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An Introduction to Statistical
Methods of Medical Image
Registration

Lilla Zöllei, John Fisher, William Wells

ABSTRACT After defining the medical image registration problem, we
provide a short introduction to a select group of multi-modal image align-
ment approaches. More precisely, we choose four widely-used statistical
methods applied in registration scenarios for analysis and comparison. We
clarify the implicit and explicit assumptions made by each, aiming to yield
a better understanding of their relative strengths and weaknesses. We also
introduce a figural representation of the methods in order to provide an
intuitive way of illustrating their similarities and differences.

1 Introduction

Registration of medical image data sets is the problem of identifying a set
of geometric transformations which map the coordinate system of one data
set to that of the others. Depending on the nature of the input modali-
ties, we distinguish between uni-modal and multi-modal cases, according
to whether the images being registered are of the same type. The multi-
modal registration scenario is more challenging as corresponding anatom-
ical structures will have differing intensity properties. In our analysis, we
focus on the multi-modal case.

When designing a registration framework, one needs to decide on the
nature of the transformations that will be used to bring images into agree-
ment. For example, rigid transformations are generally sufficient in the
case of bony structures while non-rigid mappings are mainly utilized for
soft tissue matching. One must also evaluate the quality of alignment given
an estimate of the aligning transformation. Objective functions or simi-
larity measures are special-purpose functions that are designed to provide
these essential numerical scores. The goal of a registration problem can
then be interpreted as the optimization of such functions over the set of
possible transformations. In general, these problems correspond to multi-
dimensional non-convex optimization problems where we cannot automati-
cally bracket the solution (as we would in case of a 1D line-search). Thus an
initial estimate of the aligning transformation is needed before the search
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begins.

In the past few decades there have been numerous types of objective
functions proposed for solving the registration problem. Among these, there
exist a variety of methods that are based on sound statistical principles.
These include various maximum likelihood [4, 10], maximum mutual infor-
mation [5, 11], minimum Kullback-Leibler divergence [1], minimum joint
entropy [9] and maximum correlation ratio [8] methods. We are primarily
interested in these, and in our discussion we select four of these registration
approaches for further analysis. We explore the relative strengths and weak-
nesses of the selected methods, we clarify the type of explicit and implicit
assumptions they make and demonstrate their use of prior information. By
such an analysis and some graphical representations of the solution man-
ifold for each method, we hope to facilitate a deeper and more intuitive
understanding of these formulations.

In the past, similar or more detailed overview studies of the registration
problem have been reported. Roche et al. [8], for example, have described
the modeling assumptions in uni-modal registration applications and a gen-
eral maximum likelihood framework for a certain set of multi-modal regis-
tration approaches, and we have described a unified information theoretic
framework for analyzing multi-modal registration algorithms [13, 14].

2 The Similarity Measures

In our analysis, we discuss four objective criteria that rely on clear sta-
tistical principles: maximum likelihood (ML), approximate maximum like-
lihood (MLa), Kullback-Leibler divergence (KL) and mutual information
(MI). While not an exhaustive list, these similarity measures are represen-
tative of a significant group of currently used registration algorithms. Many
registration approaches either directly employ or approximate one of these
measures.

While the analysis presented here carries straightforwardly to registra-
tion of multiple data sets, for simplicity, we focus on the case of two regis-
tered data sets, u(x) and v(x) sampled on x ∈ <M . These data sets repre-
sent, for example, two imaging modalities of the same underlying anatomy
in an M-dimensional space. In practice, we observe u(x) and vo(x) in which
the latter is related to v(x) by

vo(x) = v(T ∗(x)) or v(x) = vo

(
(T ∗)−1 (x)

)
, (1.1)

where T ∗ : <M → <M is a bijective mapping corresponding to an unknown
relative transformation. The goal of registration is to find an estimate of an
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T*
u(x) vo(x) v(x)

FIGURE 1. An 2D example of the registration problem. The observed input
images are u(x), an MRI slice, and vo(x), a CT slice. v(x) is the CT slice that
is in correct alignment with the MRI slice. The unknown transformation that
relates the observed data to the aligned image is T ∗. The goal of the registration
algorithm is to make T̃ be the best estimate of (T ∗)−1.

aligning transformation T̃ ≈ (T ∗)−1 which optimizes some objective func-
tion of the observed data sets.1 Figure 1 demonstrates the key components
of the registration problem via a 2D example.

