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1 Introduction

1.1 Problem Definition

Let G = (V,E) be a graph. In the generalized maximum flow problem—as in the ordinary maximum
flow problem—the aim is to maximize the total flow delivered to a sink node t ∈ V . The difference
is that in the generalized problem, each edge e is endowed with a gain factor γe > 0, which scales
the flow passing through that edge. Gains might, for example, represent exchange rates between
currencies or dissipation rates of a physical quantity. Setting γe ≡ 1 recovers the ordinary maximum
flow problem.

The generalized maximum flow problem lacks several nice properties of the ordinary maximum
flow problem, which makes it more challenging to solve. For example, the generalized problem is
usually thought to be non-integral and, due to the gain factors, the total supply is not necessarily
equal to the total demand. Additionally, the maximum flow–minimum cut theorem no longer applies
since the flow along a path is not equal at every edge along that path.

Until recently, the best known algorithms were all weakly polynomial. In 2013, Végh developed
the first strongly polynomial algorithm [10]. In 2017, Olver and Végh built on this work and
developed an algorithm [4] that is faster than Végh’s original algorithm by a factor of almost O(n2),
resulting in a running time that is as fast as the best weakly polynomial algorithms even for small
parameter values.

1.2 Structure and Contributions of the Paper

In this paper, we aim to familiarize the reader with recent algorithmic developments on the
generalized maximum flow problem and to build intuition for the techniques used to achieve
a strongly polynomial result. In Section 2, we formalize the problem as a linear program and
give an overview of the notation used in the rest of the paper. In Section 3, we develop the key
techniques both algorithms use to achieve a strongly polynomial bound for this problem. In Section 4,
we describe Végh’s original O(n3m2 log n) strongly polynomial algorithm developed in 2013 and
provide intuition for the running time analysis. In Section 5, we describe Olver and Végh’s faster
O((m+ n log n)mn log(n2/m)) algorithm and highlight key aspects of the analysis that led to the
improved running time efficiency. Finally, in Section 6, we conclude with a brief summary of the
techniques of both algorithms and of how they differ.

2 Preliminaries

2.1 Network Notation

Let G = (V,E) be a directed graph with n = |V | and m = |E| (assume m ≥ n), t ∈ V be a sink
node and γ ∈ RE>0 be the vector of gains along edges. We follow recent work on the generalized
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problem in realizing flow constraints via node demands b ∈ RV \t, leaving edge capacities unbounded.
(Note that the two formulations are equivalent: cf. [10].) Thus, an instance of the generalized flow
problem is specified as (G, t, γ, b).

Although there is no explicit specification of a source node, nodes with negative demand b act
as sources that can create up to −b units of flow, and nodes with positive demand b act as sinks
that can consume at least b units of flow. V \ t is comprised of nodes with negative demand, which
we denote V s, nodes with positive demand, V t, and nodes with zero demand, V 0.

For a subset S ⊆ V , we denote by δin(S) and δout(S) the sets of incoming and outgoing edges,
respectively. Abusing notation, we also write δin(i) and δout(i) for δin({i}) and δout({i}). The total
degree of a node i ∈ v is then di = |δin(i) ∪ δout(i)|.

The net flow at a node i is the amount of flow that reaches that node (scaled by the gain factor
on the incoming edges) minus the amount of flow that leaves the node:

∇fi :=
∑

e∈δin(i)

γefe −
∑

e∈δout(i)

fe.

The residual graph Gf = (V,Ef ) is defined as in the traditional maximum flow problem, except that
the reverse residual edges (j, i) ∈ Ef have inverted gains γji = 1/γij and negated flow fji = −γijfij .
If the cumulative gain of a cycle C (

∏
e∈C γe) in Gf is greater than 1, we call C a “flow-generating

cycle.” This captures the idea of arbitrage: sending a unit of flow around the cycle generates a net
surplus. Such cycles could make the problem unbounded as it is always possible to increase the flow
without violating any of the constraints. There is extensive prior work on detecting and eliminating
such cycles (cf. [10]) so for the remainder of this discussion we assume they do not exist.

2.2 Linear Program Formulation

We formulate the generalized flow maximization problem with node demands as in [4]:

max ∇ft (P)

s.t. ∇fi ≥ bi ∀i ∈ V \ t
f ≥ 0

The dual linear program, given on the left below, has a variable ηi for every node i. Making the
change of variables ηi = −µt/µi yields the dual optimization problem (used in [4]) on the right.

min
∑
i∈V \t

biηi

s.t. γijηj − ηi ≥ 0 ∀ (i, j) ∈ E
i, j 6= t

γtiηi ≥ −1 ∀ (i, t) ∈ E
−ηi ≥ γit ∀ (t, i) ∈ E
ηi ≤ 0 ∀ i ∈ V \ t

ηi=−µt/µi−−−−−−−−−→
max µt

∑
i∈V \t

bi
µi

s.t. γijµi ≤ µj ∀ (i, j) ∈ E
µi ∈ R>0 ∪∞ ∀ i ∈ V \ t
µt ∈ R>0

(D)
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A dual solution µ is known as a labeling, and we can speak of feasible and optimal labelings. We
make the simplifying assumption that the sink is reachable from every node, which ensures µ will
be finite. (See [4] for a simple transformation that allows us to guarantee this assumption.) Imagine
that the nodes represent currencies and the gains represent exchange rates between those currencies.
A maximum generalized flow is a currency trading strategy that maximizes the amount of currency
t at the end. We can interpret a label µi as the value of one dollar in currency i. Then the dual
constraint γijµi ≤ µj means that the valuation does not permit arbitrage.

