
The Case for Moving Congestion Control
Out of the Datapath

Akshay Narayan, Frank Cangialosi, Prateesh Goyal,
Srinivas Narayana, Mohammad Alizadeh, Hari Balakrishnan

{akshayn,frankc,prateesh,alephtwo,alizadeh,hari}@csail.mit.edu
MIT CSAIL

Abstract
With Moore’s law ending, the gap between general-purpose
processor speeds and network link rates is widening. This trend
has led to new packet-processing “datapaths” in endpoints, in-
cluding kernel bypass software and emerging SmartNIC hard-
ware. In addition, several applications are rolling out their own
protocols atop UDP (e.g., QUIC, WebRTC, Mosh, etc.), form-
ing new datapaths different from the traditional kernel TCP
stack. All these datapaths require congestion control, but they
must implement it separately because it is not possible to reuse
the kernel’s TCP implementations. This paper proposes mov-
ing congestion control from the datapath into a separate agent.
This agent, which we call the congestion control plane (CCP),
must provide both an expressive congestion control API as well
as a specification for datapath designers to implement and de-
ploy CCP. We propose an API for congestion control, datapath
primitives, and a user-space agent design that uses a batch-
ing method to communicate with the datapath. Our approach
promises to preserve the behavior and performance of in-
datapath implementations while making it significantly easier
to implement and deploy new congestion control algorithms.

1 Introduction
Traditionally, applications have used the networking stack
provided by the operating system through the socket API.
Recently, however, there has been a proliferation of new
networking stacks as NICs have offered more custom
features such as kernel bypass and as application developers
have come to demand specialized features from the net-
work [2, 11, 28, 32, 44, 49]. We refer to such modules that
provide interfaces for data movement between applications
and network hardware as datapaths. Examples of datapaths
include not only the kernel [17], but also kernel-bypass

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
HotNets-XVI, November 30-December 1, 2017, Palo Alto, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5569-8/17/11. . . $15.00
https://doi.org/10.1145/3152434.3152438

methods [2, 28, 44], RDMA [49], user-space libraries [32],
and emerging programmable NICs (“SmartNICs” [39]).

The proliferation of datapaths has created a significant chal-
lenge for deploying congestion control algorithms. For each
new datapath, developers must re-implement their desired con-
gestion control algorithms essentially from scratch—a difficult
and tedious task. For example, implementing TCP on Intel’s
DPDK is a significant undertaking [28]. We expect this sit-
uation to worsen with the emergence of new hardware acceler-
ators and programmable NICs because many such high-speed
datapaths forego programming convenience for performance.

Meanwhile, the diversity of congestion control algorithms—
a key component of transport layers that continues to see
innovation and evolution—makes supporting all algorithms
across all datapaths even harder. The Linux kernel alone
implements over a dozen [12, 24, 26, 27, 33, 34] algorithms,
and many new proposals have emerged in only the last few
years [8, 13, 19, 22, 31, 35, 36, 47, 48]. As hardware datapaths
become more widely deployed, continuing down the current
path will erode this rich ecosystem of congestion control
algorithms because NIC hardware designers will tend to
bake-in only a select few schemes into the datapath.

We believe it is therefore time for a new datapath-agnostic
architecture for endpoint congestion control. We propose to
decouple congestion control from the datapath and relocate
it to a separate agent that we call the congestion control plane
(CCP). CCP runs as a user-space program and communicates
asynchronously with the datapath to direct congestion control
decisions. Our goal is to identify a narrow API for congestion
control that developers can use to specify flexible congestion
control logic, and that datapath developers can implement to
support a variety of congestion control schemes. This narrow
API enables congestion control algorithms and datapaths to
evolve independently, providing three key benefits:

Write once, run everywhere. With CCP, congestion control
researchers will be able to write a single piece of software
and run it on multiple datapaths, including those yet to
be invented. Additionally, datapath developers can focus
on implementing a standard set of primitives—many of
which are already used today—rather than worry about
constantly evolving congestion control algorithms. Once an
algorithm is implemented with the CCP API, running on new
CCP-conformant datapaths will be automatic.

Ease of programming. Locating CCP in user-space and
designing a convenient API for writing congestion control

https://doi.org/10.1145/3152434.3152438

NIC

Application

TX RX

Datapath

CCP Agent

C
W

N
D

R

ATE

User-Space

Urgent?

