
Computation 
is the New Optics

Frédo Durand
MIT CSAIL
joint work with 

Anat Levin, Bill Freeman, Peter Sand, Tim Cho, Ce 
Liu, Antonio Torralba, Ted Adelson, and others

Tuesday, December 15, 2009



Two roles for optics

✦ See the world better

✦ Capture images of the world

Tuesday, December 15, 2009



Computation is the new optics

✦ Naked eye viewing

Tuesday, December 15, 2009



Computation is the new optics

✦ Naked eye viewing
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Computation is the new optics

✦ Naked eye viewing

✦ Optical enhancement
• correct vision, 
• reduce brightness, 
• magnify size, 
• reduce distance

✦ Computational enhancement
• camera + computation 

+ display
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Motion magnification

✦ with Liu, Torralba, Freeman & Adelson [Siggraph 2005]

✦ Analyze motion in video (robust to occlusion)

✦ Magnify motion that is hard to see
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Motion magnification

✦ with Liu, Torralba, Freeman & Adelson [Siggraph 2005]

✦ Analyze motion in video (robust to occlusion)

✦ Magnify motion that is hard to see
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Eardrum analysis

✦ work in Denny Freeman’s group 
(Proceedings National Academy of Sciences)
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Two roles for optics

✦ See the world better

✦ Capture images of the world
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Image capture

✦ A sensor placed alone in 
the middle of the visual 
world does not record an 
image
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Image capture

✦ Pinhole allows 
you to select light 
rays
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Image formation: optics

✦ Optics 
forms an 
image: 
selects and 
integrates 
light rays
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✦ The combination of optics & computation forms the 
image: selects and combines rays

Image formation: computation

Generalized 
optics

Computation

Intermediate 
optical image

Final 
image
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Computational imaging goals

Generalized 
optics

Computation

Intermediate 
optical image

Final 
image

✦ Better capture information 

✦ Form image as a post-process
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Better capture information

Generalized 
optics

Computation

Intermediate 
optical image

Final 
image

✦ Same as communication theory: 
optics encodes , computation decodes

✦ Code seeks to minimize distortion
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Form images as a post-process

Generalized 
optics

Computation

Intermediate 
optical image

Final 
image

✦ The computational part of formation can be done later 
and multiple times

✦ e.g., enable refocusing
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Related fields

✦ Computer Vision
• Extract information from visual array

✦ Computer graphics
• Try to reproduce reality

✦ Computational Imaging: 
areas with physics challenges
•Astronomy/telescope
•Radar
•Microscopy
•Medical Imaging
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Plan

✦ Introduction of computational photography
• Enhance our vision
• Capture visual information

✦ Motion Invariant Photography

✦ Potpourri 

✦ Big Ideas in Computational Photography
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Motion Invariant 
Photography

Frédo Durand
MIT CSAIL

with Anat Levin, Peter Sand, 
Taeg Sang Cho, Bill Freeman
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This talk: blur removal

✦ Blur often reduces image 
quality
• Motion blur, diffraction, defocus

✦ Traditional solution:
• Faster shutter speed, smaller 

aperture, bigger aperture
• Often increases noise 

(gathers less light)

✦ Today: computational solution
• Remove blur given single image
• Imaging hardware + software
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Motion blur

Most of the scene is static

red bull is moving 
from left to right
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Can we remove the blur?
✦ Given single image with blur

✦ Blur is mostly a linear process, just invert it
• called deconvolution

✦ But we need to know the exact blur

✦ But the process needs to be invertible
• Lose as little information as possible

Deconvolution
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Kernel identification

Correct kernel

Wrong kernel

Input blurry image

Input blurry image

Output from correct kernel

Output from wrong kernel

?

?

=

=

⊗

⊗
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Kernel identification
✦ The kernel is spatially varying

Entire image 
deblurred with kernel 
corresponding to the 

cans’ velocity
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Challenge with deblurring
✦ Blur destroys information

• Often box filter

blurred input deblurred static input 

Deblurring given known blur:
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Blur destroys information

✦ Blur is a convolution, but sensor has noise

✦ Fourier domain: 
•Blurred image Y is a multiplication of sharp 

image X by kernel K plus noise N
•Y=XK+N

✦ Deconvolution amplifies noise: 
•X’=Y/K

   =X+N/K
•When kernel spectrum K is low, noise is 

amplified
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Challenge with DoF and motion 
✦ Blur destroys information

• Low kernel spectrum is bad

✦ Kernel identification
• Spatially varying

big 
blur no 

blur
big 
blur

no 
blur
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Flutter Shutter, Raskar et al 2006
✦ Close & open shutter during exposure 

to achieves broad-band kernel.