Complementary slackness requires that for an optimal flow f∗ and optimal labeling µ∗,

f∗ij > 0 =⇒ γijµ
∗
i = µ∗j . (CS)

In our currency trading interpretation, the complementary slackness condition means that the
optimal currency trading strategy only makes trades that exactly preserve value.

Given a feasible dual solution µ, we can apply the following relabeling transformation to obtain
a new problem instance with gains γµ and demands bµ and a primal solution to the new instance:

γµij := γij
µi
µj

bµi :=
bi
µi

fµij :=
fij
µi

∇fµi :=
∇fi
µi

(RE)

The relabeled dual problem is equivalent to the original dual problem. In particular,

Claim 2.1. fµ is a feasible (resp. optimal) solution to the relabeled primal problem with gains γµ

and demands bµ if and only if f is a feasible (resp. optimal) solution to the original problem with
gains γ and demands b.

Claim 2.2. If µ is a feasible solution to the original dual problem and µ̄∗ is an optimal solution to
the relabeled dual problem with gains γµ and demands bµ, then the vertex-wise product µµ̄∗ is an
optimal solution to the original dual problem.

Thus, the algorithms will use relabeling to simplify the problem while preserving its structure.

Definition 2.1. An edge e is known as tight with respect to µ if γµe = 1. For an optimal pair
(f, µ), complementary slackness (CS) is exactly the condition that flow only flows along tight edges.
We denote the set of tight edges under µ by

τ(µ) = {e | γµe = 1}.

The tight graph consists of these edges and their endpoints.

Definition 2.2. The excess of a flow f at a node i is the net flow left there after subtracting
demand, ∇fi − bi. When this quantity is negative, it is described as deficit. Given f and µ, we
can define relabeled excess at a node similarly as ∇fµi − b

µ
i .

Given flow values and labels, the total excess and deficit of the flow with respect to the labels
are defined as follows:

Ex(f, µ) :=
∑
i∈V \t

max{∇fµi − b
µ
i , 0} Def(f, µ) :=

∑
i∈V \t

max{bµi −∇f
µ
i , 0}
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3 Motivating Ideas and Techniques

3.1 Solving the Problem Combinatorially

A weakly polynomial algorithm is easily achievable by applying ellipsoid or interior point methods
to the linear program (P). To achieve a strongly polynomial bound, the linear program can be
reduced to a combinatorial problem.

Suppose an edge (i, j) is known to be tight for any dual-optimal solution µ. This imposes a
constraint γµij = 1 for all such µ, or, i.e., γijµi = µj . A tight constraint of this form reduces the
dimension of the solution space by one and is equivalent to removing one variable from optimization.
We might as well remove one of the variables entirely by collapsing the edge (i, j), merging node i
into node j with a single dual variable µj , and summing the demands bi and bj . (When either i or
j is t, the other’s demand is simply absorbed.) This operation is called an edge contraction, and
it preserves the dual objective and the constraints on edges other than (i, j). An edge e which is
tight under any dual-optimal solution is accordingly called contractible.

An algorithm based on edge contractions identifies one contractible edge at a time and contracts
it. (As an additional simplification, if the contraction leads to parallel edges, only the one with
the highest gain is maintained—there is no reason to send flow along an edge of lower gain over a
parallel one of higher gain.) There can be at most n− 1 contractions before the graph is left with
a single node. The set of guaranteed-tight edges identified over the course of the contractions is
acyclic, and it takes the form of either a spanning tree or a spanning forest depending on which of
the following termination conditions occurs:

(i) The contracted graph has just one node remaining, i.e., every node has been merged into
the sink t. In this case, the set of previously identified contractible edges forms a spanning
tree. Given a value for µt, the tightness constraints then uniquely determine the values of the
optimal µ at all other nodes.

(ii) The contracted graph has multiple nodes, but the (merged, relabeled) demands bµi are all zero.
In this case, the dual objective on the contracted graph is identically zero. Meanwhile f ≡ 0
is primal-feasible on the contracted graph, with a primal objective value of zero. By strong
duality, f ≡ 0 is optimal.

In this case, the set of previously identified contractible edges forms a spanning forest wherein
each tree component is the preimage of one node of the contracted graph. Each component
of the tight forest has net demand zero under a suitable relabeling. As such, the flows in
separate components are independent, effectively reducing the problem to case (i) for each
component. The maximum flow value only depends on the flow in the tree component of t.

Once a set of tight edges has been identified and used to compute dual labels, complementary
slackness dictates that any optimal flow f is supported only on the tight edges—i.e., γµij = 1 whenever
fij > 0. As such, the conservation constraint for the relabeled optimum flow fµ takes the form

bµi ≤ ∇f
µ
i =

∑
(j,i)∈δin(i)

γµjif
µ
ji −

∑
(i,j)∈δout(i)

fµij =
∑

(j,i)∈δin(i)

fµji −
∑

(i,j)∈δout(i)

fµij .

