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ABSTRACT

We present a method for sequential learning of increasingly complex
graphical models for discriminating between two hypotheses. We
generate forests for each hypothesis, each with no more edges than a
spanning tree, which optimize an information-theoretic criteria. The
method relies on a straightforward extension of the efficient Max-
Weight Spanning Tree (MWST) algorithm by incorporating multi-
valued edge-weights. Each iteration produces nested forests with
increasing number of edges; each provably optimal as compared to
alternative forests. Empirical results demonstrate superior probabil-
ity of error as compared to generative approaches.

Keywords: Learning Graphical Models, Hypothesis Testing, Max-
Weight Trees/Forests, Discriminative Learning.

1. INTRODUCTION

Reduced-order modeling of probability distributions is an important
problem, particularly in high-dimensional spaces. The usual goal in
learning graphical models is to construct probability models that are
good approximators of an underlying generative distribution. For
instance, the seminal paper by Chow and Liu [1] provides an elegant
Max-Weight Spanning Tree (MWST) algorithm for learning a tree-
structured distribution p̂(x) that is closest, in the Kullback-Leibler
(KL) divergence [2] sense, to the empirical (or any other given) dis-
tribution p(x). This particular approach is of note in that the opti-
mization relies solely on knowledge (or estimates) of marginal and
pairwise distributions over elements of the probability model inde-
pendent of the form of the source distribution. There has also been
much work (e.g. [3, 4]) for learning thin graphical models that are,
in some sense, optimal.

Here, we consider the problem of constructing tree approxima-
tions for the purposes of discrimination, that is, optimized for hy-
pothesis testing. While the development focuses on the binary hy-
pothesis testing case, the approach is easily extended to the M -ary
case. We show, that with some modifications the approach of Chow
and Liu can be extended to the discriminative case and that by re-
defining edge weights, Kruskal’s MWST algorithm [5] can be uti-
lized to efficiently generate a sequence of discriminative forest mod-
els of increasing order. In general, the discriminative tree approxi-
mations differ from the Chow-Liu derived generative models in their
structure. In addition, whereas in the generative approach one can
always improve the approximation by adding edges (subject to the
tree constraint), in the discriminative case it is quite possible that
early termination is optimal.
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There are a variety of reasons for constructing reduced-order ap-
proximations, consequently we are also interested in building suc-
cessively more complex probability models that are each optimal in
an information theoretic sense. Given distributions p and q (in actu-
ality one needs only the sets of marginal and pairwise distributions
consistent with p and q), we learn thin forests p̂ and q̂ with fewer
edges than a spanning tree. At each iteration, the resulting forests
are nested. It can also be shown that the sequence of forest approxi-
mations provide increasingly tighter bounds on the symmetrized KL-
divergence [2] as compared to the full source distributions. We vali-
date the approach with some numerical experiments.

2. GRAPHICAL MODELS & HYPOTHESIS TESTING

A multivariate probability distribution p(x) may be defined on a
graph G = (V, E). The nodes of the graph V denote random vari-
ables and the edges E ⊂

(V
2

)
indicate statistical dependencies be-

tween variables {xs|s ∈ V}. Graphical models [6] can be viewed as
generalizations of Markov chains to arbitrary undirected graphs. The
Markov property for general graphs (including chains) is that given
its neighbors, any node is independent of the rest of the variables in
the model i.e. p(xs|xN (s)) = p(xs|xV\s).

Assume we are given two high-dimensional distributions p(x)
and q(x) Markov with respect to graphs Gp and Gq (each possi-
bly fully connected). We seek lower-order approximations p̂(x) and
q̂(x) defined on graphs Gp̂ and Gq̂ such that these are good clas-
sifiers. Subsequently, the approximate models would be utilized
within a likelihood ratio test (LRT). Given the binary hypothesis test

H0 : x ∼ p or H1 : x ∼ q (1)

where x = (x1, . . . , xn)′ is a length-n random vector, the LRT is
approximated

P0 p̂(x)

P1 q̂(x)

declare H0

≷
declare H1

1. (2)

To do this, we first consider a simpler but nonetheless related prob-
lem in the following section. This will provide us with key insights
on how to construct increasingly complex probability models for hy-
pothesis testing.