✦ But does not address kernel estimation and 
segmentation
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Our counter intuitive solution:

• Makes blur invariant to motion- can be removed with  
 spatially uniform deconvolution

 - kernel is known (no need to estimate motion)

 - kernel identical over the image (no need to segment)

• Makes blur easy to invert

To reduce motion blur, increase it!

 - move camera as picture is taken 
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Inspiration: depth invariant defocus

• Wavefront coding - manipulate optical element

• Vary object/detector distance  during 
integration 

 
- Hausler 72   

- Nagahara, Kuthirummal, Zhou, Nayar 08

 

Cathey and Dowski 94
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Motion invariant blur- disclaimers:

• Assumes 1D motion (e.g. horizontal)

• Degrades quality for static objects 
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Controlling motion blur
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Can we control motion blur?

Controlling motion blur
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Controlling motion blur
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Controlling motion blur
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Controlling motion blur
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Controlling motion blur

Motion invariant blur
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Parabolic sweep

Sensor position x(t)=a t2

• Start by moving very fast to the right

• Continuously slow down until stop
• Continuously accelerate to the left

Intuition: 
                               
For any velocity, there is one instant 
where we track perfectly.

 

Sensor position x

Time t
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Motion invariant blur
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Motion invariant blur
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Motion invariant blur
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Motion invariant blur
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Motion invariant blur

After DECONVOLUTION
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 Static camera

Unknown and 
variable blur kernels

Our parabolic input

Blur kernel is invariant 
to velocity

Our output after 
deblurring

NON-BLIND 
deconvolution
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Recall: challenge with motion 
✦ Blur destroys information

• Often box filter

✦ Kernel identification
• Spatially varying
• We have addressed this by making the kernel 

invariant to velocity

big 
blur no 

blur
big 
blur

no 
blur
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Assume: we could perfectly identify blur kernel 
 
Which camera has motion blur that is easy to invert?
      - Static? Flutter Shutter? Parabolic?

Our papers proves that parabolic motion achieves near optimal 
information preservation

Deblurring and information loss

blurred input deblurred static input 
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The space time volume

xyt- space-time volume

xt-slice

x

y

x
t

t
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Frequencies 
from possible 

motions

Bounded velocities range=>                                                        need to 
preserve a double wedge in the frequency domain

Space-time Fourier domain
 Primal Domain

t

x

Frequency Domain

t

x

Velocity 2

Velocity 1

Static

Camera 
integration 

curve

Objects
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Static object: high response
Higher velocities: low

Static camera
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Velocity 2

Velocity 1

Static

Camera 
integration 

curve

Vertical integration segment
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Higher velocities: 
better than static camera

 Primal Domain
t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Vertical but discontinuous 
integration segment

Flutter shutter (Raskar et al 2006)

Velocity 2

Velocity 1

Static
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Static camera
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Static object: high response
Higher velocities: low

Vertical integration segment

Velocity 2

Velocity 1

Static
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Flutter shutter (Raskar et al 2006)

 Primal Domain
t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Higher velocities: 
better than static camera

Vertical but discontinuous 
integration segment

Velocity 2

Velocity 1

Static
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Equal high response in all range

Our parabolic camera
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Parabola

Velocity 2

Velocity 1

Static
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Flutter shutter (Raskar et al 2006)

 Primal Domain
t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Higher velocities: 
better than static camera

Vertical but discontinuous 
integration segment

Velocity 2

Velocity 1

Static
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Equal high response in all range

Our parabolic camera
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Parabola

Velocity 2

Velocity 1

Static
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Bounded budget per column
(norm of power spectrum)

Information budget
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Bounded number 
of photons

?
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For each column, distribute budget 
uniformly within wedge  nnnnnnnn

Upper bound given velocity range
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Frequencies 
from possible 

motions

?
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slope wedge

slope wedge

slope wedge

slope wedge

Cameras and information preservation

Static Flutter shutter Parabolic Upper bound
Bounded 
“budget” per 
column

Constant horizontally

Spends frequency 
“budget” outside 
wedge 

Handles 2D motion

Near optimal 
“budget” usage at 
all frequencies 
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Comparing camera reconstruction

