation 7 with equality, it is said to be
sufficient for θ. That is p(θ|x) = p(θ|T (x)) and we have the
equivalent Markov chain H → θ → T (x) → x. Note that it can
also be shown that if this feature is sufficient for θ is also sufficient
for H , that is p(H|x) = p(H|T (x)).

By way of example, if we assumed Gaussian distributions and
restrict T to linear 1-d projections a closed form solution exists
to maixmize the left side of Equation 7 [1]. This solution extends
to m-d projections by iteratively finding optimal 1-d projections
that are orthogonal to the previous ones. Alternatively with kernel
based methods for density estimation we can use a simple gradient
ascent method over parameterized functions T . In this paper we
restrict T to be linear subject to an L1 regularization penalty.

3.2. Obtaining Samples from H0

Notice that our optimization requires estimates of the distribution
of the feature T (x), under both H1 and H0. However, during our
online test we only receive a single set of observations x = {xn}
that were drawn under a single hypothesis. That is, they are either
dependent (under H1) or independent (under H0). Fortunately,
through the use of bootstrap sampling, we can always obtain sam-
ples of T (x) under H0. For example, given a set of observations
x = {xn} for n ∈ {1...N} and 3 sensors (K = 3) we can gener-
ate a sample of T (x) under H0 by:

1. Draw π0 = a, b, c ∈ {1...N}.

2. Evaluate T (x) at x = π0({xn}) = [x1
a

T
x1

b
T
x1

c
T
]
T

.

Bootstrap sampling draws these samples with replacement and
can be used to estimate p̂(T (x)|H0). Alternatively by sampling
without replacement we can obtain an estimate of p̂(T (x)|H0) re-
lated to permutation statistics. Note that estimating p̂(T (x)|H1)
is done by directly using the observed samples {xn}. That is,
there is no need for bootstrap sampling to obtain our density es-
timate under H1. If we are given dependent data the direct es-
timate of p̂(T (x)|H1) will differ from the bootstrap estimate of
p̂(T (x)|H0) giving us a positive KL value. However if the data
we are given is truly independent then both the direct and the boot-
strap distribution estimates should yield KL value of zero.

So far we have shown that measuring KL divergence is the
key component in our factorization tests and that we can avoid
the difficulty associated with estimating high dimensional distribu-
tions by maximizing a lower bound on KL via a low dimensional
feature. Calculating this lower bound requires estimates of both
p̂(T (x)|H1) and p̂(T (x)|H0). We directly estimate p̂(T (x)|H1)
from the observed data, but use bootstrap sampling techniques to
obtain samples T (x) under the independent hypothesis. These
samples are then used to estimate p̂(T (x)|H0).

4. MEASURING SIGNIFICANCE

We have seen that the basic factorization test for dependence in-
volves taking the observation {xn} and estimating the likelihood
ratio L({xn}). If L({xn}) is the optimal test where the distribu-
tions are given we know to choose H1 when L({xn}) is positive
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and H0 otherwise. However, here we do not know the distribution
under H1. In such cases it is common to estimate a p-value or the
probability of observing a value greater than L̂({xn}) under H0.
To do so we need the distribution of L̂({xn}) under H0. We can
obtain this through bootstrap sampling:

1. Draw a set x0,n = {π0({xn})}.

2. Apply factorization test to obtain L̂({x0,n}).

3. Repeat Nnull times to estimate p(L̂({xn})|H0).

4. Measure significance as
R ∞

L̂({xn}) p(L̂({xn})|H0)dL.

with the last step simply being a count of the number of times
L̂({x0,n}) was greater than L({xn}) divided by Nnull. This
bootstrap sampling procedure is separate from the one described
previously in Section 3.2. In that section we used permutations
to obtain samples of T (x) under H0 in order to evaluate a lower
bound on KL. Here we use permutations to obtain samples of
L̂({xn}) under H0 to assess significance.

It is important to note that using the feature based divergence
estimate described in Section 3 involves an optimization in step
2 in the procedure above. This is a key difference between our
procedure and traditional approaches that use bootstrap sampling
or permutation statistics to assess significance for likelihood based
tests that use a pre-specified statistic/function of the data [8]. We
now can calculate a measure of dependency for high-dimensional
data and asses the significance of our measurement.

5. EXPERIMENTS

We experiment with a simple model for generating high dimen-
sional data. The model is chosen specifically with regard to prop-
erties as a function dimensionality. We start by defining a low di-
mensional distribution p(θ|H1) that defines the dependency struc-
ture of a K dimensional variable θ. This yields a p(θ|H0) as the
product of the K marginals. These distributions can have any form
and will capture all the information we have about dependency. We
then generate K high dimensional observations from the following
linear model:

xk = akθk + bkzk + nk (8)

with

ak = α

»
1M

0D/3−M

–
(9)

This creates a D/3 � K dimensional observation with informa-
tion about θ evenly distributed in an M dimensional subspace. We
add distractors bkzk were bk is orthogonal to ak and zk is Gaus-
sian and uncorrelated with zj for all j �= k. Additionally, nk adds
Gaussian noise in the D/3 dimensional space.

With this model there exists a K dimensional sufficient statis-
tic of the form T (x) = [T (x1) T (x2) . . . T (xk)]

T
with

T (xk) = akT
Σ−1

n xk (10)

where Σ−1
n is the inverse covariance of the noise nk. Imporatantly

it can also be shown that by setting α = M− 1

2 in Equation 9 the
posterior p(θ|T (x)) is invariant to both M and D as well as to the
marginal distribution p(θ) (excepting some degenerate cases).