Y
Batching

N

CWND(c)

OnUrgent()
OnBatch() DOnUrgent()

OnBatch()
OnUrgent()
OnBatch()

RATE(r)

Feedback
Control

Algorithms

…

Figure 1: Overview of CCP and application interactions with the datap-
ath. Both the application and CCP operate in user-space, while the data-
path may exist in user-space, kernel-space, or hardware. If a packet con-
tains urgent information, e.g., a congestion event, the datapath contacts
CCP immediately. Otherwise, it batches user-specified measurements
and sends them asynchronously. A CCP algorithm implements a han-
dler for each of these cases. The datapath enforces the rate or congestion
window it receives from CCP. The application’s interface to the datapath
(e.g., POSIX socket API) is unmodified.

algorithms will make it easier to develop and deploy new
schemes. This will ease the process of implementing and eval-
uating novel algorithms. Furthermore, algorithm developers
will be free to utilize powerful user-space libraries (e.g., neural
nets) and focus on the details of their methods rather than
learning low-level datapath APIs.

Performance without compromises. As NIC line rates
steadily march upwards to 100 Gbit/s and beyond, it is desir-
able to offload transport-layer packet processing to hardware to
save CPU cycles. Unlike solutions that hard-code a congestion
control algorithm in hardware, e.g., [49], removing congestion
control from the datapath will enable richer congestion control
algorithms while retaining the performance of fast datapaths.

The key challenge in providing such flexibility is achieving
good performance. Congestion control schemes traditionally
process every incoming ACK, but doing so, CCP would incur
unacceptable overheads. We propose to tackle this problem
using a new flexible batching method to summarize and
communicate information between the datapath and CCP once
or twice per RTT rather than on every ACK. We show that
this approach can achieve behavior close to native datapath
implementations since the fundamental time-scale for end-
to-end congestion control is an RTT. To our knowledge, CCP
is the first such off-datapath congestion-control architecture
that does not process every single packet or ACK.

2 CCP Design
Our system architecture (Figure 1) consists of three com-
ponents: the congestion control algorithm, the CCP agent,
and the CCP modification to the datapath. In the discussion
below, we refer to the former two components together as
the “CCP.” Our architecture does not modify the API between

applications and datapaths (e.g., POSIX sockets); applications
can run unmodified.

Congestion control algorithms are implemented in user-
space and make all important congestion control decisions.
The algorithm is independent of the datapath. Developers are
free to add new algorithm implementations, and it is possible to
run multiple algorithms on the same host, e.g., file downloads
and video calls could use different transmission algorithms.

The agent is the “glue” between the congestion control algo-
rithm and the datapath, and imposes policies on the decisions
of the congestion control algorithms, e.g., per-connection
maximum transmission rates. Crucially, neither the agent nor
the algorithm is directly involved with packet transmission
or reception. Instead, the CCP agent programs the (modified)
datapath asynchronously using a well-defined API. We
envision the agent running in user-space to support user-space
datapaths and ease of programmability. It is also possible to
run the agent in kernel-space when security is critical.

The modification to the datapath enforces the rates and win-
dow decisions it receives from the agent. On the receive path, it
aggregates measurements from acknowledgments (e.g., for re-
liability, negative ACKs, etc.) and sends the results to the agent.

2.1 What is the API for congestion control?

Designing a flow-level CCP API is practical only if there is
a common set of primitives which most congestion control
algorithms build upon, and which datapaths can implement
efficiently. In Table 1, we identify a set of control actions and
packet measurements that enable the implementation of a
wide variety of congestion control algorithms. Consequently,
for each flow, we require that datapaths be able to maintain

(1) a given congestion window; and
(2) a given pacing rate on packet transmissions; and
(3) statistics on packet-level round trip times, packet

delivery rates, and packet loss, and functions specified
over them.

Indeed, many datapaths existing today implement—or can
implement—these primitives internally (§4, §5). Making
such datapaths CCP-compliant simply involves making these
primitives externally programmable by the CCP.

Control. Congestion control algorithms specify a sending
rate in one of two ways: either by directly setting a rate, or by
setting a congestion window (CWND), which constrains the
number of packets allowed to be in flight. Indeed, this second
approach is analogous to setting rate= CWND

RTT .
Some new protocols send traffic in specific patterns. For

example, BBR [13] is a rate-control algorithm which sends at
1.25× the desired rate for an RTT, then at 0.75× the rate for an-
other RTT, and then exactly at the desired rate for 6 RTTs before
repeating the pattern. Other algorithms are precise about the
intervals over which they gather data: Sprout [48] models avail-
able network capacity using equally spaced rate measurements.