3. MODELING A DISTRIBUTION WITH A FOREST

In this section, we approximate general probability distributions de-
fined on graphs with lower-order distributions. Let us define the set
of acyclical graphs (with no cycles) with n nodes and containing k
edges to be T (k). Note that if k = n − 1, then T (n−1) would be
the set of trees with n nodes. If k < n − 1 then T (k) would be a
forest. Also, given edge weights wst for all s, t ∈ V , let us define
the ‘k-edge’ MWST algorithm as the greedy Kruskal [5] algorithm
with only k ≤ n − 1 edges selected.
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Algorithm 1 The ‘k-edge’ MWST algorithm

Require: 1 ≤ k ≤ n − 1, wst;
1: T (k) = {};
2: wst = Sort(wst);
3: for i = 1 : k do
4: if (s, t) does not form a cycle in edges in tree then
5: T (k) ← T (k) ∪ (s, t);
6: end if
7: end for

Consider the following problem: We are provided with a distri-
bution p(x) defined on a graph Gp that is possibly fully connected.
We would like to approximate p(x) with a lower-order distribution

p̂
(k)
T (x) that is Markov on T (k) = (V, E(k)). For this, we choose to

minimize the KL-divergence between p(x) and p̂
(k)
T (x) i.e.

p̂
(k)
T (x) = argmin

p̂(x)∈T (k)
D(p(x) ‖ p̂(x)). (3)

Lemma 3.1 (Chow-Liu [1]) p̂
(k)
T (x) can be optimally chosen via

the ‘k-edge’ MWST algorithm with edge weights given by wst =
I(xs; xt), the mutual information (MI) between xs and xt.

Proof By the assumption that p̂
(k)
T (x) ∈ T (k),

D(p(x)||p̂(x)) = −
∑

(s,t)∈E(k)

I(xs; xt)+
∑
s∈V

H(xs)−H(x). (4)

Since we are only concerned about optimizing over the choice of el-
ements in the edge set E(k), we can equivalently choose to maximize∑

(s,t)∈E(k) I(xs; xt). Thus, this reduces to a ‘k-edge’ MWST pro-

cedure. The ‘k-edge’ MWST returns the best forest (with k edges)
at each iteration. �

While straightforward, Lemma 3.1 provides the main insight into the
selection of k ≤ n − 1 edges for representing approximating an ar-
bitrary graphical model. It implies that we can employ the canonical
MWST algorithm and terminate once we have chosen k edges. The
resulting graphical model would then be the optimal forest with k
edges.

Corollary 3.2 The edge sets E(k) obtained from the minimization of
the KL-divergence in Eqn (3) are nested i.e.

E(k) ⊂ E(k+1), ∀ k = 0, . . . , n − 2. (5)

The ‘k-edge’ MWST algorithm gives us a series of nested trees with
increasing number of edges which are optimal at each iteration, with
respect to the criterion in Eqn (3). The observation that Kruskal’s
algorithm [5] produces an optimal sequence of k-edge forests is, in
fact, well known. However, our application of it to discriminative
forests is original.

4. LEARNING FORESTS SEQUENTIALLY FOR
DISCRIMINATION

We now return to the discrimination problem. Given two known
probability distributions p(x) and q(x) defined on arbitrary graphs,
we would like to construct lower-order models p̂(x) and q̂(x) for the
specific purpose of hypothesis testing. We proceed along the same
line of argument as in section 3.

4.1. Formulation of objective function: The J-divergence

We formulate and maximize the J-divergence which, in turn, opti-
mizes bounds on the probability of error for classifying new samples.
We learn a sequence of models p̂(k)(x) and q̂(k)(x), each defined on

forests T (k), to discriminate between the two hypotheses.