Thus the low dimensional variable θ describes the dependency
across measurements. This information is distributed into a higher
dimensional space via Equation 8. We can analytically calculate
the sufficient statistic T (x) for this model. We can control the
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Fig. 1. Trends with Gaussian data. The y axis of each plot is
p(error). From left to right : varying D (fixed M, and N), varying
N (fixed M and D).

dimensionality of our observations and how this information is
distributed by setting D and M without affecting the posterior
p(θ|T (x)). Our high dimensional observations contain distractors
bkzk add high variance irrelevant information and present prob-
lems for generic dimensionality reduction techniques such as prin-
ciple component analysis (PCA) or independent component anal-
ysis (ICA).

5.1. Gaussian Data

We begin with a simple case where p(θ|H1) is a 2-d correlated
Gaussian (ρ = .75). Figure 1 compares the performance of three
different dependency tests for various settings of M and D in
Equation 8 and the number of samples used N . The tests were:
1) KL directly from the data, 2) estimating KL using the sufficient
statistic projection T (x), and 3) optimizing for the projection that
maximizes KL. All three techniques assumed a Gaussian model.
Multiple trials were performed with both dependent and indepen-
dent data. For each trial and each method L(x) was calculated
as well as its significance. Using the results for multiple trials we
found the threshold on significance that minimized the probability
of error when choosing a hypothesis and reordered this p(error).

We see clear trends in Figure 1. First, as explained, varying
M or D does not affect the method using the sufficient statistic (a
baseline - as we do not know the statistic for the general case). We
note that the performance from best to worst is knowing the suffi-
cient statistic, optimizing for maximum KL, and finally estimating
in the full high-dimensional space.

The performance gap between direct estimation and optimiza-
tion changes as function of D and N . For small D all the methods
do equally well. For large D both the optimization and direct esti-
mation perform poorly. For small number of samples N and large
N both techniques have similar performance, while in between we
see a significant advantage with optimization method. It also is in-
teresting to note that varying M has little affect on performance
for a fixed D.

These experiments illustrate the value of estimating a lower-
dimensional statistic, even if only approximate, versus direct esti-
mation in the high dimensional space.

5.2. 3D Ball example

Next we study the case where p(θ|H1) to a mixture of four Gaus-
sian:

p(θ) =
1

J

JX
j=1

N (θ; µj , σ
2
θI3) (11)
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Fig. 2. 3D Ball Data with σ2
θ = .01.
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Fig. 3. ROC Performance Comparison. KL values computed using
T (x) give the best performance.

with J = 4 means, µj , (.5, .5, .5), (.5,−.5,−.5), (−.5, .5,−.5),
(−.5,−.5, .5) respectively. A sampling of this data is shown in
Figure 2. Note that in this example all the marginal and pair-
wise marginal densities are identical and have the same covari-
ance. Consequently, Gaussian assumptions are not sufficient for
detecting dependency. For our experiments we set σ2

θ = .15 and
set Σ−1

n so that each of the non-distractor dimensions have equal
variance. The distractor z is set so that has the highest variance.
For these experiments M = 12 and D = 75.

Estimating densities in high dimensions is difficult and may
lead to inaccurate KL values. A common approach is to apply
standard dimensionality reduction techniques such as PCA. How-
ever in our synthetic case, choosing the top principal component
will result in zero KL divergence because the maximum variance
dimensions correspond to the distractor variables. In practice we
are not given the projection corresponding to T (x) and must find it
by maximizing KL as previously described. The projections found
are not necessarily identical to T (x) but do lead to more accu-
rate estimates of KL and hence give better performance than either
PCA or working in the high dimensional observation space.

Figure 3 shows that the KL values computed using the projec-
tion corresponding to T (x) lead to better performance than com-
puting KL in high dimensions or in the maximum variance sub-
space in deciding between dependence and independence. We see
that the performance of the maximizing KL optimization falls in
between. We also see that all the techniques which made Gaussian
assumptions or used PCA failed.

5.3. Significance using permutation samples

To test how well our permutation samples approximate indepen-
dent samples, we compared significance values computed using
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Fig. 4. (Left) Strong linear relationship between significance com-
puted from independent and permuted data. (Right) Correlation
increases with the number of permutations.

both types of samples. They are highly correlated as shown in
Figure 4. In fact the correlation increases with sample size. Re-
call that this allows us to compute the distribution of KL under the
null hypothesis by effectively treating the permutation samples as
independent samples.

In this figure the “true” p-value is calculated using a distribu-
tion created using 2000 trials with independent data.

6. DISCUSSION

We have discussed a method for estimating dependency across
high-dimensional measurments. Implicit in our approach is the as-
sumption that such dependency can be approximately explained by
a low-dimensional, but unknown latent variable and that addition-
ally, the difference between dependency hypotheses can be char-
acterized by permutations. We presented empirical results demon-
strating the efficacy of the approach on a model which lends itself
to analysis. Importantly, we also showed that the method points to
a practical method for estimating significance via a similar permu-
tation approach. Our experiments demonstrated that for the model
we considered, estimates of dependency obtained from a single
sample draw show strong correlation to significance estiamated
from multiple sample draws.
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