Note: synthetic rendering, exact PSF is known

Static Flutter Shutter Parabolic 
Blurred 

input 

Deblurred 
output 
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Hardware construction

• Ideally move sensor                                                         
 (requires same hardware as existing stabilization systems)

• In prototype implementation: rotate camera 

variable 
radius  
cam

Rotating 
platform

Lever
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Linear rail

Our parabolic input-                   Blur 
is invariant to velocity

Static camera input-
Unknown and variable blur
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Linear rail

Static camera input-
Unknown and variable blur

Our output after deblurring-        
NON-BLIND deconvolution 
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Input from a static camera Deblurred output from our camera 

Human motion- no perfect linearity
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Violating 1D motion assumption- forward motion

Input from a static camera Deblurred output from our camera 
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Violating 1D motion assumption- stand-up 
motion

Input from a static camera Deblurred output from our camera 
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Violating 1D motion assumption- rotation

Input from a static camera Deblurred output from our camera 
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Parabolic curve – issues

• Spatial shift- but does not affect visual quality in deconvolution
• Parabola tail clipping: not exactly the same blur

• Motion boundaries break the convolution model
• Assumes: Object motion horizontal
                     Object motion linear up to 1st order approximation
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Conclusions

Acknowledgments: 
NSF CAREER award 0447561 
Royal Dutch/Shell Group      NGA 
NEGI-1582-04-0004
Office of Naval Research MURI
MSR New Faculty Fellowship                              
Sloan Fellowship

x

t
xt-slice

• Camera moved during exposure, parabolic displacement 

• Blur invariant to motion:
 - Same over all image (no need to segment)
 - Known in advance (no kernel identification)

• Easy to invert (near optimal frequency response)

• For 1D motion
   - Somewhat robust to 1D motion violation
   - Future work: 2D extensions
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✦ The combination of optics & computation forms the 
image: selects and combines rays

Image formation: computation

Generalized 
optics

Computation

Intermediate 
optical image

Final 
image
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Plan

✦ Introduction of computational photography
• Enhance our vision
• Capture visual information

✦ Motion Invariant Photography
• Move sensor to make kernel 

- invariant
- high frequency response

• Upper bound

✦ Potpourri 

✦ Big Ideas in Computational Photography
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Image and Depth from a 
Conventional Camera with a 
Coded Aperture

with Levin, Fergus, Freeman [Siggraph 2007]
RGB & coarse depth from single image
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✦ Increase kernel variation: 
Put a mask (code) on aperture plane (diaphragm)
➡more structured blur
➡ easier to identify kernel/depth
➡ easier to remove blur

Opposite solution: Coded aperture

Conventional Coded
Tuesday, December 15, 2009



Refocusing (from single image!)
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Refocusing (from single image!)
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Refocusing (from single image!)
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Input

Tuesday, December 15, 2009



Deconvolved
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Refocusing (from single image!)
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Refocusing (from single image!)
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Refocusing (from single image!)
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Blind Deconvolution

✦ [Levin et al. CVPR 09]

✦ Ambiguity between blur kernel & image

✦ We show common wisdom to be misleading
• Prior can’t tell sharp images
• More important: pose problem properly

⊗= ?

⊗= ??

Non-blind:

Blind:
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Bayesian lightfield imaging
✦ [Levin et al. ECCV 08]

✦ Model imaging as linear 
light field projection

✦ New prior on light field

✦ Camera decoding expressed as a 
Bayesian inference problem 

✦ Framework and software for 
comparison across camera 
configurations in flatland

y = T x
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4D frequency analysis of depth of field

✦ Siggraph 2009, with Levin, Hasinoff, Green & Freeman

✦ Goal: maximum frequency response for a given 
depth range

✦ Upper bound

✦ Dimensionality gap: only a 3D subspace of the 4D 
light field spectrum is useful

Online Submission ID: 0465
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Figure 6: Left: Ray mapping for a lattice-focal lens in flatland. The
aperture is divided into three color-coded sections, each focused on
a different depth. Right: In the 2D light field the integration surface
is a set of slanted segments, shown with corresponding colors.