Throughout our analysis (and consistent with practice) spatial samples
xi are modeled as independent random draws of a uniformly distributed
random variable X whose support is the domain of u(x). Consequently, all
the analyzed methods assume that

(IID-i) observed intensities vo(xi) and u(xi) can be viewed as indepen-
dent and identically distributed (i.i.d.) random variables, despite
spatial dependencies present within the data.

This is a simple consequence of the property that a function of an i.i.d.
random variable is itself an i.i.d. random variable under very general con-
ditions.

2.1 Maximum Likelihood

The maximum likelihood (ML) method of parameter estimation has served
as the basis for many registration algorithms. Its popularity in parameter
estimation can be explained by the fact that as the sample size increases,
ML becomes the smallest variance unbiased estimator. As we will see, prac-
tical issues generally preclude a direct ML approach. Analysis of the method
is however useful for comparison purposes. Given that the input images are
related by an unknown transformation T ∗ (see Figure 1), we parameterize
the observed data samples (a sequence of joint measurements drawn i.i.d)

1Technically speaking, u(x) may have undergone some transformation as well, but
without loss of generality we assume it has not. If there were some canonical coordinate
frame (e.g. an anatomical atlas) by which to register the data sets one might consider
transformations on u(x) as well.
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T= T I

initial estimate by ML

ML solution at T = T*

independent scenario
p(u,v) = p(u)p(v)

joint models that are parameterized by T
ML: observed data evaluated under

the entire manifold of joint models is
known and available according to ML

FIGURE 2. Joint density manifold of the registration search space parameterized
by T. According to the classical ML approach, the entire manifold of joint models
is known and available for the optimization task. The solution is defined at the
location which maximizes the likelihood of the observed sample pairs. Here TI

has been chosen as an initial estimate for the search.

as

YT∗ = {[u, vT∗ ]1 , . . . , [u, vT∗ ]N}
= {[u(x1), v(T ∗(x1))] , . . . , [u(xN ), v(T ∗(xN ))]}
= {[u(x1), vo(x1)] , . . . , [u(xN ), vo(xN )]} .

According to the ML criterion, we obtain estimates by varying some pa-
rameters of a probabilistic model that is being evaluated on a set of ob-
served data. In the case of our registration problem, the optimal geometrical
transformation that explains the observations according to the ML criterion
satisfies the (normalized) log-likelihood criterion:

TML = arg max
T

LT (YT∗) (1.2)

= arg max
T

1
N

∑

i

log (p ([u, vT∗ ]i ; T )) . (1.3)

LT (.) in Equation (1.2) indicates that we are evaluating a model parame-
terized by the transformation T .

This formulation of the registration problem implicitly assumes that

(ML-i) as T approaches T ∗, Equation (1.3) is non-decreasing.
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An important distinction between currently used registration methods
and the classical ML approach is that the former optimize the objective
criterion by transforming the joint observations ([u, vT∗ ]i). In contrast, a
classical ML approach optimizes the objective function by changing the
parameters of the joint density model under which we evaluate the obser-
vations (as a function of transformation T ), leaving the observations static
throughout the search process. Below, we will indicate these differences via
notional graphs of the solution paths of the selected methods. In Figure
2, according to the ML approach, the entire search space of joint models
(parameterized by transformation T ) is considered to be known and avail-
able. We make the initial estimate of this example be T = TI (the identity
transformation) and the solution lies at transformation T ∗ that maximizes
the likelihood function with respect to the currently observed images. Thus
the initial guess by ML is modified in order to satisfy the criterion.