This is the conservation constraint of an ordinary maximum flow problem with demands bµ. Indeed,
one can compute the optimal fµ as an ordinary maximum flow on the tight graph—a strongly
polynomial computation. Then it is easy to recover f from fµ (by undoing the scaling in (RE)). Thus,
we have shown how to reduce the generalized flow problem to a combinatorial problem—namely,
computing an optimal set of tight edges.
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Example 3.1. To help visualize the connection between tight edges and optimal solutions, consider
the flow network on the left in Figure 3.1. Nodes i and j both have negative demand and can thus
act as sources for up to 8 units of flow. By inspection, we can see that the optimal f∗ should send
8 units of flow from i to t and 8 units from j to t, yielding 6 units at the sink. On the right, we
show the three possible spanning trees of tight edges for this graph. For each tree, starting with
µt = 1, we can compute µi and µj based on the tight edges. In (a), the dual is not feasible because
γitµi = 4 � 1 = µt. In (b) and (c), all of the dual constraints are feasible, but (c) produces a greater
dual objective value (−6) than (b) (−12). (Note that the sign is negative because of our change
of variables in (D)). Solving a max flow on just the tight edges of (c) yields the optimal ∇f∗t we
expect: 6. The optimal collection of tight edges encodes all the information necessary to reconstruct
the optimal solution.

bi = �8

bj = �8

� j,
t
=

1 /4

�
i,j =

1/2

�i,t = 1/2

f⇤ = 8

f
⇤ =

8

f ⇤
=

0

i t

j

rf⇤
t = 6

(a) (b)

(c)

µi = 2 µt = 1

µj = 1

i

j

t

µi = 8 µt = 1

µj = 4

i

j

t

*

µi = 2 µt = 1

i

j

t

µj = 4

Figure 1: (left) Example flow network. (right) All three possible spanning trees of tight edges and
their respective dual solutions. Blue edges are tight (γµ = 1), gray dashed edges are not.

3.2 Contractibility Certificates

The heart of both strongly polynomial algorithms detailed below is a procedure for identifying
contractible edges and then contracting them. The key differences between the two algorithms are
in how they find contractible edges, which we will describe in Sections 4 and 5. These differences
allow Olver and Végh [4] to achieve a better running time bound than Végh [10]. The algorithms
have in common the use of primal-dual pairs as certificates for contractibility.

From Section 3.1, complementary slackness tells us that if there is a primal optimal flow f with
positive value on some edge e, then e is tight with respect to every dual optimal solution—that is, e
is contractible. So a primal optimal flow provides a certificate for contractibility. It would seem this
is of no use to us, as computing a primal optimal flow is the entire problem we are trying to solve.

However, an optimal flow is a vastly superfluous certificate. Suppose instead that we have any
flow g and a bound on the difference between g and an optimal flow g∗. Then if g had a sufficiently
large value on some edge e, we would know that g∗e > 0. This idea is formalized in the following
lemma, adapted from Lemma 3.3 of [4].

Definition 3.1. Let f be a feasible solution to (P). µ is a conservative labeling for f if µ is a
feasible solution to (D) and all edges with positive flow are tight. In this case, (f, µ) is called a
conservative pair.
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Lemma 3.1. Suppose (g, µ) is a conservative pair. Then there is some optimal flow g∗ uniformly
“close” to g:

‖(g∗)µ − gµ‖∞ ≤ Ex(g, µ).

Proof. The intuition is that the optimal flow improves on the feasible flow by sending more of its
excess to the sink. Thus, the difference g∗− g is a flow of value at most Ex(g, µ) at t. The maximum
edge value of the difference is bounded, in turn, by its total flow value.

Since we are working with generalized flows, it will take a little work to formalize this idea. First,
among all the optimal solutions to (P), let g∗ be the one which minimizes the total (L1) difference
‖g∗ − g‖1. Let µ∗ be an optimal solution to (D). Then (g∗, µ∗) are a conservative pair—this is
precisely the complementary slackness condition they satisfy.

Let h = g∗ − g. That is,

hij :=

{
g∗ij − gij if (i, j) ∈ E, g∗ij > gij

γij(gij − g∗ij) if (j, i) ∈ E, gji > g∗ji

Observe that if hij > 0, then either (i, j) ∈ E and g∗ij > 0 or (j, i) ∈ E and gji > 0. In other words,
(i, j) ∈ Eg and (j, i) ∈ Eg∗ .
Claim 3.2. h is acyclic.

Proof of Claim. Suppose that h contains a cycle C. Then consider the net gain around C:

1 ≥ γµ(C) = γ(C) = γµ
∗
(C) ≥ 1,

as γµ ≤ 1 on Eg and γµ
∗ ≤ 1 on Eg∗ . As γ(C) = 1, we can slightly modify g∗ over the whole cycle

to decrease ‖h‖1, contradicting the choice of g∗ to minimize ‖h‖1.

As h is acyclic, it may be decomposed into paths. Because h is supported in Eg and γµ ≤ 1 on
Eg, flow can only decrease along these paths. As such, the total flow along any edge is at most the
total flow leaving nodes:

‖hµ‖∞ ≤
∑
i

max {0,−∇hµi } =
∑
i

max {0,∇gµi −∇(g∗)µi } ≤
∑
i

max {0,∇gµi − b
µ
i },

which is Ex(g, µ) as desired.

The lemma suggests a concrete certificate for contractibility. An edge e is abundant with
respect to a conservative pair (f, µ) if fµe > Ex(f, µ). Lemma 3.1 shows that abundant edges are
contractible.

Any algorithm seeking to find an abundant edge has a dual mandate—(i) bounding the relabeled
excess and (ii) obtaining a large relabeled flow value on an edge. Both goals depend on both the
primal and dual variables. We can obtain a more useful contractibility certificate by disentangling
the two. In particular, both algorithms detailed below employ a node-wise contractibility certificate
in which the relevant quantity at a node i is the relabeled demand bµi . A node with a very large
value of |bµi | is known as a plentiful node. The specific definition of plentiful node differs between
the two algorithms (cf. Sections 4.2 and 5.2), but in both cases it is constructed to guarantee that a
plentiful node borders an abundant edge.