Definition The J-divergence between two probability distributions
p(x) and q(x) is defined as

J(p(x), q(x)) = D(p(x) ‖ q(x)) + D(q(x) ‖ p(x)). (6)

Note that J is symmetric in its arguments, unlike the Kullback-
Leibler divergence. We will be maximizing the J-divergence to se-
lect the elements in the edge sets E(k) for hypothesis testing. On the
use of J-divergence, it is worth noting the following upper and lower
bounds on the probability of error Pr(err) [7].

1

2
min(P0, P1)e

−J ≤ Pr(err) ≤
√

P0P1

(
J

4

)−1/4

, (7)

where P0 and P1 are the prior probabilities of H0 and H1 respec-
tively. Consequently, we conjecture that maximizing the J-divergence
between the probability models we learn i.e. p̂(k)(x), q̂(k)(x) min-
imizes an upper and a lower bound on Pr(err). In section 5, we
empirically show that this is indeed the case. In fact the actual prob-
ability of error Pr(err) is reduced via discriminative learning.

As in section 3, maximizing the J-divergence is achieved by
selecting a only subset of the edges E(k) at the kth iteration. More
precisely, we seek lower-order models p̂(k)(x), q̂(k)(x) such that

(p̂(k)(x), q̂(k)(x)) = argmax
p̂,q̂∈T (k)

J(p, q). (8)

In performing the optimization, we make extensive use of the easily
shown identities.∫

p (x) log

(
p(xs)

q(xs)

)
dx = D(p(xs) || q(xs)) (9)

∫
p (x) log

(
p(xs, xt)

q(xs, xt)

)
dx = D(p(xs, xt) || q(xs, xt)) (10)

where s, t ∈ V .

4.2. Solution of the problem: Maximizing J(p̂, q̂)

The source distributions p, q are Markov on general graphs Gp and

Gq while the reduced-order distributions p̂(k), q̂(k) are Markov on

forests T (k)
p , T (k)

q . Because of the tree assumption, the J-divergence
admits a closed form solution in terms of marginal and pairwise in-
formation theoretic quantities.

Lemma 4.1 The J-divergence of p̂ and q̂ can be expressed as

J(p̂, q̂) =

∫
x

(p(x) − q(x)) log

(
p̂(x)

q̂(x)

)
dx (11)

=
∑
s∈V

J(ps, qs) +
∑

(s,t)∈Ep∪Eq

wst (12)

and the edge weights wst are given by

wst =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ip (xs; xt) − Iq (xs; xt)
+D (qs,t||ps,t) − D (qsqt||pspt) (s, t) ∈ Ep \ Epq

Iq (xs; xt) − Ip (xs; xt)
+D (ps,t||qs,t) − D (pspt||qsqt) (s, t) ∈ Eq \ Epq

J(pst, qst) − J (pspt, qsqt) (s, t) ∈ Epq

(13)
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where ps = p(xs) and ps,t = p(xs, xt), Epq = Ep ∩ Eq denotes
the intersection of the edge sets Ep and Eq . Ip (xs; xt), Iq (xs; xt)
denote the mutual information between nodes s and t under the p
and q probability models, respectively.

Proof sketch: Since p̂ is defined as a tree distribution, it admits the
factorization

p̂(x) =
∏
s∈V

p(xs)
∏

(s,t)∈Ep

p(xs, xt)

p(xs)p(xt)
. (14)

q̂ has a similar factorization. These factorizations can be substituted
into Eqn (6) and the KL-divergences can then be expanded. Finally,
by using the identities in Eqns (9) and (10), we can group terms
together to obtain the desired result. �

Note the close similarity between Eqns (4) and (12). In particular,
the edge weights have been replaced by wst. We can equivalently
choose to maximize