(a) Lattice-focal lens (b) PSFs

Figure 7: (a) Toy lattice-focal lens design with only 4 subsquares.
(b) The PSFs !s in the primal domain, at two different depths. Each
subsquare (color-coded) corresponds to a box in the PSF. The width
of each box is a function of the deviation between the subsquare
focal depth and the object depth.

That is, the integration surface is defined as:

c(u,v) ="
j

#(u,v)∈Wj
(s ju,s jv) , (18)

whereWj denotes the area of the j-th subsquare. Figure 6 visualizes366

the integration surface of a lattice-focal lens, composed of linear367

surfaces with different slopes (compare with Figure 2, left). Fig-368

ure 7 illustrates a toy four-element lattice-focal lens design, show-369

ing its PSF for two different scene depths. In the primal domain,370

the PSF is a superposition of scaled and shifted boxes correspond-371

ing to the various aperture subsquares. For this example, one of the372

subsquares is focused at the correct depth for each scene depth, so373

the PSF consists of an impulse plus three defocused boxes. The box374

width is a function of the deviation between the lens focal depth and375

the object depth.376

The subsquare slopes in Eq. (18) are set to be equal in u and v377

dimensions, so the design satisfies an important goal: the entire378

aperture area is focal. Figure 4(f) visualizes $x0,y0 -slices from the379

4D lattice-focal lens spectrum, showing that the spectrum has the380

desired structure—it is concentrated at the main focal segment. To381

understand this spectrum note that like a standard lens, the spectrum382

of a single aperture subsquare is a sinc around one point in the focal383

segment: k̂$x0 ,y0
(−s j$x0 ,−s j$x0). However since each subsquare384

is focused at a different slope s j the summed spectrum covers the385

focal segment. The $x0,y0 -slices in Figure 4(f), and the OTF-slices386

in Figure 5(f) suggest that the lattice-focal lens achieves a higher387

spectrum compared to previous designs. In the rest of this section388

we compute the spectrum of a lattice-focal lens analytically. We389

then discuss the effect of the window size % and show it is a criti-390

cal parameter of the construction which implies a major difference391

between our design and [Ben-Eliezer et al. 2005].392

Spectrum of the lattice-focal lens: While we can compute the393

spectrum of a particular lattice focal lens numerically, for analysis394

it is simpler to compute the expected spectrum over random choices395

of the slopes s j in Eq. (18). In practice the spectrum of a sample396

lattice-focal lens resembles the expected spectrum, since the law of397

large numbers applies given sufficiently many subsquares.398

Claim 3 Consider a lattice-focal lens whose subsquare slopes in
Eq. (18) are sampled uniformly from the range [−S/2,S/2]. The
expected power spectrum is

E[|!̂s($x,$y)|2] ≈
%A3

S|$x,y|
& ($x,y) , (19)

where & is defined in Eq. (11).399

Proof: Let s denote a particular scene depth of interest and let !̂
j
s

denote the OTF of the j-th subsquare focused at slope s j, so that

the lattice-focal OTF is !̂s = " j !̂
j
s . For a subsquare size of %A×

%A, the aperture area is covered by m = 1/%2 subsquares. Since

the m random variables !̂
j
s are drawn independently from the same

distribution, it follows that

E[|!̂s|2] = mE[|!̂ j
s |2]+m(m−1)E[!̂ j

s ]
2 . (20)

The second term in Eq. (20) is positive and small relative to the400

first term. For simplicity we make the conservative approximation401

E[|!̂s|2] ≈ mE[|!̂ j
s |2], and show how to compute E[|!̂ j

s |2] below.402

Recall that the PSF from each subsquare is a box filter and the OTF
is a sinc. If the j-th subsquare is focused at s j,

|!̂ j
s ($x,y)|2 = %4A4sinc2(%A$x(s−s j))sinc2(%A$y(s−s j)) . (21)

Since the subsquare slopes are drawn uniformly from [−S/2,S/2],
the expected spectrum is obtained by averaging Eq. (21) over s j.

E[|!̂ j
s |2] =

%4A4

S

∫ S/2

−S/2
sinc2

(

%A$x(s j− s)
)

sinc2
(

%A$y(s j− s)
)

ds j .