Aiming to produce a plentiful node as a contractibility certificate, both algorithms consist of
alternating scaling and augmentation phases. The scaling phases adjust the dual variables µ to
increase the values |bµi |. The complementary augmentation phases spread or cancel excesses to keep
them bounded.
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4 The Initial Strongly Polynomial Algorithm

A high-level overview of Végh’s initial algorithm [10] is shown below. Progress is parameterized
by a scaling factor ∆, which controls the amount of flow that can be augmented at each iteration
and the threshold for determining which edges are contractible. Sections 4.1 and 4.2 expand on the
details and provide intuition. Section 4.3 sketches the runtime analysis of the algorithm, showing
how it achieves a strongly polynomial bound.

(1) Find an initial feasible flow f̄ and set initial ∆ to the max relabeled excess of any node.

(2) Compute an initial conservative labeling, µ, and find initial conservative pair (f, µ).

(3) Find contractible edges and contract until stopping condition is met (cf. Section 3.1).
Contractible edges are found by repeatedly applying one of the following operations:

(a) Augment ∆ units of flow.

(b) Increase µ and decrease ∆ by a factor α > 1.

(c) Send flow from isolated parts of the graph directly to the sink.

(4) Compute optimal primal solution from set of tight edges (cf. Section 3.1).

4.1 Finding and Maintaining Conservative Pairs

Following from primal-dual slackness, the optimality conditions for the primal are (i) ∇fµi − b
µ
i = 0

for all i ∈ V \ t and (ii) γµij = 1 if fij > 0. The first condition is achieved by incrementally reducing
a uniform upper bound on node excess. The second condition is achieved by approximating a
conservative pair (Definition 3.1) with increasing fidelity over the course of the algorithm.

To find an initial conservative pair (f, µ), we first need a feasible flow. f̄ ≡ 0 is a trivial feasible
solution to the capacitated version of the primal problem; this can be transformed into an initial
feasible solution f for our uncapacitated problem by following the transformation in [1] (linear
in the number of edges). Next, we need a feasible µ. Starting with µt := 1, we set µi to the
maximum value of 1/γe for e on any path from i to t. This can be efficiently computed by using a
multiplicative version of Dijkstra’s algorithm (or equivalently, using Dijkstra’s algorithm with edge
costs − log γe—see Section 5.3 below). Finally, we modify f to restrict flow to tight edges under µ.
This requires computing a standard maximum flow on a modified graph (with lower/upper bounds
and an added source) and then zeroing flow on non-tight edges.

Armed with an initial conservative pair, we set the initial value of ∆ to maxi∈V \T ∇fµi − b
µ
i ,

the maximum relabeled excess. This value is chosen because ∆ controls the amount of flow sent
along each augmenting path, which can be no more than the maximum excess. ∆ is monotonically
decreasing from here on.

The algorithm maintains a relaxed ∆-conservative pair, which allows small amounts of flow
(less than ∆ units) along non-tight edges. The excess at each node is required to be at least the
amount of incoming flow along non-tight edges. Thus, at any time, the flow can be made conservative
(while remaining feasible) by zeroing flow along non-tight edges. As ∆ decreases, the amount of flow
on these non-tight edges decreases so that the ∆-conservative pair approaches a conservative pair.

4.2 Identifying Contractible Edges

As discussed in Section 3.1, the algorithm makes progress by finding contractible edges. As discussed
in Section 3.2, an edge is guaranteed to be contractible when it is abundant. The algorithm maintains
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a pair (f, µ) with a uniform bound on the excess ∇fµi − b
µ
i ≤ (4di + 8)∆, whence Ex(f, µ) ≤ 16m∆.

Thus, an edge (i, j) with fµij ≥ 17m∆ is abundant. As long as this bound is maintained, the following
plentiful node certificate, which depends only on the dual variables µ, guarantees the existence of
an adjacent contractible edge:

Definition 4.1. A node i is plentiful if
∣∣bµi ∣∣ ≥ 20nm∆.

Claim 4.1. If i is a plentiful node, then there is a contractible edge adjacent to it.

Proof. Suppose by way of contradiction that none of the edges adjacent to i are contractible; this
means that each edge e must have fµe < 17m∆. Consider the two cases below and note that
m ≥ n ≥ di + 1 (2.1).

1. First suppose bµi > 0. Then we obtain a contradiction to the feasibility of f :

∇fµi − b
µ
i =

∑
j∈δin(i)

γµjif
µ
ji −

∑
j∈δout(i)

fµij − b
µ
i < 17dim∆− 20nm∆ < 0.

2. On the other hand, if bµi < 0, then we obtain a contradiction to the bound∇fµi −b
µ
i ≤ (4di+8)∆:

∇fµi − b
µ
i =

∑
j∈δin(i)

γµjif
µ
ji −

∑
j∈δout(i)

fµij − b
µ
i > −17dim∆ + 20nm∆ ≥ 3nm∆ + 17m∆.

The algorithm maintains several sets of nodes. Let L be the set of “low excess” nodes with
∇fµi − b

µ
i < (di + 1)∆. Let H be the set of “high excess” nodes. A node enters H when its excess

hits the upper bound 4(di + 2)∆, and it stays in H until its excess falls below (di + 2)∆. These
bounds are illustrated in Figure 2.

(di + 2)� 4(di + 2)�(di + 1)�

HL

(rfµ
i � bµ

i )
Excess at i

Figure 2: Number line showing values of excess when node i is in set L or H (not to scale).