Hence, we allow developers to write a control program
using a sequence of control primitives from Table 2. While
it is technically possible for CCP to send these commands

Protocol Measurement Control Knobs
Reno [26] ACKs CWND
Vegas [12] RTT CWND
XCP [30] Packet header CWND
Cubic [24] Loss, ACKs CWND
DCTCP [8] ECN, ACKs, Loss CWND
Timely [35] RTT Rate
PCC [19] Loss Rate, Sending Rate, Receiving Rate Rate

NUMFabric [37] Packet headers Rate, Packet headers
Sprout [48] Sending Rate, Receiving Rate, RTT Rate
Remy [47] Sending Rate, Receiving Rate, RTT Rate
BBR [13] Sending Rate, Receiving Rate, RTT Rate (pulses), CWND cap

Table 1: Measurement and control primitives used by classic and modern congestion control algorithms.

Operation Description
Measure(·) Measure a per-packet metric
Rate(r) rate← r
Cwnd(c) cwnd← c
Wait(time) Gather measurements
WaitRtts(α) Wait(α * rtt)
Report() Send measurements to the CCP

Table 2: Primitives in the control language.

Function Description
Init(seq, flow) Initialize flow state
OnMeasurement(m) Measurements have arrived
OnUrgent(type) An urgent event has occurred
Install(p) Send new control program to the datap-

ath

Table 3: CCP API. The first three functions are user-space event handlers
implemented by a CCP algorithm. The last function is provided by CCP
as a way for these handlers to modify sending behavior in the datapath.

out every RTT, the control program provides a way for the
datapath to synchronize measurements with control actions in
the datapath itself. For instance, it is important that BBR can
measure increases in the achieved rate during the RTT period
right after the high pulse:
Measure(rate).
Rate(1.25*r).WaitRtts(1.0).Report().
Rate(0.75*r).WaitRtts(1.0).Report().
Rate(rate).WaitRtts(6.0).Report()

Here the dot (·) in the syntax represents sequential execution,
i.e., A().B()means “execute action A() followed by B().”
Control programs allow developers to specify both the minute
details of sending behavior and the precise intervals over
which the datapath should gather measurements, without
compromising performance. We expect that supporting the
execution of simple control programs will be feasible in most
datapaths, but it is also possible to support programs purely
by issuing commands from the CCP each RTT.

Measurements. When gathering measurements, congestion
control algorithms may take as input the packet-level RTT,
achieved sending and receiving rates, and a limited number
of congestion signals (triple duplicate ACKs, retransmit
timeouts, and ECN). Additionally, some algorithms, such as
XCP [30] and priority-dependent algorithms, take advantage

of customized fields in packet headers. For example, XCP
sends using the rate specified by the router in each packet.

Certain events, such as indications of congestion signals
(e.g., packet loss, ECN), may be important enough to warrant
immediate notification and processing. For this reason we
classify measurements into two categories: urgent and batched.
The datapath immediately reports urgent measurements to the
CCP; it reports batched measurements at times specified in the
control program. Urgent measurements allow the system to
react quickly to network signals to avoid congestion collapse
and unnecessary packet drops. Table 3 summarizes the three
event handlers required to implement a congestion control
algorithm in CCP.

2.2 Are CCP algorithms easier to write?

The CCP API allows developers to implement a variety of
congestion control algorithms with relative ease. In contrast,
kernel-space code must be trusted; as a result, writing kernel-
space code for congestion control is complex. The kernel
lacks support for floating point arithmetic, memory must be
carefully managed, and exceptions from common errors (e.g.,
division by zero) will crash the operating system. We postulate
that the difficulty of kernel programming and the lack of
flexible APIs for other high-speed datapaths is a key reason
why some new congestion control proposals like PCC [19]
or Sprout [48] remain without high-speed implementations.

For example, the Linux kernel implements TCP Cubic’s
cube-root calculation in 42 lines of C using a lookup table
followed by an iteration of the Newton-Raphson algorithm.
We show the same per-packetOnMeasurement operation in
CCP below, which can take advantage of convenient user-space
floating point arithmetic packages and is thus simpler.

// Other state updates elided
// WlastMax is the window size at last drop
K = pow(max(0.0,

(c.WlastMax-c.cwnd)/0.4),
1.0/3.0)

// calculate and set CWND
c.cwnd = WlastMax + 0.4*pow(t-K, 3.0)

Furthermore, implementing new congestion control
algorithms on emerging hardware datapaths like FPGAs [14]
or SmartNICs [39] is likely to be even more challenging than
writing kernel-space code. With CCP, hardware datapath

Figure 2: CDF of RTT between a Linux kernel module and user-space
(using Netlink sockets) and between two user-space processes (using
Unix domain sockets). When there is high CPU utilization, the CPU’s
clock speed temporarily increases due to Intel TurboBoost.

designers only need to support the CCP primitives to run a
variety of CCP algorithms on their datapath.