This framework highlights two practical obstacles to a direct ML ap-
proach. The optimization of Equation (1.2) requires the solution of a system
of non-linear equations for which no direct global solution typically exists.
Finding a globally optimal solution would likely require that p(u, v; T ) be
pre-computed over all relative transformations T (see Figure 2). An alterna-
tive is to use an optimization procedure that searches for a local optimum,
which would require the ability to produce p(u, v; T ) on demand, as we
search. The first approach may be impractical due to computational and
memory limitations. While the second approach may be feasible, as far as
we know, it has not been tested or used. The second obstacle is that there
are configurations of the data for which a considerable set of transforma-
tions form an equivalence class under the ML criterion. As the relative
transformations away from the solution T = T ∗ become large, we observe
empirically that the joint models tend toward statistical independence. In
addition, they may tend towards the same independent model (more on this
appears in Section 2.4, below). In this situation, the ML criterion will lose
traction for such large transformations. (In Figure 2, such models are lo-
cated outside of the dashed outline.) As we shall see, MI-based approaches
can be interpreted as moving away from these models.

2.2 Approximate Maximum Likelihood

As mentioned above, the optimization of Equation (1.2) is generally a very
difficult problem. Suppose, however, that we have a model of the joint
density of our data sets at one particular parameter setting, specifically
when the multi-modal images are registered. We can estimate this model
from other registered data sets and evaluate new observations under the
resulting model. This idea was first suggested by Leventon and Grimson and
we refer to it as an approximate maximum likelihood registration approach
(MLa) [4]. (A similar approach has been discussed more recently in [12].)
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T= T I
T= T*

evaluated under fixed model density
MLa: offset observations

independent scenario
p(u,v)=p(u)p(v)

(assumed to be close to the true joint model)
the estimated a priori model used by MLa

initial estimate by MLa

FIGURE 3. The approximate ML method (MLa) searches over the set of joint
data sets offset by T. The goal is to maximize a criterion that is similar to
likelihood with respect to a fixed model.

The approach makes two strong modeling assumptions:

(MLa-i) It is feasible to estimate or learn a joint probability model over
the data modalities of interest at the correct alignment2, and

(MLa-ii) the resulting model accurately captures the statistical properties
of other unseen image pairs (of the same anatomy and with the
same modality pairing as the training set).

We denote the estimated joint density model as

p◦ (u, v) ≈ p (u, v;TI) .

As with all of the remaining methods, the MLa approach transforms the ob-
servations prior to evaluating the objective criterion. We denote the trans-
formed observations as

YT =
{[

u(x1), v◦(T̂ (x1))
]
, . . . ,

[
u(xN ), v◦(T̂ (xN ))

]}

=
{[

u(x1), v(T ∗ ◦ T̂ (x1))
]
, . . . ,

[
u(xN ), v(T ∗ ◦ T̂ (xN ))

]}

= {[u(x1), v(T (x1))] , . . . , [u(xN ), v(T (xN ))]}
= {[u, vT ]1 , . . . , [u, vT ]N} . (1.4)

2Assuming manual or other types of ground truth results are available from previous
registration experiments.
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We emphasize that the transformation T =
(
T ∗ ◦ T̂

)
in this particular

notation refers to the relative transformations on v(x) rather than on
the observed image of v◦(x). In practice, it is T̂ that we apply to the
observed image, so optimization is performed over T̂ through v◦(T̂ (x)).
This is equivalent to implicit optimization over T through the relation
v(T (x)) = v◦(T ∗ ◦ T̂ (x)). While we express results on the implicit transfor-
mation, there are simple relationships which allow results to be expressed
in terms of either T or T̂ .

The MLa approach estimates T to be the transformation that maximizes
a criterion that is similar to the likelihood criterion:

TMLa = arg max
T

LTI
(YT ) (1.5)

= arg max
T

1
N

∑

i

log (p ([u, vT ]i ; TI)) . (1.6)

Notice that, according to this approach the joint observations ([u, vT ]i)
are varied as a function of T and the model density p◦ is held static. It is
under this particular fixed probability model that all the transformed in-
puts are evaluated. In Figure 3, we indicate the path of the MLa approach
by tracing a sample search path. Beginning with the initial estimate, the
algorithm searches over transformations to maximize the likelihood-like cri-
terion with respect to the previously constructed, static density model.