Finally, let R be the set of nodes reachable along tight paths from H. (In particular, H ⊆ R.)
The algorithm generally seeks to spread excess from H to L along tight paths:

• (3)a Augmentation: Each iteration of step (3) first looks to augment ∆ units of flow on
tight paths from H to R ∩ L. This redistributes excess in order to improve the balance of
excess across the graph. When the algorithm can no longer augment, there must either be (i)
no reachable low excess nodes to augment to or (ii) no high excess nodes to push flow from.

• (3)b Scaling: The scaling phase resolves both potential problems by increasing µ in R and
decreasing ∆ by the same factor α > 1.

(i) Increasing µ in R causes γµij to increase for edges from R to V \R. This can cause an edge
crossing this cut to become tight, growing R. In particular, this may make a low-excess
node reachable.

(ii) ∆ can decrease until some node i has excess equal to the upper bound 4(di + 2)∆. At
this point i has become a high-excess node.
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Claim 4.2. The ratio |b
µ
i |/∆ is non-decreasing during scaling and increases for nodes i ∈ V \R.

(Note: it is also constant during the other phases.)

Proof. α > 1 by construction. The ratio does not change for nodes in R since both bµi = bi/µi
and ∆ are divided by α. In V \R, the ratio is multiplied by α because ∆ is divided by α.

• (3)c De-isolation: If V \ R does not contain any nodes with large values of |b
µ
i |/∆, then

scaling will be ineffective in producing a plentiful node. As such, if |b
µ
i |/∆ < 1/n for every

node in V \R, we delay scaling and focus on pushing flow directly to the sink from “isolated”
nodes (i.e. those that are not reachable along a tight path from H). This goal is achieved by
computing a max flow along tight edges in V \R, which replaces the current flow on edges
inside V \R; flow on edges going from V \R to R is zeroed, and all other values remain the
same. Reducing excess of nodes in V \ R potentially allows the next scaling phase to last
longer and thus increase |b

µ
i |/∆ more. Simultaneously, zeroing the flow from V \R to R reduces

the excess of nodes in R, which might open them up to accept augmentations in a future
iteration.

4.3 Sketch of Runtime Analysis

In this section we analyze a few key ideas that lead to a strongly polynomial runtime. The full (and
lengthy) set of proofs for the runtime analysis can be found in [1].

As noted in Section 3.1, there can only be n− 1 contractions. Therefore the analysis aims to
show a contractible edge can be found in strongly polynomial time. We define the following potential
function to bound the number of iterations of step (3) defined at the beginning of Section 4.

Ψ :=
∑
i∈H

⌊
∇fµi − b

µ
i

∆
− (di + 1)

⌋

Recall that H denotes the set of “high excess” nodes. The potential increases by 4(di + 2)−
(di + 1) = 3di + 7 when a node is added to H (this is called an expanding iteration) and decreases by
(di + 2)− (di + 1) = 1 when a node leaves H (a shrinking iteration). Once a node leaves H, ∆ must
decrease by at least a factor of two before that node can enter H again; this allows us to bound the
total number of expanding iterations. Since H is initially empty (Ψ = 0), we can use the bound on
expanding iterations to bound the total increase in potential. Furthermore, since a node in H must
have ∇fµi − b

µ
i ≥ ∆(di + 2), Ψ is always nonnegative. This allows us to use the total increase in

potential to bound the total decrease in potential, and, in turn, the number of shrinking iterations.
This yields strongly polynomial bounds on the number of expanding and shrinking iterations;

however, we must also prove that there are only a few “neutral” iterations in between the expanding
and shrinking iterations. This is where we note the importance of the De-Isolation subroutine.
For this analysis, let D be the set of nodes with |b

µ
i |/∆ ≥ 1/n. On each iteration, if there is not an

augmentation (shrinking iteration), then either Scaling alone or De-Isolation and Scaling will
be called. If Scaling is called, then V \R∩D contained at least one node i, which will have its |b

µ
i |/∆

increased by α. Since i ∈ D, |b
µ
i |/∆ ≥ 1/n, so i will become plentiful after O(log(n2m)) = O(log n)

halvings of ∆. This bounds the number of pure scalings in terms of the number of expanding
iterations. If De-Isolation is called first, then the excess of nodes in V \R will decrease enough
such that the next Scaling round will either grow R, allowing an augmentation (shrinking iteration)
on the next iteration, or grow D. Note that the latter can only happen n− 1 times because once a
node enters D, it cannot leave (|b

µ
i |/∆ is non-decreasing) unless it is contracted.
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The analysis above gives us a strongly polynomial bound on the total number of iterations. It
takes at most O(mn log n) iterations to find a contractible edge, and there are at most O(n) iterations
(due to the stopping condition). The running time per iteration is dominated by De-Isolation,
which takes O(nm) time. Therefore, this gives an upper bound of O(n3m2 log n) for the total
runtime (all other operations including initialization are absorbed into this runtime).

5 A Faster Strongly Polynomial Algorithm

The most recent strongly polynomial algorithm developed by Olver and Végh [4] takes the same
overall approach as the original algorithm [10], but introduces several novel ideas that improve the
running time by a factor of almost O(n2). In this section, we describe the algorithm and provide
intuition for the improved running time.

5.1 Working with Infeasible Flows

The algorithm described in Section 4 maintains a feasible flow at all times. In order to produce a
contractibility certificate, it has to keep the excess at each node bounded. In order to do that, it has
to spread flow around, leveling out the excesses. In contrast, Olver and Végh [4] maintain a possibly
infeasible flow, introducing the possibility of deficit at a node. Rather than spreading excesses
around to level them, this algorithm sends them to cancel with deficits. Whereas leveling excesses
could require augmenting between all pairs of nodes (roughly n2 pairs to consider), cancelling excess
only requires identifying a corresponding deficit for each excess (roughly O(n)). This gives some
intuition for why relaxing the feasibility requirement might be appealing.