2.3 Why batch measurements?

In our design, CCP modulates the packet transmission rate
or window just a few times each RTT. Processing every ac-
knowledgment in user-space would lead to much higher CPU
utilization than necessary. Indeed, batching measurements is
in line with optimizations that avoid per-packet processing
of acknowledgments on the receive side, such as large receive
offload (LRO [7]) and the Linux kernel’s new interrupt API
(NAPI [16]). For example, processing each acknowledgment
(without batching) for a 100 Gbit/s stream with MTU sized
packets requires processing 8 million acknowledgments per
second. However, with per-RTT batching of acknowledgments,
CCP only needs to process 100,000 batches per second at an
RTT of 10 µs (e.g., in data centers). With an RTT of 100 ms
(e.g., in the WAN), this number drops to 10. The saved CPU
cycles can be returned to the application or used by complex
congestion control algorithms.

Further, from a control theory perspective, to achieve
stability it is sufficient to sample the feedback and actuate the
control loop at a time scale comparable to the loop’s feedback
delay [40]. Since it takes an RTT to observe the effect of any
action (e.g., rate update), the natural time scale for congestion
control sensing and actions is an RTT.

Finally, it is feasible to batch measurements over RTT
timescales. Figure 2 shows the distribution of round-trip times
(RTTs) collected from two IPC mechanisms: Unix domain and
Netlink sockets. The Unix domain socket measurements were
between two user-space processes, while the Netlink measure-
ments were between a Linux kernel module and a user-space
process. Note that these numbers capture both latency in the
stack (i.e., syscalls and copies) as well as process scheduling
overheads. When the CPU is idle, across 60,000 samples the
99th percentile RTT is 48 µs for Netlink and 80 µs for Unix
sockets. When the CPU is highly utilized and has Intel Turbo
Boost [3] enabled, however, these RTTs drop significantly,
with 99th percentile values of only 18 µs for Netlink and
35 µs for Unix sockets. These latencies for control decisions,
even in the tail, are negligible compared to WAN RTTs, and
may even be acceptable in many datacenter environments.
In very low-latency datacenter networks (e.g., with 1-10 µs
RTTs [23]), dedicating a CPU core to the CCP may reduce the

overall impact on the effective RTT of congestion control, by
avoiding the need for process scheduling. We discuss further
strategies for very low-latency networks in §5.

2.4 How should datapaths batch measurements?

We describe two possible approaches to batching information
from multiple packets in the datapath and illustrate the
semantic differences between them in CCP with the example
of TCP Vegas. Vegas increases the congestion window when
it detects fewer than (say) two queued packets, and decreases
the congestion window when there are greater than (say) four.
We elide details such as slow start.

Vector of measurements. In the first approach, the datapath
appends a small amount of developer-specified measurement
data for each packet into a variable-length vector. The datapath
sends this vector to the CCP at the time that the control
program indicates through the Report() statement. The
OnMeasurement() handler in the CCP is called with this
vector as the argument:
func (v *Vegas) OnMeasurement(ps []Packet) {
for p := range ps {
v.baseRtt = min(v.baseRtt, p.Rtt)
inQ = (p.Rtt-v.baseRtt)*v.cwnd/v.baseRtt
if inQ < 2 {

v.cwnd += 1
} else if inQ > 4 {

v.cwnd -= 1
}

}

v.Install(Measure(rtt).
Cwnd(v.cwnd).WaitRtts(1).Report())

}

In the latter half, the Install() statement instructs the
datapath to measure the packet-level RTT, update its conges-
tion window, and report its measurements after the next RTT.

With this simple approach, it is straightforward to port
existing congestion control algorithms, which process packets
synchronously in the datapath, to CCP implementations
that process a batch of information at a time. Indeed, the
vector-style implementation of TCP Vegas is similar to the
Linux implementation.