(22)

To compute this integral we make use of the following identity: for
a 2D vector r = (r1,r2),

∫ '

−'
sinc2(r1t)sinc

2(r2t)dt =
& (|r|)
|r|

. (23)

If −S/2 < s < S/2 and S is large, we can assume that the integra-
tion boundaries of Eq. (22) are sufficiently large, and approximate
Eq. (22) with the unbounded integration of Eq. (23):

E[|!̂ j
s |2] =

%4A4

S

∫ S/2

−S/2
sinc2

(

%A$x(s j− s)
)

sinc2
(

%A$y(s j− s)
)

ds j

=
%4A4

S

∫ S/2+s

−S/2+s
sinc2

(

%A$xs j
)

sinc2
(

%A$ys j
)

ds j

→
%3A3& ($x,y)

S|$x,y|
.

(24)

Eq. (19) now follows from Eq. (24), after multiplying by the num-403

ber of subsquares, m= 1
%2
.404

Optimal subsquare size: According to Claim 3, the expected405

power spectrum of a lattice-focal lens increases with window size406

% (Fig. 8). For larger subsquares the sinc blur around the central407

focal segment is narrower, so more energy is concentrated on the408

focal segment. However, it is clear that we cannot make % arbitrar-409

ily large. When the number of subsquares is small, the expected410

7
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Lattice focal lens
• co design of new lens & computation
• no loss of light

Online Submission ID: 0465

4D Frequency Analysis of Computational Cameras for Depth of Field Extension

Standard lens image Our lattice-focal lens: input Lattice-focal lens: all-focused output

Figure 1: Left: Image from a standard lens showing limited depth of field, with only the rightmost subject in focus. Center: Input from our
lattice-focal lens. The defocus kernel of this lens is designed to preserve high frequencies over a wide depth range. Right: An all-focused
image processed from the lattice-focal lens input. Since the defocus kernel preserves high frequencies, we achieve a good restoration over the
full depth range.