More precisely, the algorithm maintains a fitting pair of primal and dual solutions (f, µ). This
is a relaxation of the idea of a conservative pair from Section 3.2, wherein f is not required to be
feasible:

Definition 5.1. A (not necessarily feasible) flow f is said to fit a feasible dual solution µ if it
satisfies the putative complementary slackness condition: fij > 0 =⇒ γµij = 1. In this case, we
refer to (f, µ) as a fitting pair.

In lieu of maintaining a feasible f at each step, the algorithm ensures that µ is safe—i.e., that a
feasible f fitting µ exists—by preserving a cut property. To simplify the exposition, we start with a
definition.

Definition 5.2. Recall that τ(µ) denotes the set of tight edges under a dual labeling µ. Given µ, an
inward-loose cut is a set S ⊆ V that does not have any tight incoming edges (δin(S) ∩ τ(µ) = ∅).

If f is a flow fitting µ, then there is no flow into inward-loose cuts because there are no tight
edges to carry such flow. If f is feasible, then it follows that the total demand inside an inward-loose
cut is nonpositive—otherwise f would have to satisfy this demand by flowing into the cut. It turns
out that this is a sufficient condition for the existence of a feasible fitting flow:

Lemma 5.1 (Certificate for Safety). µ is safe if and only if for any inward-loose cut S ⊆ V \ t,∑
i∈S

bµi ≤ 0.

This is a corollary of Hoffman’s Circulation Theorem ([7], Theorem 11.2), a standard result on
existence of (ordinary, not generalized) flows, applied to the tight graph under µ.
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5.2 A Refined Contractibility Certificate

So long as the algorithm maintains the safety of µ, we can obtain a feasible fitting flow f at any
time by running an ordinary maximum flow algorithm restricted to the tight graph of µ. Moreover,
a generalization of Lemma 3.1 applies to fitting pairs:

Lemma 5.2. Suppose (g, µ) is a fitting pair with µ safe. Then there is some feasible flow g̃ uniformly
“close” to g:

‖g̃µ − gµ‖∞ ≤ Def(g, µ) and Ex(g̃, µ) ≤ Ex(g, µ).

Proof Idea. The proof is very similar to that of Lemma 3.1. However, as both f and f̃ fit the same
dual µ, the analysis need only consider fµ and f̃µ as regular flows on τ(µ). This simplifies the
argument considerably. We omit the full proof for brevity.

Corollary 5.2.1. Suppose (g, µ) is a fitting pair with µ safe. Then there is some optimal flow g∗

uniformly “close” to g:
‖(g∗)µ − gµ‖∞ ≤ Ex(g, µ) + Def(g, µ).

Proof. Follows immediately from Lemma 5.2, Lemma 3.1, and the triangle inequality.

Corollary 5.2.1 suggests an appropriate definition of abundant edge when working with infeasible
flows: if (g, µ) is a fitting pair with µ safe and gµe > Ex(g, µ) + Def(g, µ), then e is contractible. As
in Section 4.2, there is a corresponding node-wise certificate depending only on the dual variables:

Definition 5.3. A node i is plentiful with respect to the current primal-dual solution pair (f, µ)
if |bµi | ≥ 3n(di + 1).

Theorem 5.3. Let (f, µ) be a fitting pair such that

(i) µ is safe.

(ii) Relabeled excess is uniformly bounded: ∇fµi − b
µ
i ≤ 2 everywhere.

Let i be a plentiful node with respect to (f, µ). Then a contractible edge neighboring i can be found
in strongly polynomial time.

Proof. First we compute a flow with bounded excess and deficit. Then we use it to obtain an
abundant edge.

Since µ is safe, there is some flow f ′ satisfying bµi ≤ (f ′)µi for all i and f ′e > 0 only if e is tight.
Meanwhile, ∇fµi ≤ b

µ
i + 2. By an ordinary maximum flow computation on the tight edges defined

by µ (cf. [7], Corollary 11.2), it is possible to compute a flow g which is not necessarily feasible but
satisfies

bbµi c ≤ b
µ
i ≤ ∇(f ′)µi ≤ ∇g

µ
i ≤ ∇f

µ
i ≤ max{∇fµi , db

µ
i e}.

Clearly, Ex(g, µ) ≤ 2n and Def(g, µ) ≤ n− 1. (Note that the sink t is excluded from total excess
and deficit.) Moreover, if f is integral, then the outer bounds above are integral; so g can be made
integral.

Suppose that i ∈ V s. (The other case is similar.) We have∑
e∈δin(i)

gµe ≥
∑

e∈δin(i)

gµe −
∑

e∈δout(i)

gµe = −∇gµi ≥ −b
µ
i − Ex(g, µ),

where the last inequality is because ∇gµi − b
µ
i appears as a term in Ex(g, µ) if it is positive. Now

−bµi − Ex(g, µ) > 3n(di + 1)− 2n > 3ndi > 3n|δin(i)|

11



So there is some edge e ∈ δin(i) with gµe > 3n > Ex(g, µ) + Def(g, µ). This is an abundant and
contractible edge.

In practice, the algorithm maintains a fitting pair (f, µ) satisfying assumptions (i) and (ii) of
Theorem 5.3. When it encounters a plentiful node i, it computes a new integral flow g as described
in the proof, uses it to identify an abundant edge neighboring i, and then contracts the edge. After
contraction, (g, µ) is used to initialize the search for the next plentiful node.

