Computation is the New Optics

Frédo Durand MIT CSAIL joint work with Anat Levin, Bill Freeman, Peter Sand, Tim Cho, Ce Liu, Antonio Torralba, Ted Adelson, and others

Two roles for optics

Capture images of the world

Computation is the new optics

Naked eye viewing

Computation is the new optics

Naked eye viewing

Optical enhancement
correct vision
reduce brightness
magnify size
reduce distance

Computation is the new optics

Naked eye viewing

- Optical enhancement
 correct vision,
 - reduce brightness,
 - magnify size,
 - reduce distance

Cornea/ Lens

- Computational enhancement
 - camera + computation
 + display

Motion magnification

*with Liu, Torralba, Freeman & Adelson [Siggraph 2005]*Analyze motion in video (robust to occlusion)
Magnify motion that is hard to see

Motion magnification

*with Liu, Torralba, Freeman & Adelson [Siggraph 2005]*Analyze motion in video (robust to occlusion)
Magnify motion that is hard to see

Eardrum analysis

work in Denny Freeman's group
 (Proceedings National Academy of Sciences)

Applied to eardrum sequence

Two roles for optics

+ Capture images of the world

Image capture

 A sensor placed alone in the middle of the visual world does not record an image

Image capture

 Pinhole allow you to select rays

Image formation: optics

Optics

 forms an
 image:
 selects and
 integrates
 light rays

Image formation: computation

 The combination of optics & computation forms the image: selects and combines rays

Computational imaging goals

- Better capture information
- Form image as a post-process

Better capture information

- Same as communication theory: optics encodes, computation decodes
- Code seeks to minimize distortion

Form images as a post-process

 The computational part of formation can be done later and multiple times

Related fields

- Computer Vision
 - Extract information from visual array
- Computer graphics
 Try to reproduce reality

- Computational Imaging: areas with physics challenges
 - Astronomy/telescope
 - Radar
 - Microscopy
 - Medical Imaging

Plan

- Introduction of computational photography
 - Enhance our vision
 - Capture visual information
- Motion Invariant Photography
- + Potpourri
- Big Ideas in Computational Photography

Motion Invariant Photography

Frédo Durand MIT CSAIL with Anat Levin, Peter Sand, Taeg Sang Cho, Bill Freeman

This talk: blur removal

- Blur often reduces image quality
 - Motion blur, diffraction, defocus
- Traditional solution:
 - Faster shutter speed, smaller aperture, bigger aperture
 - Often increases noise (gathers less light)
- Today: computational solution
 - Remove blur given single image
 - Imaging hardware + software

Motion blur

Most of the scene is static

Can we remove the blur?

- Given single image with blur
- Blur is mostly a linear process, just invert it
 called deconvolution
- But we need to know the exact blur
- + But the process needs to be invertible
 - Lose as little information as possible

Kernel identification

Input blurry image

Correct kernel Output from correct kernel

Wrong kernel Output from wrong kernel

Kernel identification

The kernel is spatially varying

Entire image deblurred with kernel corresponding to the cans' velocity

Challenge with deblurring

Blur destroys information
Often box filter

Deblurring given known blur:

blurred input

deblurred

static input

Blur destroys information

- Blur is a convolution, but sensor has noise
- Fourier domain:
 - Blurred image Y is a multiplication of sharp image X by kernel K plus noise N
 - Y = XK + N
- Deconvolution amplifies noise:
 - X'=Y/K =X+N/K
 - When kernel spectrum K is low, noise is amplified

Challenge with DoF and motion

- Blur destroys information
 - Low kernel spectrum is bad
- Kernel identification
 - Spatially varying

Flutter Shutter, Raskar et al 2006

- Close & open shutter during exposure to achieves broad-band kernel.
- But does not address kernel estimation and segmentation

(f) Deblurred Image

(h) Deblurred Image

To reduce motion blur, increase it!

- move camera as picture is taken
- Makes blur invariant to motion- can be removed with spatially uniform deconvolution
 - kernel is known (no need to estimate motion)
 - kernel identical over the image (no need to segment)
- Makes blur easy to invert

Inspiration: depth invariant defocus

Wavefront coding - manipulate optical element

Cathey and Dowski 94

Vary object/detector distance during integration

- Hausler 72
- Nagahara, Kuthirummal, Zhou, Nayar 08

Motion invariant blur- disclaimers:

- Assumes 1D motion (e.g. horizontal)
- Degrades quality for static objects

Can we control motion blur?

