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Problems with direct copy/paste

From Perez et al. 2003
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Solution: paste gradient

hacky visualization of gradient
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Demo of healing brush
• Slightly smarter version of what we learn today

– higher-order derivative in particular
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What is a gradient?
• derivative of a multivariate function
• for example, for f(x,y)

• For a discrete image, can be approximated with finite 
differences

∇f =
�

df

dx
,
df

dy

�

df

dx
≈ f(x + 1, y)− f(x, y)

df

dy
≈ f(x, y + 1)− f(x, y)
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Gradient: intuition
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Gradients and grayscale images
• Grayscale image: n×n scalars
• Gradient: n×n 2D vectors
• Two many numbers!
• What’s up with this? 

• Only if they are curl-free (a.k.a. conservative)
– But we’ll see it does not matter for us

• Not all vector fields are the gradient of an image!
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Text

Escher, Maurits Cornelis
Ascending and Descending
1960
Lithograph
35.5 x 28.5 cm (14 x 11 1/4 in.)
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Color images
• 3 gradients, one for each channel. 
• We’ll sweep this under the rug for this lecture
• In practice, treat each channel independently
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Questions?
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Seamless Poisson cloning
• Paste source gradient into target image inside a 

selected region
• Make the new gradient as close as possible to the 

source gradient while respecting  pixel values at the 
boundary

paste 
source 
gradient 
here

keep target values here
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Seamless Poisson cloning
• Given vector field v (pasted gradient), find the value 

of f in unknown region that optimize: 

Pasted gradient Mask

Background

unknown
region

Poisson equation

with Dirichlet conditions
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• Copy    to

Discrete 1D example: minimization
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With 
f1=6
f6=1

Min [(f2-f1)-1]2

+ [(f3-f2)-(-1)]2

+ [(f4-f3)-2]2

+ [(f5-f4)-(-1)]2

+ [(f6-f5)-(-1)]2
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1D example: minimization
• Copy    to
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Min [(f2-f1)-1]2

+ [(f3-f2)-(-1)]2

+ [(f4-f3)-2]2

+ [(f5-f4)-(-1)]2

+ [(f6-f5)-(-1)]2

==> f2
2+49-14f2

==> f3
2+f2

2+1-2f3f2 +2f3-2f2

==> f4
2+f3

2+4-2f3f4 -4f4+4f3

==> f5
2+f4

2+1-2f5f4 +2f5-2f4

==> f5
2+4-4f5
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1D example: big quadratic
• Copy    to

• Min (f2
2+49-14f2

 + f3
2+f2

2+1-2f3f2 +2f3-2f2

 + f4
2+f3

2+4-2f3f4 -4f4+4f3

 + f5
2+f4

2+1-2f5f4 +2f5-2f4

 + f5
2+4-4f5) 

Denote it Q
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1D example: derivatives
• Copy    to
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Min (f2
2+49-14f2

 + f3
2+f2

2+1-2f3f2 +2f3-2f2

 + f4
2+f3

2+4-2f3f4 -4f4+4f3

 + f5
2+f4

2+1-2f5f4 +2f5-2f4

 + f5
2+4-4f5) 

Denote it Q
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1D example: set derivatives to zero
• Copy    to
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1D example recap
• Copy    to

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7==>

Thursday, October 22, 2009



Questions?
• Recap:

– copy gradient, not pixel values
– enforce boundary condition
– solve linear least square:

minimize square difference with source gradient
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1D example: remarks
• Copy  to
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• Matrix is sparse 
• many zero coefficients
• because gradient only depends on neighboring pixels

• Matrix is symmetric 
• Everything is a multiple of 2  

– because square and derivative of square
• Matrix is a convolution (kernel -2 4 -2)

• all the rows are the same, just shifted
• Matrix is independent of gradient field. Only RHS is
• Matrix is a second derivative
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Questions?
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Let’s try to further analyze
• What is a simple case?
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Membrane interpolation
• What if v is null?
• Laplace equation (a.k.a. membrane equation )
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1D example: minimization
• Minimize derivatives to interpolate
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With 
f1=6
f6=1