Fold function over measurements. In the second approach,
CCP instructs the datapath to summarize information from
new packets into a constant amount of measurement state in
the datapath. For each new packet, the fold function in the
datapath takes an old measurement state and the new packet,
and records the new measurement state. The datapath sends
the measurement state to the OnMeasurement() CCP
handler. For example, in TCP Vegas, we define and update
VegasState, which consists of the minimum RTT and
the increment to the congestion window computed from the
previous round-trip time period:
func (v *Vegas) OnMeasurement(s VegasState) {
v.cwnd += s.delta
v.baseRtt = s.baseRtt
// Define measurement fold parameters
initState = VegasState {

delta: 0, baseRtt: v.baseRtt
}
foldFn = func (new St) (old St, p Pkt) {
new.baseRtt = min(
old.baseRtt,
p.Rtt,

)
inQ = ((p.Rtt-new.baseRtt) *

v.cwnd / new.baseRtt)
if inQ < 2 {
new.delta = old.delta + 1

} else if inQ > 4 {
new.delta = old.delta - 1

} else {
new.delta = old.delta

}
}

v.Install(Measure(initState, foldFn).
Cwnd(v.cwnd).WaitRtts(1).Report())

}

While using such fold functions guarantees that the datapath
uses a bounded amount of memory, it remains to be seen if
this API can realize a support set of congestion control mea-
surements. Fold functions will likely need to be written in a
restrictive language to ensure portability across datapaths, par-
ticularly, constrained hardware-accelerated datapaths. Recent
work in programming switches using high level languages [38,
45] suggests that it is possible for datapaths to implement
complex fold functions which fit within tight timing budgets.

Takeaway. Using a vector of measurements in the CCP
provides more flexibility than the folding approach, since
all processing is in user-space. However, maintaining and
processing vectors also imposes significant performance
requirements on the CCP (i.e., per-packet work) and the
datapath (i.e., need memory for each packet). Ultimately, the
right batching approach will be dictated by the capabilities
and flexibility of emerging datapaths.

3 Preliminary Evaluation
We have implemented a prototype CCP [1] in approximately
2500 lines of Go code and an associated Linux kernel
datapath [4] in 900 lines of C. The kernel datapath is a kernel
module which implements a set of Pluggable TCP callbacks
(§4). To accurately report rates to the CCP, we additionally
wrote a four line kernel patch on Linux 4.10 [5].

Our datapath implementation currently does not support
user-defined measurements, user specification of urgent mes-
sages, or either event vectors or general fold functions. Rather,
the prototype datapath reports only the most recent ACK and
an EWMA-filtered RTT, sending rate, and receiving rate. The
purpose of this implementation is to evaluate the feasibility
of extracting congestion control logic from the datapath; the
full design and implementation of a programmable datapath
remains an avenue for future work.

Does CCP change the behavior of current algorithms?
Figure 3 compares the congestion window evolution for TCP
Cubic on a 1 Gbps link with an RTT of 10 ms and 1 BDP of

(a) CCP Cubic (b) Linux Cubic
Figure 3: Comparison of window dynamics of a CCP-based Cubic imple-
mentation and the Linux kernel implementation.

buffer between the Linux implementation (in 3b) and the CCP
implementation (in 3a). The CCP matches the microscopic
window evolution of the Linux kernel. Furthermore, the
macroscopic performance of the two implementations is sim-
ilar; the Linux implementation achieved 94.4% utilization and
15.8 ms median RTT compared to the CCP implementation’s
95.4% and 16.1 ms.

Does CCP change the performance of current algorithms?
A potential downside of batching introduced by CCP is slow
reactions to changing link conditions. In Figure 4 we start a
60-second CCP (4a) or Linux (4b) NewReno flow at time 0.
After 20 seconds, we start a competing flow of the same type.
Both implementations exhibit similar convergence dynamics.

Will CCP waste CPU cycles? CCP can save cycles by
enabling the batch processing of packets. However, more
concerning is the prospect of IPC overheads consuming
extra CPU cycles. Figure 5 shows the difference in achieved
throughput between CCP and the Linux kernel on a 10 Gbps
link. As expected, with NIC offloads (segmentation and
receive offloads) enabled, the CPU is not the bottleneck and
both systems saturate the NIC. With segmentation offloads
disabled on the sender, CCP achieves higher throughput than
the kernel. We believe this is because CCP sends slightly larger
bursts which leads to more efficient processing at the receiver
via Generic Receive Offload (GRO) [18]. Indeed, with receive
offloads disabled on the receiver as well, CCP and Linux
achieve comparable performance. We believe that the remain-
ing difference can be attributed to better interrupt coalescing
at the receiver NIC. In future work, we plan to implement
smooth congestion window transitions in the datapath to avoid
packet bursts due to per-RTT congestion window updates.