The MLa method also makes an implicit assumption when solving the
registration problem. It assumes that:

(MLa-iii) as T̂ approaches (T ∗)−1, or equivalently as (T ∗ ◦ T̂ ) approaches
TI , Equation (1.6) is non-decreasing.

In general, one cannot guarantee the validity of this assumption. Theo-
retically, there might exist some counter-intuitive scenarios for which this
implicit hypothesis would fail. The existence of these is explained by the
information theoretic phenomenon of typicality [2]. A more detailed discus-
sion of this issue is not in the scope of this chapter; it is described in an
information-theoretic framework in [14].

This obstacle, in the context of multi-modal registration, may explain
some shortcomings of the MLa approach that were observed empirically by
Chung et al. [1]. It motivates their registration approach, which is described
in the next section.

2.3 Kullback-Leibler Divergence

Chung et al. suggested the use of KL divergence as a registration measure in
order to align digital-subtraction angiography (DSA) and MR angiography
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T= T I

KL: min D

T= T*

independent scenario
p(u,v)=p(u)p(v)

(assumed to be close to the true joint model)
the estimated a priori model used by KL

initial estimate by KL

FIGURE 4. According to the KL framework, at each point on the manifold a
joint density is estimated from the offset data pairs. The aligning transformation
is located where the KL distance (D) is minimized between that current estimate
and a previously defined fixed model.

(MRA) data sets [1]. Using the same modelling assumption as in MLa
(i.e. a model of the joint intensity data can be estimated from a set of
registered data sets), they optimize an objective function based on a KL
divergence term, that is, the distance between the joint density at the
current transformation estimate and the fixed model is to be minimized:

TKL ≈ arg min
T

D (p̂(u, v; T )‖p◦(u, v)) ,

where po is constructed as in the MLa approach from correctly registered
data sets and p̂(u, v; T ) is a probability model estimated from the trans-
formed sets of observed pixel intensities {u(xi), v(T (xi))} (or {u(xi), vo(T̂ (xi))}
as discussed above). Whereas the previous methods utilize a likelihood func-
tion of the observed data sets, here numerical or Monte Carlo integration
is used in order to calculate the KL divergence terms directly.

Consequently, in addition to assumptions MLa-i and MLa-ii, this ap-
proach makes the following hypothesis:

(KL-i) There is a reliable method for estimating p(u, v; T ) from trans-
formed observations, and

(KL-ii) the KL divergence D (p(u, v; T )||p◦(u, v)) can be accurately esti-
mated via numerical or Monte Carlo integration of

∫ ∫
p̂ (u, v;T ) log

(
p̂ (u, v;T )
p◦ (u, v)

)
dudv (1.7)
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by substituting p̂ (u, v; T ) for p (u, v; T ) in the KL divergence in-
tegral.

The KL method has been demonstrated to be more robust with respect
to, or less dependent on, the size of the sampling region (the area from
which the joint sample pairs are drawn from) than the MLa (or the MI)
approaches [1]. This robustness is demonstrated empirically [1] and can be
partly explained by typicality, as discussed in the preceding section.

Provided that both of the KL assumptions are valid (the density esti-
mate and the integration methods are accurate), the KL divergence es-
timate is non-increasing as T̂ approaches (T ∗)−1. This is supported by
empirical comparisons in which KL did not exhibit some of the undesirable
local extrema encountered in the MLa method[1]. Additionally, the authors
emphasize that even though the estimated models represent a strong as-
sumption, sufficient model distributions can be constructed even if manual
alignment is unavailable. For example, the joint probability distribution
could be estimated from segmented data for corresponding structures.

In relation to the previous methods, both the samples ([u, vT ]i) and the
evaluation density (p̂(u, v; T )) are being varied as a function of the trans-
formation T , while the algorithm approaches the static joint probability
density model (p◦(u, v)) constructed prior to the alignment procedure. In-
stead of evaluating the joint characteristics of the transformed input data
sets under the model distribution, the KL approach re-estimates the joint
model (p̂(u, v;T )) at every iteration and uses that when evaluating the ob-
servations. In Figure 4, the KL method is shown to approach the solution
by minimizing the KL distance between the model and the current estimate.