Abstract1

Depth of field (DOF), the range of scene depths that appear sharp2

in a photograph, poses a fundamental tradeoff in photography—3

wide apertures are important to reduce imaging noise, but they also4

increase defocus blur. Recent advances in computational imaging5

modify the acquisition process to extend the DOF through decon-6

volution. Because deconvolution quality is a tight function of the7

frequency power spectrum of the defocus kernel, designs with high8

spectra are desirable. In this paper we study how to design effective9

extended-DOF systems, and show an upper bound on the maximal10

power spectrum that can be achieved. We analyze defocus kernels11

in the 4D light field space and show that in the frequency domain,12

only a low-dimensional 3D manifold contributes to focus. Thus,13

to maximize the defocus spectrum, imaging systems should con-14

centrate their limited energy on this manifold. We review several15

computational imaging systems and show either that they spend en-16

ergy outside the focal manifold or do not achieve a high spectrum17

over the DOF. Guided by this analysis we introduce the lattice-focal18

lens, which concentrates energy at the low-dimensional focal man-19

ifold and achieves a higher power spectrum than previous designs.20

We have built a prototype lattice-focal lens and present extended21

depth of field results.22

Keywords: Computational camera, depth of field, Light field,23

Fourier analysis.24

1 Introduction25

Depth of field, the depth range over which objects in a photograph26

appear acceptably sharp, presents an important tradeoff. Lenses27

gather more light than a pinhole, which is critical to reduce noise,28

but this comes at the expense of defocus outside the focal plane.29

While some defocus can be removed computationally using decon-30

volution, the results depend heavily on the information preserved31

by the blur, as characterized by the frequency power spectrum32

of the defocus kernel. Recent advances in computational imag-33

ing [Dowski and Cathey 1995; Levin et al. 2007; Veeraraghavan34

et al. 2007; Hausler 1972; Nagahara et al. 2008] modify the image35

acquisition process to enable extended depth of field through such36

a deconvolution approach.37

Computational imaging systems can dramatically extend depth of38

field, but little is known about the maximal frequency magnitude39

response that can be achieved. In this paper, we use a standard40

computational photography tool, the light field, e.g. [Levoy and41

Hanrahan 1996; Ng 2005; Levin et al. 2008a], to address these is-42

sues. Using arguments of conservation of energy and taking into43

account the finite size of the aperture, we present bounds on the44

power spectrum of all defocus kernels.45

Furthermore, a dimensionality gap has been observed between the46

4D light field and the space of 2D images over the 1D set of depths47

[Gu et al. 1997; Ng 2005]. In the frequency domain, only a 3D48

manifold contributes to standard photographs, which corresponds49

to focal optical conditions. Given the above bounds, we show that50

it is desirable to avoid spending power in the other afocal regions51

of the light field spectrum. We review existing camera designs and52

find that some spend significant power in these afocal regions, while53

others do not achieve a high spectrum over the depth range.54

Our analysis leads to the development of the lattice-focal lens—a55

novel design which allows for improved image reconstruction. It56

is designed to concentrate energy at the focal manifold of the light57

field spectrum, and achieves defocus kernels with high spectra. The58

design is a simple arrangement of lens patches with different focal59

powers, but the patches’ size and powers are carefully derived. The60

defocus kernels of a lattice-focal lens are high over a wide depth61

range, but they are not depth invariant. This both requires and en-62

ables coarse depth estimation. We have constructed a prototype and63

demonstrate encouraging extended depth of field results.64

1.1 Depth of field evaluation65

Similar to previous work, we focus on Lambertian scenes and as-66

sume locally constant depth. The observed image B of an ob-67

ject at depth d is then described as a convolution B = !d ⊗ I+N,68

where I is the ideally sharp image, N is the imaging noise, and69

!d is the defocus kernel, commonly referred to as the point spread70

function (PSF). The defocus PSF !d is often analyzed in terms of71

its Fourier transform !̂d , known as the optical transfer function72

(OTF). In the frequency domain, convolution is a multiplication73

B̂(") = !̂d(")Î(")+ N̂(") where hats denote Fourier transforms.74

In a nutshell, deblurring divides every spatial frequency by the ker-75

nel spectrum, so the information preserved at a spatial frequency "76

depends strongly on the kernel spectrum. If |!̂d(")| is low, noise is77

amplified and image reconstruction is degraded. To capture scenes78

with a given depth range d ∈ [dmin,dmax], we want PSFs !d whose79

1
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Figure 12: Our prototype lattice-focal lens and PSFs calibrated at
three depths. The prototype attaches to the main lens like a stan-
dard lens filter. The PSFs are a sum of box filters from the different
subsquares, where the exact box width is a function of the deviation
between the subsquare focal depth and the object depth.