4 Related Work
How does the CCP API improve on existing interfaces to
program congestion control on datapaths? Could datapaths
support the CCP primitives?

The Linux kernel offers the ‘pluggable TCP’ API for
congestion avoidance [17] that allows a kernel module to
set a flow’s congestion window or pacing rate [20, 21]. The
API also provides access to per-packet delay, RTT-averaged
rate samples, and specific TCP congestion events such as
ECN marks and retransmission timeouts. In addition to
Pluggable TCP, the CCP API exposes both transmitted and
delivered rates, implements fold functions over per-packet
measurements, and supports CCP control programs. CCP

(a) CCP NewReno

(b) Linux NewReno
Figure 4: Comparison of the reactivity of a CCP-based NewReno imple-
mentation and the Linux kernel implementation.

Figure 5: Comparison of achieved throughput with NIC offloads (TSO,
GRO, and GSO) enabled and disabled, respectively. Each value is the
average across four runs.

enables easy user-space programming of congestion control
with support for floating point operations (e.g., cube root) and
debugging capabilities lacking in the Linux kernel.

QUIC [32] is a user-space library which implements reli-
ability and congestion control on top of UDP sockets. QUIC
provides a protocol sender interface [46] which already sup-
ports the necessary basic CCP primitives in Table 2. We believe
that supporting control programs on top of these capabilities
will be straightforward. Unlike QUIC, congestion control
algorithms built using CCP can run atop multiple datapaths.
Further, with CCP, applications are not limited to using UDP.

Kernel bypass libraries such as DPDK [2] and netmap [44]
allow user-space programs to send packets directly to the
NIC from user-space. Applications using kernel bypass must
implement their own custom end-to-end congestion control.
The mTCP project [28] implements a single congestion
control algorithm (NewReno) on top of DPDK. Extending
the mTCP implementation to support the more general CCP
primitives is a promising way to realize a CCP-compatible
kernel-bypass datapath. mTCP already implements congestion
windows and useful measurement statistics, and we believe
that building packet pacing (e.g., analogous to Linux’s FQ
queueing discipline [29]) is feasible.

The congestion manager (CM [9]) proposes a datapath
wherein an in-kernel agent performs congestion control
operations on behalf of all flows. CCP supports this paradigm.

However, unlike CM, CCP’s congestion control algorithms
reside off the critical path of data transmission (CM’s
algorithm resides in its kernel agent). Further, CCP provides a
flexible API to implement new congestion control algorithms
(CM’s kernel agent implements a single algorithm).

IX [11] is a datapath building on the line of work on
library operating systems [41]. However, IX’s notion of a
datapath includes congestion control. In CCP, the OS still
performs hardware multiplexing, but congestion control
occurs independently from the datapath.

5 Discussion
This paper made the case for moving congestion control off the
datapath of transport protocols and into a separate, reusable,
and flexible user-space agent. We conclude by outlining
questions for further research related to CCP.

Can emerging hardware-accelerated datapaths support
the CCP primitives? At first glance, it may appear counter-
intuitive to increase the complexity of hardware datapaths
by adding support for CCP primitives. However, RDMA
NICs [42] and dedicated TCP engines [15] today already
offload congestion control processing—such as maintaining
congestion windows and accurate per-packet statistics—from
the CPU to the NIC. CCP mainly requires making these
capabilities externally programmable to avoid baking the
congestion control algorithm into the NIC. Given the advent of
programmable NICs [14,39,50], we anticipate that supporting
measurement fold functions and control programs should be
feasible. Rate-based congestion control algorithms can be im-
plemented using packet pacing in hardware [25, 35, 43]. A key
impediment to supporting CCP is maintaining per-flow conges-
tion state on the NIC. To tackle this problem, it may be possible
to extend the techniques used in receive-side scaling [6].

Could CCP work at low RTTs? Currently, CCP is designed
to communicate its congestion control decisions to datapaths
a few times per RTT. However, this communication is chal-
lenging at very low RTTs (e.g., 1–10 µs) due to IPC overheads.
Prior works have proposed making congestion control deci-
sions slower than per-packet, e.g., [10, 35]. However, could
congestion control running much slower, e.g., once in a few
RTTs, be effective in low RTT scenarios? Alternatively, to re-
tain per-RTT control, could we synthesize the congestion con-
troller into the datapath from the high-level CCP algorithm?

New congestion control schemes. CCP’s API will allow the
use of powerful user-space libraries (e.g., neural networks)
in algorithms. CCP makes it possible to implement congestion
control outside the sending hosts, for example to manage
congestion for groups of flows that share common bottlenecks.
Such offloads could allow efficient use of shared resources.