5.3 Producing a Plentiful Node

In order to find a plentiful node for a fitting pair (f, µ), the algorithm uses a subroutine which
alternates between the following augmentation and scaling phases until a node becomes plentiful:

• Augmentation: Reduce the total excess and deficit of the fitting flow f by augmenting as
much flow as possible, one unit at a time, along tight paths from nodes with excess to nodes
with deficit. (Augmenting along tight paths maintains a fitting pair.) Formally, let T be the
union of the sink t and all nodes with deficit (∇fµi < bµi ) and let S (“sources”) be the set of
all nodes i for which T is reachable from i along a tight path in the residual graph. Continue
augmenting from S to T as long as there is some i ∈ S for which the following conditions hold:

(i) i has at least one unit of excess (∇fµi ≥ b
µ
i + 1); and

(ii) bi < 0 (this condition is important in the potential analysis).

• Scaling: Work toward producing a plentiful node by scaling the dual µ to increase |bµ|. Any
excesses created during this phase must be cancelled by augmentation. In order to make this
possible, only nodes in the “reachable” set S are scaled.

Notionally, a scaling factor α > 1 is increased continuously, and µi ← µi/α for i ∈ S. α
increases until either there is a plentiful node in S or some node in S has an excess of at
least 1, triggering an augmentation phase. Flow on edges entirely within S is also scaled by
fe ← fe/α, so that fµij does not change when i, j ∈ S.

Intuitively, scaling is akin to filling a basin with water. As illustrated in the example in Figure 3,
imagine a basin with various levels, where the height of the water represents α and each level
corresponds to a vertex on the boundary of S. The area under water represents S. As α rises, an
incoming edge, for example (i, j) at label (b), becomes tight. This in turn causes i to be added to S,
as T is now reachable along a tight path from i. Updating S during scaling maintains the invariant
that S is inward-loose. Eventually, some node k ∈ S (either a newly added node or one that was

↵

a
(i, j) becomes tightb

c

d ↵

a
b

c

d

↵

a
b

c

dEx(k) = 1

Figure 3: Informal analogy showing an example of how scaling α expands S just enough so that
the next augmentation phase can make progress.
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there previously) either becomes plentiful or is scaled to the point where its relabeled excess is 1,
for example at label (d) in the figure. In the latter case, augmentation can make progress, so the
next round of augmentation begins.

In practice, α and S can be updated via a modified Dijkstra’s algorithm as follows. Let
cij = − log γij be the “cost” of edge (i, j). Then (i, j) is tight exactly when

cij = logµi − logµj .

In other words, tight paths are shortest paths, logµ is a distance function, and S is a “frontier.”
Scaling µ by α−1 in S amounts to adding logα to the distance of every node in S. Each new node
added to S is the closest node under the costs cij , and it is encountered when logα rises to reach
its distance. Dijkstra’s algorithm with costs cij will compute the maximum distance logα, and it
can be terminated when either a plentiful node or an excess greater than one is encountered.

5.4 Analysis

We now demonstrate some invariants preserved by the algorithm. In particular, we show that the
algorithm maintains assumptions (i) and (ii) of Theorem 5.3, so that a plentiful node guarantees
the existence of a contractible edge.

Lemma 5.4. Relabeled flow fµ remains unchanged during each epoch.

Proof. As seen above, the scaling is designed so that fµij = fij/µi stays constant when both i and j
are in S. Moreover, it maintains the invariant that there is no flow across the cut S—so flow across
S is vacuously preserved under scaling. Finally, scaling does not affect edges entirely outside S.

Corollary 5.4.1. fµ is always integral.

Proof. The flow is initially rounded to be integral (Section 5.5 below). The augmentation step clearly
maintains integrality of fµ because we always augment by 1 unit at a time. By Lemma 5.4, scaling
never changes the value of fµ at all. Finally, at a contraction, a new integral flow is computed.

Because fµ is always integral and excess is always immediately augmented away, the excess at
every node stays bounded by 2.

Lemma 5.5. (f, µ) remains a fitting pair throughout each epoch.

Proof. Suppose that, at the beginning of the epoch, f fits µ. That is, µ is dual-feasible, and
whenever fij > 0, γµij = 1. Augmentation only occurs along tight edges, thus maintaining the fitting
property. Scaling only changes γµij = γijµi/µj when (i, j) crosses between S and V \ S. But there is
no flow crossing this cut, so scaling never violates the fitting property. Moreover, as soon as an edge
crossing the cut becomes tight, S is expanded. Thus, the constraint γµij ≤ 1 is never violated during
scaling, i.e., µ remains feasible.

Lemma 5.6. µ remains safe throughout each epoch, i.e. there is a corresponding feasible primal
solution even though we haven’t kept track of it.

Proof Sketch. Only the scaling rounds modify µ, so it suffices to show that one scaling step, during
which at most one node is added to S, preserves safety. Assume that µ is initially safe, and assume
by way of contradiction that the updated labeling µ′ is no longer safe. That is, there exists some
inward-loose cut X ⊆ V \ t with net positive demand bµ

′
(X) > 0.
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Divide X into X ∩ S and X \ S, where S is defined by the original µ. Recall that scaling only
affects X ∩ S, so we can write the net demand under µ′ in terms of the demands under µ as follows:

bµ
′
(X) =

1

α
bµ(X ∩ S) + bµ(X \ S)

Either bµ(X ∩ S) or bµ(X \ S) must be positive.
Suppose bµ(X ∩ S) > 0. Let E[S] denote the set of edges with both endpoints in S. Observe

that δin(X ∩ S) ⊆ (δin(X) ∩ E[S]) ∪ δin(S). By definition of S, δin(S) ∩ τ(µ) = ∅. Moreover,
E[S] ∩ τ(µ) ⊆ E[S] ∩ τ(µ′). So

δin(X) ∩ E[S] ∩ τ(µ) ⊆ δin(X) ∩ τ(µ) = ∅.