∑
(s,t)∈Ep∪Eq

wst. To do this, we use the same

‘k-edge’ MWST algorithm with edge weights given by wst. In this
case we must consider the maximum of the three possible values for
wst. Whichever is the maximum indicates one of three actions:

1. Place an edge between s, t for p̂ and not q̂ (corresponding to
(s, t) ∈ Ep \ Epq).

2. Place an edge between s, t for q̂ and not p̂ (corresponding to
(s, t) ∈ Eq \ Epq).

3. Place an edge between s, t for both p̂ and q̂ (corresponding
to (s, t) ∈ Epq).

We now arrive at a direct analog of Lemma 3.1.

Lemma 4.2 p̂(k)(x), q̂(k)(x) with edge sets E(k)
p and E(k)

q can be
optimally chosen via the ‘k-edge’ MWST algorithm with edge weights
given by wst in Eqn (13).

We would also expect the edge sets E(k) to be nested just as in sec-
tion 3, though in the discriminative case at each iteration the approx-

imations for the two graphs T (k)
p , T (k)

q may have a different number
of edges. Additionally, the optimization may reach a point where it
is advantageous to terminate at k < n−1 due to all of the remaining
wst being negative.

Corollary 4.3 The edge sets E(k)
p , E(k)

q obtained from the maximiza-
tion of the J-divergence in Eqn (8) are nested i.e.

E(k)
p ⊂ E(k+1)

p , ∀ k = 0, . . . , n − 2. (15)

4.3. Bound on the J-divergence

The following result is evident from the definition of p̂(k), q̂(k).

Lemma 4.4 Denoting p̂, q̂ the proper projections of p, q onto the
graphical structure associated with p̂, q̂, the k-th forest approxima-
tion provides a lower bound for the full approximation J(p̂, q̂) i.e.

J(p̂(k), q̂(k)) ≤ J(p̂, q̂). (16)

In addition, if the source distributions p, q are tree distributions, then
as k → n − 1, J(p̂(k), q̂(k)) → J(p, q) = J(p̂, q̂).

Hence, for tree-structured source distributions, we get increasingly
accurate approximations to the actual J-divergence by using the op-
timal sequence of forests p̂(k), q̂(k) to approximate the source distri-
butions p, q.

5. NUMERICAL EXPERIMENTS

In this section, we describe our numerical simulations that demon-
strate the convergence of J(p̂(k), q̂(k)) and the reduced Pr(err). We
only consider Gauss-Markov Random Fields (GMRFs) in this paper.
GMRFs can be parameterized in the information form:

p(x) ∝ exp

{
−1

2
x′Jx + h′x

}
(17)

J is the information matrix (inverse covariance matrix) and its fill
pattern [6] provides the Markov structure; x is Markov with respect
to G if and only if Js,t = 0 for all (s, t) /∈ E . Another useful quantity
is the conditional correlation coefficient ρs,t [6]. This is defined
as the correlation coefficient of variables xs and xt conditioned on
knowledge of all the other variables xV\{s,t} i.e.

ρs,t =
cov(xs, xt|xV\{s,t})√

var(xs|xV\{s,t})var(xt|xV\{s,t})
=

−Js,t√
Js,sJt,t

. (18)

For our experiments, the source distributions p and q are described
by two different sets of probability models.

1. Grid: p and q are both n = 6 × 6 grid models with con-
stant conditional correlation coefficients ρp = 0.12 and ρq =
−0.18 respectively.

2. Cycle: p is a n = 32-node cycle graph with each edge con-
nected to its 2 nearest neighbors and ρp = 0.08. q is another
cycle graph of the same size with each edge connected to its
5 nearest neighbors and ρq = −0.08.

For both sets of models, the components of the mean vectors μp, μq

are drawn independently from N (0, 1). For clarity of exposition,
we will denote the discriminatively and generatively learned mod-

els/forests as (p̂
(k)
D , q̂

(k)
D ) and (p̂

(k)
G , q̂

(k)
G ) respectively.