Controlling motion blur

Parabolic sweep

Sensor position $x(t)=a t^2$

- Start by moving very fast to the right
- Continuously slow down until stop
- Continuously accelerate to the left

Intuition:

For any velocity, there is one instant where we track perfectly.

Our parabolic input

Our output after deblurring

Blur kernel is invariant to velocity

Unknown and variable blur kernels

Recall: challenge with motion

- Blur destroys information
 - Often box filter
- Kernel identification
 - Spatially varying
 - We have addressed this by making the kernel invariant to velocity

Deblurring and information loss

Assume: we could perfectly identify blur kernel

Which camera has motion blur that is easy to invert? - Static? Flutter Shutter? Parabolic?

Our papers proves that parabolic motion achieves near optimal information preservation

blurred input

deblurred

static input

The space time volume

Space-time Fourier domain

Static camera

Vertical integration segment Static object: high response Higher velocities: low

Flutter shutter (Raskar et al 2006)

Static camera

Vertical integration segment Static object: high response Higher velocities: low

Flutter shutter (Raskar et al 2006)

Our parabolic camera

Flutter shutter (Raskar et al 2006)

Our parabolic camera

Information budget

Upper bound given velocity range

Cameras and information preservation

Flutter shutter

Parabolic

Constant horizontally Near optimal

Spends frequency "budget" outside wedge "budget" usage at all frequencies

Upper bound

Bounded "budget" per column

Handles 2D motion

Comparing camera reconstruction

Note: synthetic rendering, exact PSF is known

Hardware construction

Ideally move sensor

(requires same hardware as existing stabilization systems)

In prototype implementation: rotate camera

Linear rail

Static camera input-Unknown and variable blur

Our parabolic inputis invariant to velocity

Linear rail

Static camera input-Unknown and variable blur

Our output after deblurring-NON-BLIND deconvolution

Human motion- no perfect linearity

Input from a static camera

Deblurred output from our camera

Violating 1D motion assumption-forward motion

Input from a static camera

Deblurred output from our camera

Violating 1D motion assumption-stand-up motion

Input from a static camera

Deblurred output from our camera

Violating 1D motion assumption- rotation

Input from a static camera

Deblurred output from our camera

Parabolic curve – issues

- Spatial shift- but does not affect visual quality in deconvolution
- Parabola tail clipping: not exactly the same blur
- Motion boundaries break the convolution model
- Assumes: Object motion horizontal

Object motion linear up to 1st order approximation

Conclusions

- Camera moved during exposure, parabolic displacement
- Blur invariant to motion:
 - Same over all image (no need to segment)
 - Known in advance (no kernel identification)
- Easy to invert (near optimal frequency response)
- For 1D motion
 - Somewhat robust to 1D motion violation
 - Future work: 2D extensions

Acknowledgments:

NSF CAREER award 0447561 Royal Dutch/Shell Group NGA NEGI-1582-04-0004 Office of Naval Research MURI MSR New Faculty Fellowship Sloan Fellowship

Image formation: computation

 The combination of optics & computation forms the image: selects and combines rays

Plan

- Introduction of computational photography
 - Enhance our vision
 - Capture visual information
- Motion Invariant Photography
 - Move sensor to make kernel
 - invariant
 - high frequency response
 - Upper bound

Potpourri

Big Ideas in Computational Photography

Image and Depth from a Conventional Camera with a Coded Aperture

with Levin, Fergus, Freeman [Siggraph 2007] RGB & coarse depth from single image

Opposite solution: Coded aperture

Increase kernel variation:
Put a mask (code) on aperture plane (diaphragm)
more structured blur
easier to identify kernel/depth
easier to remove blur

Conventional

Coded

Deconvolved

Blind Deconvolution

- Ambiguity between blur kernel & image
- We show common wisdom to be misleading
 - Prior can't tell sharp images
 - More important: pose problem properly

Bayesian lightfield imaging

- ◆ [Levin et al. ECCV 08]
- Model imaging as linear light field projection
- New prior on light field
- Camera decoding expressed as a Bayesian inference problem
- Framework and software for comparison across camera configurations in flatland

4D frequency analysis of depth of field

- + Siggraph 2009, with Levin, Hasinoff, Green & Freeman
- Goal: maximum frequency response for a given depth range
- Upper bound
- Dimensionality gap: only a 3D subspace of the 4D light field spectrum is useful

Lattice focal lens

- co design of new lens & computation
- no loss of light

Standard lens image

Lattice-focal lens: all-fotesed output

Multiple-image strategy

- with Hassinoff et al., ICCV 09
- Depth of field extension by combining differentlyfocused images
- What is the optimal number of images?
- Tradeoff between blur & noise

Beyond photography

- + 3D Displays
 - Fourier analysis of light field for antialiasing
 - [Zwicker et al. 06]
- Rendering
 - Motion blur, depth of field
 - Frequency analysis of light field or time space for adaptive sampling and improved reconstruction
 - e.g. [Durand et al. 05, Soler et al. 09]

Plan

- Introduction of computational photography
 - Enhance our vision
 - Capture visual information
- Motion Invariant Photography
 - Move sensor to make kernel invariant, high frequency response
 - Upper bound
- + Potpourri
- + Big Ideas in Computational Photography

Big ideas in Comp. Photo.