depth also specifies the location of the xy light field plane. The DOF499

is defined by the range [dmin,dmax] corresponding to slopes ±S/2.500

From Eq. (2), the depth range can be expressed as do/(1± S/2),501

yielding a DOF of [35,!]cm for S = 2 and [66.2,74.3]cm for502

S = 0.1. The pixel size in the light field is " = "0/M, where503

M = f/(do− f ) = 0.13 is the magnification. We set the effective504

aperture size A to 1000" = 1000"0/M = 50.6mm, which corre-505

sponds to f/1.68.506

5.2 Implementation507

Hardware construction: To demonstrate our design we have508

built a prototype lattice-focal lens. As shown in Figure 12, our509

lattice-focal lens mounts to a main lens using the standard threaded510

interface for a lens filter. The subsquares of the lattice-focal511

lens were cut from spherical plano-convex lens elements using a512

computer-controlled saw.513

By attaching our lattice-focal lens to a high-quality main lens514

(Canon 85mm f1.2L), we reduce aberrations. Since most of the fo-515

cusing is achieved by the main lens, our new elements require low516

focal powers, and correspond to very low-curvature surfaces with517

limited aberrations (in our prototype, the subsquare focal lengths518

varied from 1m to 10m).519

In theory the lattice-focal element should be placed in the plane of520

the main lens aperture or at one of its images, e.g. the entrance or521

exit pupils. To avoid disassembling the main lens to access these522

planes, we note that a sufficiently narrow stop in front of the main523

lens redefines a new aperture plane. This lets us attach our lattice-524

focal lens at the front, where the stop required to define a new aper-525

ture still let us use 60% of the lens diameter.526

The minimal subsquare size is limited by diffraction. Since a527

normal lens starts being diffraction limited around an f/12 aper-528

ture [Goodman 1968], we can fit about 100 subsquares within an529

f/1.2 aperture. To simplify the construction, however, our pro-530

totype included only 12 subsquares. The DOF this allowed us to531

cover was small and, as discussed in Sec. 5.1, in this range the532

lattice-focal lens advantage over wavefront coding is limited. Still533

our prototype demonstrates the effectiveness of our approach.534

Given a fixed budget of m subsquares of a given width, we can in-535

vert the arguments in Sec. 4 and determine the DOF it can cover in536

the optimal way. As illustrated in Figure 8(b), for every point in the537

optimal DOF, there is exactly one subsquare achieving defocus di-538

ameter of less than 1 pixel. This constraint also determines the focal539

length for each of these subsquares. For our prototype we focused540

the main lens at 180cm and chose subsquare focal lengths covering541

a depth range of [60,180]cm. Given the limited availability of com-542

mercial plano-convex elements, our subsquares’ coverage was not543

perfectly uniform. However, for a custom-manufactured lens this544

would not be a limitation.545

Calibration: To calibrate the lattice-focal lens, we used a planar546

white noise scene and captured a stack of images at varying depths.547

Given a blurred and sharp pair of images Bd , Id at depth d, we548

solved for the kernel #d minimizing |#d ⊗ Id −Bd |. We show the549

recovered PSF at 3 depths in Figure 12. As discussed in Sec. 4, the550

PSF is a superposition of boxes of varying sizes, but the exact ar-551

rangement of boxes varies with depth. For comparison, we did the552

same calibration using a standard lens as well.553

Depth estimation: Given the calibrated per-depth PSFs, we de-
blur an image using sparse deconvolution [Levin et al. 2007]. This
algorithm computes the latent image Id as

Id = argmin
I

|#d ⊗ I−B|2+$%
i

[

&(gx,i(I))+&(gy,i(I))
]

, (28)

where gx,i,gy,i denote horizontal and vertical derivatives of the i-th554

pixel, & is a robust function, and $ is a weighting coefficient.555

Since the PSF varies over depth, rough depth estimation is required
for deblurring. If an image region is deconvolved with a PSF cor-
responding to the incorrect depth, the result will include ringing
artifacts. To estimate depth, we start by deconvolving the entire
image with the stack of all depth-varying PSFs, and obtain a stack
of candidate deconvolved images {Id}. Since deconvolution with
the wrong PSF leads to convolution error, we can locally score the
explanation provided by PSF #d around pixel i as:

Ei(d) = |Bi− B̃d,i|2+$
[

&(gx,i(Id))+&(gy,i(Id)
]

, (29)

where B̃d = #d ⊗ Id . We regularize the local depth scores using556

a Markov random field (MRF), then generate an all-focus image557

using the Photomontage algorithm of Agarwala et al. [2004].558

Results: Figure 13 shows all-focus images and depth maps cap-559

tured using our lattice-focal lens (more results are available in the560

supplementary file). Since the MRF of Agarwala et al. [2004] seeks561

invisible seams, the layer transitions usually happen at low-texture562

regions and not at the actual object contours. Despite the MRF’s563

preference for piecewise-constant depth structures we still can han-564

dle continuous depth variations, as shown in the rightmost column565

of Figure 13.566

The results in Figure 13 were obtained fully automatically. How-567

ever, depth estimation can fail, especially next to occlusion bound-568

aries, which presents a general problem for all computational569

extended-DOF systems [Dowski and Cathey 1995; Nagahara et al.570

2008; Levin et al. 2007; Veeraraghavan et al. 2007]. While a prin-571

cipled solution to this problem is beyond the scope of this paper,572

most artifacts can be eliminated with simple manual layer refine-573

ment. Relying on depth estimation in the decoding of a lattice-focal574

lens is a disadvantage compared to depth-invariant solutions, but it575

also allows coarse depth recovery. In Figure 14 we used the rough576

depth map to synthetically refocus a scene post exposure.577

In Figure 15 we compare the reconstruction using our lattice-focal578

lens with a standard lens focused at the middle of the depth range579

10
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Multiple-image strategy

✦ with Hassinoff et al., ICCV 09

✦ Depth of field extension by combining differently-
focused images

✦ What is the optimal number of images?