Min (f2-f1)2

+ (f3-f2)2

+ (f4-f3)2

+ (f5-f4)2

+ (f6-f5)2
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1D example: derivatives
• Minimize derivatives to interpolate
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Min (f2
2+36-12f2

 + f3
2+f2

2-2f3f2

 + f4
2+f3

2-2f3f4

 + f5
2+f4

2-2f5f4

 + f5
2+1-2f5) 

Denote it Q
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1D example: set derivatives to zero
• Minimize derivatives to interpolate
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1D example
• Minimize derivatives to interpolate

• Pretty much says that second 
derivative should be zero
(-1 2 -1) 

is a second derivative filter
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Intuition
• In 1D; just linear interpolation!
• Locally, if the second derivative was not zero, this 

would mean that the first derivative is varying, which 
is bad since we want (∇ f)2 to be minimized

• Note that, in 1D: by setting f'', we leave two degrees 
of freedom. This is exactly what we need to control 
the boundary condition at x1 and x2

x1 x2
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In 2D: membrane interpolation 

x1 x2

Not as 
simple
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Membrane interpolation
• When v is null:
• Laplace equation (a.k.a. membrane equation )

• Mathematicians will tell you there is an 
Associated Euler-Lagrange equation:

– Where the Laplacian Δ is similar to -1 2 -1 in 1D
• Kind of the idea that we want a minimum, so we kind of 

derive and get a simpler equation
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Questions?
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What if v is not null?
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What if v is not null?
• 1D case

Seamlessly paste onto

Just add a linear function so that the boundary condition is respected

target f*
source g

correction f

solution f=f+g
^

gap
f(x2)-g(x2)gap 

f(x1)-g(x1)
x1 x2

^
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Recap 1D case
• Poisson clone of g into f* between x1 and x2
• if g is null, simple linear function 

– f(x) = (x2-x)/(x2-x1)f*(x1)+(x-x1)/(x2-x1)f*(x2) 
• otherwise, add a correction function to g in order to 

linearly interpolate between 
f*(x1)-g(x1) and f*(x2)-g(x2)
– f(x)=f(x)+g(x)
– where

f(x) = (x2-x)/(x2-x1)(f*(x1)-g(x1)
        +(x-x1)/(x2-x1)(f*(x2)-g(x2))

– Note that boundary conditions are respected and the 
difference to g is spread uniformly

^
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1D example
• Copy    to
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Questions?
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In 2D, if v is conservative 
• If v is the gradient of an image g (it is conservative)
• Correction function    so that 
•   performs membrane interpolation over Ω: 
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In 2D, if v is NOT conservative
• Also need to project the vector field v to a 

conservative field
• And do the membrane thing
• Of course, we do not need to worry about it, it’s all 

handled naturally by the least square approach
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Questions?
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Recap
• Find image whose gradient best approximates the 

input gradient 
– least square Minimization

• Discrete case: turns into linear equation
– Set derivatives to zero
– Derivatives of quadratic ==> linear

• When gradient is null, membrane interpolation
– Linear interpolation in 1D
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Fourier interpretation
• Least square on gradient
• Parseval anybody?

– Integral of squared stuff is the same in Fourier and 
primal

• What is the gradient/derivative  in Fourier?
– Multiply coefficients by frequency and i

• Seen in Fourier domain, Poisson editing does a 
weighted least square of the image where low 
frequencies have a small weight and high frequencies 
a big weight

Thursday, October 22, 2009



Questions?
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Discrete solver: Recall 1D
• Copy    to
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Discrete Poisson solver
• Minimize variational problem
• Discretize derivatives

– Finite differences over pairs of pixel neighbors
– We are going to work using pairs of pixels

p q

Thursday, October 22, 2009



• Minimize

Discrete Poisson solver

p q

(all pairs that 
are in Ω)

Discretized 
gradient

Discretized 
v: g(p)-g(q) Boundary condition

Only for 
boundary pixels

• Derive, rearrange and call Np the neighbors of p

• Big yet sparse linear system
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Result (eye candy)

Thursday, October 22, 2009



Questions?
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Recap
• Find image whose gradient best approximates the 

input gradient 
– least square Minimization

• Discrete case: turns into big sparse linear equation
– Set derivatives to zero
– Derivatives of quadratic ==> linear
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Solving big matrix systems
• Ax=b
• You can use Matlab’s \

– (Gaussian elimination)
– But not very scalable
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Typical sizes
• e.g. solve Poisson in a 100x100 image region
• 10,000 unknowns
• 10,000x10,000 matrix!
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Iterative solvers
Important ideas
• Do not inverse matrix
• Maintain a vector x’ that progresses towards the 

solution
• Updates mostly require to apply the matrix. 