+ Goals:

- Beat physics, better image quality/quantity
- More data (depth, etc.)
- Seeing the unseen
- Creative choices during post-process
- New visual media

Coded Imaging

Optics encodes information

Computation decodes

◆ e.g.

- motion-invariant
- coded aperture
- flutter shutter
- wavefront coding
- compressive sensing
- heterodyning
- warp-unwarp

Natural signal prior

- Statistics that distinguish images of the world from random signals
- Use to "bias" algorithms to output more likely results or to disambiguate ill-posed problems
- Extension of regularization
- + e.g.
 - Denoising
 - Deconvolution
 - Compressive sensing
 - Light field prior

Edges matter but are not binary

- Sparse derivative image prior
- Gradient domain (seamless cloning, tone mapping, convert2gray)
- Bilateral filter for decomposition
- Non-homogenous regularization for scribble propagation

Leverage millions of images

- The ultimate prior?
- Reconstruct
 the world

Hays & Efros 07

Multiple-exposure & multiplexing

- Expand capabilities by combining multiple images
- Multiplex through time, assorted pixels, beam splitters, camera array

+ e.g.

- Panorama stitching
- High-dynamic-range imaging
- Focus stacks
- Photomontage
- Super-resolution

The raw data is high dimensional

- Light field: 4D
 (space-angle)
- ✤ Time space: 3D
- + Fourier

Active imaging

 Modulate light to facilitate information gathering

+ e.g.

- Flash/no flash
- Light stages
- Dual imaging
- Structured-light scanning

Recap: Big ideas in comp. photo.

- Coded imaging
- Natural signal prior
- Edges matter but should not be detected
- Leverage millions of images
- Multiplexing: quality through quantity
- Raw data is high-dimensional (ligh field, space-time)
- Active Imaging

Ecosystem

Computational Photography

- Computer graphics
- Computer vision
- Traits: Geometrical optics, light field, ignore diffraction

Computational Imaging

- Optics
- Electrical Engineering
- Traits: Fourier optics, wave nature of light, often simpler processing
- Start interacting
 - Workshop in Charlotte
 - OSA Frontiers in optics
 - IEEE International Conference on Computational Photography

Ongoing work & important challenges: Fundamentals of computational imaging

- Understand information available in the world, necessary for a task, captured by a camera
- Frequency analysis of light field, space time, image
- Effect of noise, fundamental limits
- Unifying frameworks, comparison of strategies

Summary

- Computational photography
 - Enhance our vision
 - Capture visual information
- Motion Invariant Photography
 - Move sensor to make kernel invariant, high frequency response
 - Upper bound
- Potpourri:
 - Coded aperture, sparse derivative, light field camera framework, blind deconvolution, display, rendering
- Big Ideas in Computational Photography
 Coded imaging, raw data is high-dimensional, prior, edges/gradients, millions of images, active imaging

Acknowledgements

- Anat Levin, Tim Cho, Peter Sand, Rob Fergus, Bill Freeman, Paul Green, Sam Hasinoff, Yair Weiss, Cyril Soler, Kartic Subr, Sillion
- NSF, Microsoft, Sloan foundation, Burge & Libby Jamieson, Lincoln Lab

Challenges & opportunities

- Theory, frameworks, comparisons, optimality
- Diffraction, wave optics
- Putting it all together (engineering, system, applications)
- Better priors
 - Kernel identification
 - High-quality inversion
- Video
- Real-time enhancement (e.g. motion magnification)
- Applied visual perception
- Intrinsic images
- ✤ Matting
- Scene and object recognition
- Extract and leverage 3D reconstruction

Commercialization

- Computational photo with existing cameras
 - HDR
 - Panoramas
 - Photomontage
 - Poisson/Healing brush
 - Photosynth
- Co-design of optics and computation
 - Is beginning slowly: post processing removal of optical aberration
 - Niche areas (e.g. iris recognition)