5.1. Convergence of J-divergence

The structures of q under the grid and cycle models are shown in
Fig 1 (top). The learned trees under the generative and discrimina-
tive approaches are also shown. For the cycle model, the discrimi-
native model exploits the primary difference of longer range correla-
tion mixed with shorter range correlations. The generative approach
neglects this difference. It is harder make the same conclusion about
the grid model other than the resulting tree structures are different.
Finally, we note that some of the edge weights wst may be identical
so these structures may not be uniquely determined by wst.

In Fig 2, we show the convergence of J(p̂
(k)
D , q̂

(k)
D )/J(p, q) and

J(p̂
(k)
G , q̂

(k)
G )/J(p, q) as a function of k for the grid and cycle mod-

els. Under both the grid and cycle models, the discriminative ap-
proach (in blue o) provides a higher value of the J-divergence as
compared to the generative approach (in red x).

Interestingly for the grid model, J(p̂
(k)
D , q̂

(k)
D ) is higher than

J(p, q) for some k as seen from Fig 2. This does not violate Lemma
4.4 because the lemma refers to the full approximate distributions
p̂, q̂ and not the source distributions p, q. This observation shows
that the bounds in Eqn (7) are lower. However, the Pr(err) under the
approximate models is obviously higher. Consequently, we conjec-

ture that J(p̂
(k)
D , q̂

(k)
D ) is giving us an improved bound on the Pr(err)

when using the full model as well, since it must be contained in these
bounds.
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Original Grid Model Original Cycle Model

Generatively Learnt Tree Model Generatively Learnt Tree Model

Discriminatively Learnt Forest Model Discriminatively Learnt Forest Model

Fig. 1. Top plots: Original structures of q(x). Middle plots: The

tree approximation q̂
(n−1)
G (x) using the generative learning model.

Bottom plots: The k = n− 1 forest approximation q̂
(n−1)
D (x) using

the discriminative model.

5.2. Reduced Probability of Error Pr(err)

Ultimately, Pr(err) is to be minimized. To show that the Pr(err) is
indeed reduced, we generated 10000 new samples from the source
distributions. In Fig. 3, we report the average Pr(err) (over 2000 in-

dependent runs) on the source (p, q), the discriminative (p̂
(k)
D , q̂

(k)
D )

and the generative (p̂
(k)
G , q̂

(k)
G ) distributions for all k ≤ n−1. Under

both the grid and cycle models, the discriminative learning approach
(in blue o) results in a lower Pr(err) as compared to the generative
learning approach (in red x).

6. CONCLUSION

We have a constructive method which optimizes an information mea-
sure (the J-divergence) which itself can be used to compute both
upper and lower bounds on the Pr(err). The ‘k-edge’ MWST al-
gorithm provides a principled sequential algorithm to select edges
of graphical models for the specific purpose of hypothesis testing.
At each iteration, the nested forests are provably optimal with re-
spect to the J-divergence. We have numerically verified the results
on two sets of simple graphical models. Our experiments show that,
as compared to the generative (Chow-Liu) approach, the discrimi-
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Fig. 2. J(p̂
(k)
D , q̂

(k)
D )/J(p, q) and J(p̂

(k)
G , q̂

(k)
G )/J(p, q) for the grid

and cycle models. Generative learning always results in a lower
J(p̂(k), q̂(k)) as compared to discriminative learning.
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Fig. 3. Pr(err)’s for the grid and cycle models. At each k, learn-

ing the probability models (p̂
(k)
D , q̂

(k)
D ) discriminatively reduces the

Pr(err). The Pr(err) under the source distributions p, q for the grid
and cycle models are 1.6 × 10−3 and 3.6 × 10−3 respectively.

native learning approach results in higher J-divergences and hence
better bounds on the Pr(err). Most importantly, it is observed that
the actual Pr(err) is reduced for all the discriminative forest models
learned.
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