– In many cases, it means you do no even need to store 
the matrix (e.g. for a convolution matrix you only 
need the kernel)

• Usually, you don’t even wait until convergence
• Big questions: in which direction do you walk?

– Yes, very similar to gradient descent
– How far do you go?
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1D example recap
• Copy    to
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1D example with Jacobi
• Copy   to
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(I+A’)x=b

xn+1=b- A’xn

 0 1  0  0
 1  0 1  0
 0  1  0 1
 0  0  1 0

+1/2

   4
-1.5
 1.5
 0.5

xn

4, -1.5, 1.5, 0.5, 
3.25, 1.25, 1, 1.25, 
4.625, 0.625, 2.75, 1, 
4.3125, 2.1875, 2.3125, 1.875, 
5.09375, 1.8125, 3.53125, 1.65625, 
4.90625, 2.8125, 3.23438, 2.26562, 
5.40625, 2.57031, 4.03906, 2.11719, 
5.28516, 3.22266, 3.84375, 2.51953, 
5.61133, 3.06445, 4.37109, 2.42188, 
5.53223, 3.49121, 4.24316, 2.68555, 
5.74561, 3.3877, 4.58838, 2.62158, 
5.69385, 3.66699, 4.50464, 2.79419, 
5.8335, 3.59924, 4.73059, 2.75232, 
5.79962, 3.78204, 4.67578, 2.8653, 
5.89102, 3.7377, 4.82367, 2.83789, 
5.86885, 3.85735, 4.7878, 2.91183, 
5.92867, 3.82832, 4.88459, 2.8939, 
5.91416, 3.90663, 4.86111, 2.9423, 
5.95332, 3.88764, 4.92446, 2.93056, 
5.94382, 3.93889, 4.9091, 2.96223, 
5.96944, 3.92646, 4.95056, 2.95455, 
5.96323, 3.96, 4.9405, 2.97528, 
5.98, 3.95187, 4.96764, 2.97025, 
5.97593, 3.97382, 4.96106, 2.98382, 
5.98691, 3.9685, 4.97882, 2.98053, 
5.98425, 3.98287, 4.97451, 2.98941, 
5.99143, 3.97938, 4.98614, 2.98726, 
5.98969, 3.98879, 4.98332, 2.99307, 
5.99439, 3.9865, 4.99093, 2.99166, 
5.99325, 3.99266, 4.98908, 2.99546, 
5.99633, 3.99117, 4.99406, 2.99454, 
5.99558, 3.9952, 4.99285, 2.99703, 
5.9976, 3.99422, 4.99611, 2.99643, 
5.99711, 3.99686, 4.99532, 2.99806, 
5.99843, 3.99622, 4.99746, 2.99766, 
5.99811, 3.99794, 4.99694, 2.99873, 
5.99897, 3.99752, 4.99834, 2.99847, 
5.99876, 3.99865, 4.998, 2.99917, 
5.99933, 3.99838, 4.99891, 2.999, 
5.99919, 3.99912, 4.99869, 2.99946, 
5.99956, 3.99894, 4.99929, 2.99934, 
5.99947, 3.99942, 4.99914, 2.99964, 
5.99971, 3.99931, 4.99953, 2.99957, 
5.99965, 3.99962, 4.99944, 2.99977, 
5.99981, 3.99955, 4.99969, 2.99972, 
5.99977, 3.99975, 4.99963, 2.99985, 
5.99988, 3.9997, 4.9998, 2.99982, 
5.99985, 3.99984, 4.99976, 2.9999, 
5.99992, 3.99981, 4.99987, 2.99988, 
5.9999, 3.99989, 4.99984, 2.99993, 
5.99995, 3.99987, 4.99991, 2.99992, 
5.99994, 3.99993, 4.9999, 2.99996, 
5.99997, 3.99992, 4.99994, 2.99995, 
5.99996, 3.99995, 4.99993, 2.99997, 
5.99998, 3.99995, 4.99996, 2.99997, 
5.99997, 3.99997, 4.99996, 2.99998, 
5.99999, 3.99996, 4.99998, 2.99998, 
5.99998, 3.99998, 4.99997, 2.99999, 
5.99999, 3.99998, 4.99998, 2.99999, 
5.99999, 3.99999, 4.99998, 2.99999, 
5.99999, 3.99998, 4.99999, 2.99999, 
5.99999, 3.99999, 4.99999, 2.99999, 
6, 3.99999, 4.99999, 2.99999, 
5.99999, 3.99999, 4.99999, 3, 
6, 3.99999, 5, 3, 
6, 4, 4.99999, 3, 
6, 4, 5, 3, 