✦ Tradeoff between blur & noise
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Beyond photography

✦ 3D Displays
• Fourier analysis of light 

field for antialiasing
• [Zwicker et al. 06]

✦ Rendering
• Motion blur, depth of field 
• Frequency analysis of light 

field or time space for 
adaptive sampling and 
improved reconstruction

• e.g. [Durand et al. 05, 
Soler et al. 09]
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Plan

✦ Introduction of computational photography
• Enhance our vision
• Capture visual information

✦ Motion Invariant Photography
• Move sensor to make kernel 

invariant, high frequency response
• Upper bound

✦ Potpourri 

✦ Big Ideas in Computational Photography
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Big ideas in Comp. Photo.
✦ Goals:

• Beat physics, better image quality/quantity
• More data (depth, etc.)
• Seeing the unseen 
• Creative choices during post-process
• New visual media
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Coded Imaging

✦ e.g.
• motion-invariant
• coded aperture
• flutter shutter
• wavefront coding 
• compressive sensing 
• heterodyning
• warp-unwarp

Optics encodes information

Computation decodes
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Natural signal prior

✦ Statistics that distinguish images of the world from 
random signals

✦ Use to “bias” algorithms to output more likely 
results or to disambiguate ill-posed problems

✦ Extension of regularization

✦ e.g.
• Denoising
• Deconvolution
• Compressive sensing
• Light field prior

Random “Natural” image
Tuesday, December 15, 2009



Edges matter but are not binary

✦ Sparse derivative 
image prior

✦ Gradient domain 
(seamless cloning,
tone mapping, 
convert2gray)

✦ Bilateral filter for 
decomposition

✦ Non-homogenous 
regularization for 
scribble propagation

OutputLarge-scale

Detail

Color
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Leverage millions of images

✦ The ultimate 
prior?

✦ Reconstruct
the world

Hays & Efros 07
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Multiple-exposure & multiplexing

✦ Expand capabilities by 
combining multiple images

✦ Multiplex through time, 
assorted pixels, beam 
splitters, camera array 

✦ e.g.
• Panorama stitching
• High-dynamic-range imaging
• Focus stacks
• Photomontage
• Super-resolution
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The raw data is high dimensional

✦ Light field: 4D
(space-angle)

✦ Time space: 3D

✦ +Fourier

Space

Time

Space

Angle

Image Ng et al.
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Active imaging

✦ Modulate light to 
facilitate information 
gathering

✦ e.g. 
• Flash/no flash
• Light stages
• Dual imaging
• Structured-light scanning

No-flash

Flash

our 
result
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Recap: Big ideas in comp. photo.

✦ Coded imaging

✦ Natural signal prior

✦ Edges matter but should not 
be detected

✦ Leverage millions of images 

✦ Multiplexing: 
quality through quantity 

✦ Raw data is high-dimensional 
(ligh field, space-time)

✦ Active Imaging

Tuesday, December 15, 2009



Ecosystem
✦ Computational Photography

• Computer graphics
• Computer vision
• Traits: Geometrical optics, light field, ignore diffraction

✦ Computational Imaging
• Optics
• Electrical Engineering 
• Traits: Fourier optics, wave nature of light, often simpler 

processing

✦ Start interacting
• Workshop in Charlotte
• OSA Frontiers in optics
• IEEE International Conference on Computational Photography
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Ongoing work & important challenges: 
Fundamentals of computational imaging

✦ Understand information available in the world, 
necessary for a task, captured by a camera

✦ Frequency analysis of light field, space time, image

✦ Effect of noise, fundamental limits

✦ Unifying frameworks, comparison of strategies
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Summary
✦ Computational photography

• Enhance our vision
• Capture visual information

✦ Motion Invariant Photography
• Move sensor to make kernel 

invariant, high frequency response
• Upper bound

✦ Potpourri: 
• Coded aperture, sparse derivative, light field 

camera framework, blind deconvolution, display, 
rendering

✦ Big Ideas in Computational Photography
• Coded imaging, raw data is high-dimensional, 

prior, edges/gradients, millions of images, active 
imaging
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Challenges & opportunities
✦ Theory, frameworks, comparisons, optimality
✦ Diffraction, wave optics
✦ Putting it all together 

(engineering, system, applications)
✦ Better priors

• Kernel identification
• High-quality inversion

✦ Video
✦ Real-time enhancement (e.g. motion magnification)
✦ Applied visual perception
✦ Intrinsic images
✦ Matting
✦ Scene and object recognition
✦ Extract and leverage 3D reconstruction
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Commercialization

✦ Computational photo with existing cameras
• HDR
• Panoramas
• Photomontage
• Poisson/Healing brush
• Photosynth

✦ Co-design of optics and computation
• Is beginning slowly: 

post processing removal of optical aberration
• Niche areas (e.g. iris recognition)
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