Is CCP safe to deploy? Misbehaving CCP algorithms should
not crash the datapath or consume an inordinate amount of
resources. Safe fallback mechanisms and policies within the
CCP agent and datapaths could enable a robust platform to
ease the deployment of congestion control algorithms.

Acknowledgements. We thank Anirudh Sivaraman, Aurojit
Panda, Hariharan Rahul, Radhika Mittal, Ravi Netravali,
Shoumik Palkar, and the HotNets reviewers for their useful
comments and feedback. This work was supported in part by
DARPA contract HR001117C0048 and NSF grant 1407470.

References
[1] CCP user-space. https://github.com/mit-nms/ccp.
[2] DPDK. http://dpdk.org/.
[3] Intel Turbo Boost. https : / / www. intel . com / content / www / us /

en/architecture-and-technology/turbo-boost/turbo-boost-technology.
html.

[4] Linux kernel datapath for CCP. https://github.com/mit-nms/ccp-kernel.
[5] Linux kernel patch for CCP. https://github.com/ngsrinivas/linux-fork/

commit/a84f0a6db796a84411547a7055d619d2792d871c.
[6] Scaling in the Linux Networking Stack. https://www.kernel.org/doc/

Documentation/networking/scaling.txt.
[7] Segmentation Offloads in the Linux Networking Stack. https://www.

kernel.org/doc/Documentation/networking/segmentation-offloads.txt.
[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-

hakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In
SIGCOMM, 2010.

[9] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated Congestion
Management Architecture for Internet Hosts. In SIGCOMM, 1999.

[10] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker. Dynamic Behavior
of Slowly-responsive Congestion Control Algorithms. SIGCOMM,
2001.

[11] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In OSDI, 2014.

[12] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New Tech-
niques for Congestion Detection and Avoidance. In SIGCOMM, 1994.

[13] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacob-
son. BBR: Congestion-Based Congestion Control. ACM Queue,
14(5):50:20–50:53, Oct. 2016.

[14] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger. A Cloud-Scale Acceleration Architecture. In
MICRO, 2016.

[15] Chelsio Communications. TCP Offload Engine (TOE).
http://www.chelsio.com/nic/tcp-offload-engine/.

[16] Christian Benvenuti. Understanding Linux network internals. O’Reilly
Media, 2009.

[17] J. Corbet. Pluggable congestion avoidance modules. https :
//lwn.net/Articles/128681/, 2005.

[18] J. Corbet. Generic receive offload. https://lwn.net/Articles/358910/,
2009.

[19] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC:
Re-architecting Congestion Control for Consistent High Performance.
In NSDI, 2015.

[20] E. Dumazet. pkt_sched: fq: Fair Queue packet scheduler.
https://lwn.net/Articles/564825/, 2013.

[21] E. Dumazet. TCP: Internal implementation for pacing.
https://patchwork.ozlabs.org/patch/762899/, 2017.

[22] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan. Reducing Web
Latency: The Virtue of Gentle Aggression. In SIGCOMM, 2013.

[23] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker. Network Requirements for Resource
Disaggregation. In OSDI, 2016.

[24] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed
TCP Variant. SIGOPS Operating System Review, July 2008.

[25] Hanay, Y.S. and Dwaraki, A. and Wolf, T. High-performance
implementation of in-network traffic pacing. In HPSR, 2011.

[26] J. C. Hoe. Improving the Start-up Behavior of a Congestion Control
Scheme for TCP. In SIGCOMM, 1996.

[27] V. Jacobson. Congestion Avoidance and Control. In SIGCOMM, 1988.
[28] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park.

mTCP: a Highly Scalable User-level TCP Stack for Multicore Systems.
In NSDI, 2014.

[29] Jonathan Corbet. TSO sizing and the FQ scheduler. https :
//lwn.net/Articles/564978/, 2013.

[30] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In SIGCOMM, 2002.

[31] E. Kohler, M. Handley, and S. Floyd. Designing DCCP: Congestion
control Without Reliability. In SIGCOMM, 2006.

[32] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi. The QUIC Transport Protocol:
Design and Internet-Scale Deployment. In SIGCOMM, 2017.

[33] D. Leith and R. Shorten. H-TCP Protocol for High-Speed Long Distance
Networks. In PFLDNet, 2004.