System

Iterations:
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1D example with Conjugate 
4, -1.5, 1.5, 0.5, 
3.25, 1.25, 1, 1.25, 
4.625, 0.625, 2.75, 1, 
4.3125, 2.1875, 2.3125, 1.875, 
5.09375, 1.8125, 3.53125, 1.65625, 
4.90625, 2.8125, 3.23438, 2.26562, 
5.40625, 2.57031, 4.03906, 2.11719, 
5.28516, 3.22266, 3.84375, 2.51953, 
5.61133, 3.06445, 4.37109, 2.42188, 
5.53223, 3.49121, 4.24316, 2.68555, 
5.74561, 3.3877, 4.58838, 2.62158, 
5.69385, 3.66699, 4.50464, 2.79419, 
5.8335, 3.59924, 4.73059, 2.75232, 
5.79962, 3.78204, 4.67578, 2.8653, 
5.89102, 3.7377, 4.82367, 2.83789, 
5.86885, 3.85735, 4.7878, 2.91183, 
5.92867, 3.82832, 4.88459, 2.8939, 
5.91416, 3.90663, 4.86111, 2.9423, 
5.95332, 3.88764, 4.92446, 2.93056, 
5.94382, 3.93889, 4.9091, 2.96223, 
5.96944, 3.92646, 4.95056, 2.95455, 
5.96323, 3.96, 4.9405, 2.97528, 
5.98, 3.95187, 4.96764, 2.97025, 
5.97593, 3.97382, 4.96106, 2.98382, 
5.98691, 3.9685, 4.97882, 2.98053, 
5.98425, 3.98287, 4.97451, 2.98941, 
5.99143, 3.97938, 4.98614, 2.98726, 
5.98969, 3.98879, 4.98332, 2.99307, 
5.99439, 3.9865, 4.99093, 2.99166, 
5.99325, 3.99266, 4.98908, 2.99546, 
5.99633, 3.99117, 4.99406, 2.99454, 
5.99558, 3.9952, 4.99285, 2.99703, 
5.9976, 3.99422, 4.99611, 2.99643, 
5.99711, 3.99686, 4.99532, 2.99806, 
5.99843, 3.99622, 4.99746, 2.99766, 
5.99811, 3.99794, 4.99694, 2.99873, 
5.99897, 3.99752, 4.99834, 2.99847, 
5.99876, 3.99865, 4.998, 2.99917, 
5.99933, 3.99838, 4.99891, 2.999, 
5.99919, 3.99912, 4.99869, 2.99946, 
5.99956, 3.99894, 4.99929, 2.99934, 
5.99947, 3.99942, 4.99914, 2.99964, 
5.99971, 3.99931, 4.99953, 2.99957, 
5.99965, 3.99962, 4.99944, 2.99977, 
5.99981, 3.99955, 4.99969, 2.99972, 
5.99977, 3.99975, 4.99963, 2.99985, 
5.99988, 3.9997, 4.9998, 2.99982, 
5.99985, 3.99984, 4.99976, 2.9999, 
5.99992, 3.99981, 4.99987, 2.99988, 
5.9999, 3.99989, 4.99984, 2.99993, 
5.99995, 3.99987, 4.99991, 2.99992, 
5.99994, 3.99993, 4.9999, 2.99996, 
5.99997, 3.99992, 4.99994, 2.99995, 
5.99996, 3.99995, 4.99993, 2.99997, 
5.99998, 3.99995, 4.99996, 2.99997, 
5.99997, 3.99997, 4.99996, 2.99998, 
5.99999, 3.99996, 4.99998, 2.99998, 
5.99998, 3.99998, 4.99997, 2.99999, 
5.99999, 3.99998, 4.99998, 2.99999, 
5.99999, 3.99999, 4.99998, 2.99999, 
5.99999, 3.99998, 4.99999, 2.99999, 
5.99999, 3.99999, 4.99999, 2.99999, 
6, 3.99999, 4.99999, 2.99999, 
5.99999, 3.99999, 4.99999, 3, 
6, 3.99999, 5, 3, 
6, 4, 4.99999, 3, 
6, 4, 5, 3, 