So X ∩ S is an inward-loose cut with positive net demand under µ, contradicting the safety of µ.
The case where bµ(X \ S) > 0 is similar, though slightly more complicated.

In summary, we have shown that augmentation and scaling maintain a fitting pair (f, µ) with µ
safe and Ex(f, µ) bounded, while increasing |bµi |. This will eventually produce a plentiful node.

5.5 Initialization

The algorithm needs to start with a fitting pair (f, µ) where µ is safe, f is integral, and f has
bounded excess, as required in Theorem 5.3.

To do this, the algorithm starts by computing a conservative pair (f̄ , µ), thus ensuring that µ is
safe. This feasibility problem can be solved by running the same generalized flow algorithm on a
carefully constructed graph whose optimum is a feasible solution to the original problem. This is
akin to the way the simplex algorithm is initialized.

Next, µ is scaled so that the relabeled excess is uniformly bounded. Then, the flow is “rounded”
to be integral by computing an ordinary flow fµ on the tight edges defined by µ under the constraints

b∇f̄µi c ≤ ∇f
µ
i ≤ d∇f̄

µ
i e.

The result is a fitting pair such that fµ is integral and satisfies

bµi − 1 ≤ ∇fµi ≤ b
µ
i − 2.

The algorithm proper begins with this fitting pair.

5.6 Running Time Analysis

The algorithm consists of three basic types of operations: scaling, augmentation, and contraction.
The number of contractions is bounded by n. Contraction itself requires computing a regular flow
and performing a bounded number of graph operations, but strongly polynomial algorithms already
exist for these. So the goal is to bound the running time (number of arithmetic operations) between
any two contractions.

Augmentation itself consists of a graph search on the tight subgraph, an O(m) operation.
Between rounds of augmentation, there is a scaling round. Each scaling phase stops when either
(i) a node has become plentiful, leading to a contraction, or (ii) a node has an excess greater
than 1, leading to a new augmentation round. If the scaling is done by Dijkstra’s algorithm as
described in Section 5.3, the cost of each scaling phase (and thus the overall cost per augmentation)
is O(m+ n log n).

It remains to bound the total number of augmentations the algorithm may perform. We’d like
to show that after a strongly polynomial number of augmentations, the algorithm is guaranteed to
find a plentiful node.
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Lemma 5.7. After O(mn) augmentations, the algorithm is guaranteed to find a plentiful node.

First, a preliminary lemma. We denote the period between successive contraction steps as an
epoch.

Lemma 5.8. At any node i ∈ V s, the deficit is at most one. Moreover, at most one augmentation
ends at such a node during any epoch.

Proof. At the beginning of the algorithm, the flow is feasible, so ∇fµi − b
µ
i ≥ 0. Rounding decreases

∇fµi by less than one. Similarly, during each contraction, the adjusted flow is computed with
∇gµi ≥ bb

µ
i c everywhere.

Between contractions, the deficit can be modified by scaling and augmentation steps. Since
i ∈ V s, bµi < 0, and so bµi can only decrease during scaling. Meanwhile, augmentations only decrease
deficits. Once ∇fµi ≥ b

µ
i , no augmentation ending at i will be contemplated unless i experiences a

deficit again. The only way for this to happen would be for augmentations beginning at i to reduce
∇fµi below bµi . However, an augmentation will only begin at i if ∇fµi − b

µ
i ≥ 1, and will reduce ∇fµi

by exactly one. Hence, i will never again experience a deficit during the epoch, and so there will be
no further augmentations ending at i.

Proof of Lemma 5.7. Define two potential functions

Ψ(µ) = −
∑
i∈V s

bµi

Φ(f, µ) = Ψ(µ) +
∑
i∈V s

∇fµi =
∑
i∈V s

∇fµi − b
µ
i

By Lemma 5.8, Φ(f, µ) ≥ −Def(f, µ) ≥ −n throughout the algorithm. Similarly, Φ(f, µ) ≤
Ex(f, µ) ≤ 2n. Finally, it follows from Lemma 5.8 that at most n augmentations may end in V s.
All augmentations start in V s, so all other augmentations decrease Φ. So after r augmentations, Φ
has decreased by at least r − n. Its total decrease is bounded by 2n−−n = 3n, so there must be a
corresponding increase of at least r − 4n during scaling. So Ψ also increases by at least r − 4n, as
fµ is constant under scaling.

Therefore, after O(mn) augmentations, Ψ is sufficiently large so as to guarantee the existence of
a plentiful node in V s.

We have shown that there are at most n epochs of O(mn) augmentations each, with each
augmentation costing O(m + n log n). This implies an O(mn2(m + n log n)) time bound overall.
With a more careful potential analysis, the bound can be improved to O(mn log(n2/m)(m+n log n)).

6 Conclusion

We presented and compared two strongly polynomial algorithms for the maximum generalized
flow problem. Both algorithms take a combinatorial approach by computing a set of tight edges
consistent with an optimal dual solution. In both cases, this set is built up inductively by contracting
edges. Finally, in both cases, a pair of primal and dual solutions is used to construct certificates
of contractibility. Olver and Végh [4] achieve an improvement of almost O(n2) by relaxing the
feasibility of the primal flow component of the pair. This allows excess to be cancelled with deficit,
making it much easier to keep both bounded and thus reducing the time required to find each
contractible edge.
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