[34] S. Liu, T. Başar, and R. Srikant. TCP-Illinois: A loss-and delay-based
congestion control algorithm for high-speed networks. Performance
Evaluation, 65(6):417–440, 2008.

[35] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. TIMELY: RTT-based
Congestion Control for the Datacenter. In SIGCOMM, 2015.

[36] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Recursively Cautious
Congestion Control. In NSDI, 2014.

[37] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and
S. Katti. NUMFabric: Fast and Flexible Bandwidth Allocation in
Datacenters. In SIGCOMM, 2016.

[38] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim. Language-directed Hardware Design for
Network Performance Monitoring. In SIGCOMM, 2017.

[39] Netronome. Agilio LX SmartNICs. https://www.netronome.com/
products/agilio-lx/. [Online, Retrieved July 28, 2017].

[40] J. L. Ny. Sampling and Sampled-Data Systems. http://www.professeurs.
polymtl.ca/jerome.le-ny/teaching/NECS_Spring11/notes/3_sampling/
3_sampling.pdf. [Online, Retrieved August 3, 2017].

[41] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe. Arrakis: The Operating System is the
Control Plane. In OSDI, 2014.

[42] J. Pinkerton. The case for RDMA. http://rdmaconsortium.org/home/
The_Case_for_RDMA020531.pdf, 2002.

[43] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter, and
A. Vahdat. SENIC: Scalable NIC for end-host rate limiting. In NSDI,
2014.

[44] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O. In USENIX
ATC, 2012.

[45] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking. Packet Transactions:
High-Level Programming for Line-Rate Switches. In SIGCOMM, 2016.

[46] The Chromium Authors. QUIC sender interface. https://chromium.
googlesource.com/chromium/src/net/+/master/quic/core/congestion_
control/send_algorithm_interface.h. [Online, Retrieved August 2, 2017].

[47] K. Winstein and H. Balakrishnan. TCP ex Machina: Computer-
Generated Congestion Control. In SIGCOMM, 2013.

[48] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks. In
NSDI, 2013.

[49] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang. Congestion control for
large-scale rdma deployments. In SIGCOMM, 2015.

[50] N. Zilberman, Y. Audzevich, G. Kalogeridou, N. Manihatty-Bojan,
J. Zhang, and A. Moore. NetFPGA: Rapid Prototyping of Networking
Devices in Open Source. In SIGCOMM, 2015.

https://github.com/mit-nms/ccp
http://dpdk.org/
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://github.com/mit-nms/ccp-kernel
https://github.com/ngsrinivas/linux-fork/commit/a84f0a6db796a84411547a7055d619d2792d871c
https://github.com/ngsrinivas/linux-fork/commit/a84f0a6db796a84411547a7055d619d2792d871c
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/segmentation-offloads.txt
https://www.kernel.org/doc/Documentation/networking/segmentation-offloads.txt
http://www.chelsio.com/nic/tcp-offload-engine/
https://lwn.net/Articles/128681/
https://lwn.net/Articles/128681/
https://lwn.net/Articles/358910/
https://lwn.net/Articles/564825/
https://patchwork.ozlabs.org/patch/762899/
https://lwn.net/Articles/564978/
https://lwn.net/Articles/564978/
https://www.netronome.com/products/agilio-lx/
https://www.netronome.com/products/agilio-lx/
http://www.professeurs.polymtl.ca/jerome.le-ny/teaching/NECS_Spring11/notes/3_sampling/3_sampling.pdf
http://www.professeurs.polymtl.ca/jerome.le-ny/teaching/NECS_Spring11/notes/3_sampling/3_sampling.pdf
http://www.professeurs.polymtl.ca/jerome.le-ny/teaching/NECS_Spring11/notes/3_sampling/3_sampling.pdf
http://rdmaconsortium.org/home/The_Case_for_RDMA020531.pdf
http://rdmaconsortium.org/home/The_Case_for_RDMA020531.pdf
https://chromium.googlesource.com/chromium/src/net/+/master/quic/core/congestion_control/send_algorithm_interface.h
https://chromium.googlesource.com/chromium/src/net/+/master/quic/core/congestion_control/send_algorithm_interface.h
https://chromium.googlesource.com/chromium/src/net/+/master/quic/core/congestion_control/send_algorithm_interface.h

	Abstract
	1 Introduction
	2 CCP Design
	2.1 What is the API for congestion control?
	2.2 Are CCP algorithms easier to write?
	2.3 Why batch measurements?
	2.4 How should datapaths batch measurements?

	3 Preliminary Evaluation
	4 Related Work
	5 Discussion