2.9381   -1.1018    1.1018    0.3673
5.2027    1.5933    1.6370    1.8617
6.1724    3.9337    4.3370    2.0983
6.0000    4.0000    5.0000    3.0000
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Conjugate gradient:

Jacobi:

More about all this next time
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Recap
• Poisson image cloning: paste gradient, enforce 

boundary condition
• Variational formulation
• Discretize variational version, 

leads to big but sparse linear system
• There are smart iterative technique to solve it 

without full Gaussian elimination
– In fact without ever storing the full matrix
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Questions?
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Manipulate the gradient
• Mix gradients of g & f: take the max
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Questions?
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Issues with Poisson cloning
• Colors
• Contrast
• The backgrounds in f & g should be similar
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Improvement: local contrast
• Use the log
• Or use covariant derivatives (next slides)
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Covariant derivatives & Photoshop
• Photoshop Healing brush
• Developed independently from Poisson editing by 

Todor Georgiev (Adobe)

From Todor Georgiev's slides http://photo.csail.mit.edu/posters/todor_slides.pdf
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Seamless Image Stitching in the Gradient Domain

• Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss
http://www.cs.huji.ac.il/~alevin/papers/eccv04-blending.pdf
http://eprints.pascal-network.org/archive/00001062/01/tips05-blending.pdf 

• Various strategies (optimal cut, feathering)

Thursday, October 22, 2009
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Photomontage
• http://grail.cs.washington.edu/projects/

photomontage/photomontage.pdf
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Elder's edge representation
• http://elderlab.yorku.ca/~elder/publications/journals/

ElderPAMI01.pdf
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Reduce big gradients
• Dynamic range compression
• See Fattal et al. 2002
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Gradient tone mapping
• Fattal et al. Siggraph 2002

Slide from Siggraph 2005 by Raskar (Graphs by Fattal et al.) 
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Gradient attenuation

From Fattal et al.
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Fattal et al. Gradient tone mapping
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Gradient tone mapping
• Socolinsky, D. Dynamic Range Constraints in Image 

Fusion and Visualization , in Proceedings of Signal 
and Image Processing 2000, Las Vegas, November 
2000. 
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Gradient tone mapping
• Socolinsky, D. Dynamic Range Constraints in Image 

Fusion and Visualization , in Proceedings of Signal 
and Image Processing 2000. 
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• Socolinsky, D. and Wolff, L.B., A new paradigm for 
multispectral image visualization and data fusion, 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), Fort Collins, June 1999. 
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Retinex
• Land, Land and McCann 

(inventor/founder of 
polaroid)

• Theory of lightness 
perception (albedo vs. 
illumination)

• Strong gradients come from 
albedo, illumination is 
smooth
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Questions?
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Color2gray
• Use Lab gradient to create grayscale images
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Gradient camera?
• Tumblin et al. CVPR 2005 http://www.cfar.umd.edu/

~aagrawal/gradcam/gradcam.html
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Poisson-ish mesh editing
• http://portal.acm.org/citation.cfm?