2.4 Mutual Information and Joint Entropy

As has been amply documented in the literature [5, 6, 7, 11], Mutual In-
formation (MI) is a popular information theoretic objective criterion. It
estimates the transformation parameter T by maximizing the mutual in-
formation (or the statistical dependence) between the input image data
sets:

TMI = arg max
T

I (u; vT ) .

One way to define the MI term is to use marginal and joint entropy mea-
sures. By definition, given random variables A and B, it is the sum of their
marginal entropies minus their joint:

I(A,B) = H(A) + H(B)−H(A,B).
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T= T I
T= T*

MI: max D

independent scenario
p(u,v)=p(u)p(v)

initial estimate by MI

FIGURE 5. According to MI, the solution is located maximum KL distance away
from the worst-case, independent scenario, where the joint density is defined as
the product of its marginals: p(u, v; T ) = p(u)p(v; T ).

In the multi-modal alignment scenario that translates to

I(u; vT ) = H(p(u))+H(p(v; T ))−H(p(u, v; T )). (1.8)

If T is restricted to the class of symplectic transformations (i.e. volume
preserving), then H(p(u)) and H(p(v;T )) are invariant to T . In that case,
maximization of MI is equivalent to minimization of the joint entropy term,
H(p(u, v; T )), the presumption being that this quantity is minimized when
T̂ = (T ∗)−1. The minimization of the joint entropy term has also been
widely used in the registration community.

MI can also be expressed as a KL divergence measure [3] as

I (u, vT ) = D (p(u, v; T )‖p(u)p(v; T )) .

That is, mutual information is the KL divergence between the observed
joint density term and the product of its marginals. Accordingly, the im-
plicit assumption of MI-based methods is that:

(MI-i) as (T ∗ ◦ T̂ ) diverges from TI (as we are getting farther away from
the ideal registration pose) the joint intensities look less statisti-
cally dependent, tending towards statistical independence.

This allows us to write the MI optimization problem as maximizing the
divergence from the current density estimate to the scenario where the
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images are completely independent:

TMI ≈ arg max
T

D (p̂(u, v; T )‖p̂(u)p̂(v; T )) .

As in the KL divergence alignment approach, both the samples and the
evaluation densities are being simultaneously varied as a function of the
transformation T . However, instead of approaching a known model point
according to KL distance, the aim is to move farthest away from the con-
dition of statistical independence among the images, in the KL sense. This
behavior is illustrated in Figure 5.

Numerous variations on the mutual information metric have been intro-
duced; for instance, one making it invariant to image overlap (normalized
mutual information [9]) and another enhancing its robustness using addi-
tional image gradient information (gradient-augmented mutual information
[6]). In this report, we do not list and analyze these, given that they operate
with similar underlying principles.

3 Conclusion

We have provided a brief comparison of four well-known and widely used
multi-modal image registration methods. We illustrated the underlying as-
sumptions which distinguish them, and specifically, we clarified the as-
sumed behavior of joint intensity statistics as a function of transformation
parameters. Considering the collection of approaches discussed, we see that
the ML approach has not actually been used, in practice. The related MLa
method and the KL divergence method exploit prior information in the
form of static joint density estimates over previously registered data. Sub-
sequently, both make similar implicit assumptions regarding the behavior
of joint intensity statistics as the transformation estimate approaches the
ideal alignment. In contrast, the MI approach makes no use of specific
prior joint statistics – instead, it simply moves away from the general class
of statistically independent models. Figure 6 serves as a visual guide to
summarize how the different methods approach the solution.
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T= T I

KL: min D initial estimate by
MLa, KL and MI
and ML solution

T= T*

initial estimate by ML

independent scenario

MI: max D

joint models that are parameterized by T
ML: observed data evaluated under

evaluated under fixed model density
MLa: offset observations

the estimated a priori model used by KL and MLa
(assumed to be close to the true joint model)

FIGURE 6. Manifold of the registration search space parameterized by trans-
formation T. The illustration shows how each of the examined methods (ML,
MLa, KL and MI) search through the settings in order to obtain the best esti-
mate of the aligning transformation. Note that the ML method transforms the
model to agree with the observed data, while the rest of the methods operate by
transforming the observed data.
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