id=1057432.1057456
• http://www.cad.zju.edu.cn/home/

xudong/Projects/mesh_editing/
main.htm

• http://people.csail.mit.edu/sumner/
research/deftransfer/
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Questions?
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Alternative to membrane
• Thin plate: 

minimize second derivative

Data

Membrane interpolation

Thin-plate interpolation
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Inpainting
• More elaborate energy functional/PDEs
• http://www-mount.ee.umn.edu/~guille/inpainting.htm
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Chong color space
• log
• color opponents
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Key references
• Socolinsky, D. Dynamic Range Constraints in Image Fusion 

and Visualization 2000.  http://www.equinoxsensors.com/
news.html

• Elder, Image editing in the contour domain, 2001 http://
elderlab.yorku.ca/~elder/publications/journals/
ElderPAMI01.pdf  

• Fattal et al. 2002
Gradient Domain HDR Compression http://www.cs.huji.ac.il/
%7Edanix/hdr/

• Poisson Image Editing  Perez et al. http://
research.microsoft.com/vision/cambridge/papers/
perez_siggraph03.pdf 

• Covariant Derivatives and Vision,  Todor Georgiev (Adobe 
Systems)  ECCV 2006
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Poisson, Laplace, Lagrange, Fourier, Monge, Parseval

• Fourier studied under Lagrange, Laplace & Monge, and 
Legendre & Poisson were around

• They all raised serious objections about Fourier's work on 
Trigomometric series

• http://www.ece.umd.edu/~taylor/frame2.htm
• http://www.mathphysics.com/pde/history.html
• http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/

Fourier.html
• http://www.memagazine.org/contents/current/webonly/

wex80905.html
• http://www.shsu.edu/~icc_cmf/bio/fourier.html
• http://en.wikipedia.org/wiki/Simeon_Poisson 
• http://en.wikipedia.org/wiki/Pierre-Simon_Laplace
• http://en.wikipedia.org/wiki/Jean_Baptiste_Joseph_Fourier
• http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/

Parseval.html 
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Refs Laplace and Poisson
• http://www.ifm.liu.se/~boser/elma/Lect4.pdf
• http://farside.ph.utexas.edu/teaching/329/lectures/

node74.html
• http://en.wikipedia.org/wiki/Poisson's_equation
• http://www.colorado.edu/engineering/CAS/courses.d/

AFEM.d/AFEM.Ch03.d/AFEM.Ch03.pdf
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Gradient image editing refs
• http://research.microsoft.com/vision/cambridge/papers/

perez_siggraph03.pdf
• http://www.cs.huji.ac.il/~alevin/papers/eccv04-blending.pdf
• http://www.eg.org/EG/DL/WS/COMPAESTH/

COMPAESTH05/075-081.pdf.abstract.pdf
• http://photo.csail.mit.edu/posters/Georgiev_Covariant.pdf
• Covariant Derivatives and Vision,  Todor Georgiev (Adobe Systems)  

ECCV 2006
• http://www.mpi-sb.mpg.de/~hitoshi/research/image_restoration/

index.shtml
• http://www.cs.tau.ac.il/~tommer/vidoegrad/
• http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1467600
• http://grail.cs.washington.edu/projects/photomontage/
• http://www.cfar.umd.edu/~aagrawal/iccv05/surface_reconstruction.html
• http://www.merl.com/people/raskar/Flash05/
• http://research.microsoft.com/~carrot/new_page_1.htm
• http://www.idiom.com/~zilla/Work/scatteredInterpolation.pdf 
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Poisson image editing
• Two aspects

– When the new gradient is conservative: 
Just membrane interpolation to ensure boundary condition

– Otherwise: allows you to work with non-conservative vector 
fields and 

• Why is it good? 
– More weight on high frequencies

• Membrane tries to use low frequencies to match boundaries conditions
– Manipulation of the gradient can be cool 

(e.g. max of the two gradients)
• Manipulate local features (edge/gradient) and worry about global 

consistency later
• Smart thing to do: work in log domain
• Limitations

– Color shift, contrast shift (depends strongly on the difference 
between the two respective backgrounds)
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