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Computation is the new optics

✦ Naked eye viewing

✦ Optical enhancement
• correct vision, 
• reduce brightness, 
• magnify size, 
• reduce distance

✦ Computational enhancement
• camera + computation 

+ display
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Motion magnification

✦ with Liu, Torralba, Freeman & Adelson [Siggraph 2005]

✦ Analyze motion in video (robust to occlusion)

✦ Magnify motion that is hard to see
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Eardrum analysis

✦ work in Denny Freeman’s group 
(Proceedings National Academy of Sciences)
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Image capture

✦ A sensor placed alone in 
the middle of the visual 
world does not record an 
image
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Image formation: optics

✦ Optics 
forms an 
image: 
selects and 
integrates 
light rays
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Image formation: computation

Generalized 
optics

Computation

Intermediate 
optical image

Final 
image

✦ The combination of optics & computation forms 
the image: selects and combines rays
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Related fields

✦ Computer Vision
• Extract information from visual array

✦ Computer graphics
• Try to reproduce reality

✦ Computational Imaging: 
areas with physics challenges

• Astronomy/telescope
• Radar
• Microscopy
• Medical Imaging
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Plan

✦ Introduction of computational photography
• Enhance our vision
• Capture visual information

✦ Motion Invariant Photography

✦ Potpourri 

✦ Big Ideas in Computational Photography
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Motion Invariant 
Photography

Frédo Durand
MIT CSAIL

with Anat Levin, Peter Sand, 
Taeg Sang Cho, Bill Freeman
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This talk: blur removal

✦ Blur often reduces image 
quality

• Motion blur, diffraction, defocus

✦ Traditional solution:
• Faster shutter speed, smaller 

aperture, bigger aperture
• Often increases noise 

(gathers less light)

✦ Today: computational solution
• Remove blur given single image
• Imaging hardware + software
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Motion blur

Most of the scene is static

red bull is moving 
from left to right
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Can we remove the blur?
✦ Given single image with blur

✦ Blur is mostly a linear process, just invert it
• called deconvolution

✦ But we need to know the exact blur

✦ But the process needs to be invertible
• Lose as little information as possible

Deconvolution
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Kernel identification

Correct kernel

Wrong kernel

Input blurry image

Input blurry image

Output from correct kernel

Output from wrong kernel

?

?

=

=

⊗

⊗
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Kernel identification
✦ The kernel is spatially varying

Entire image 
deblurred with kernel 
corresponding to the 

cans’ velocity
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Challenge with deblurring
✦ Blur destroys information

• Often box filter

blurred input deblurred static input 

Deblurring given known blur:
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Blur destroys information

✦ Blur is a convolution, but sensor has noise

✦ Fourier domain: 
• Blurred image Y is a multiplication of sharp 

image X by kernel K plus noise N
• Y=XK+N

✦ Deconvolution amplifies noise: 
• X’=Y/K

   =X+N/K
• When kernel spectrum K is low, noise is 

amplified
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Challenge with DoF and motion 
✦ Blur destroys information

• Low kernel spectrum is bad

✦ Kernel identification
• Spatially varying

big 
blur no 

blur
big 
blur

no 
blur
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Flutter Shutter, Raskar et al 2006
✦ Close & open shutter during exposure 

to achieves broad-band kernel.

✦ But does not address kernel estimation and 
segmentation
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Our counter intuitive solution:

• Makes blur invariant to motion- can be removed with  
 spatially uniform deconvolution

 - kernel is known (no need to estimate motion)

 - kernel identical over the image (no need to segment)

• Makes blur easy to invert

To reduce motion blur, increase it!

 - move camera as picture is taken 
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Inspiration: depth invariant defocus

• Wavefront coding - manipulate optical element

• Vary object/detector distance  during 
integration 

 
- Hausler 72   

- Nagahara, Kuthirummal, Zhou, Nayar 08

 

Cathey and Dowski 94
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Motion invariant blur- disclaimers:

• Assumes 1D motion (e.g. horizontal)

• Degrades quality for static objects 
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Controlling motion blur
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Can we control motion blur?

Controlling motion blur
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Controlling motion blur

Motion invariant blur
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Parabolic sweep

Sensor position x(t)=a t2

• Start by moving very fast to the right

• Continuously slow down until stop
• Continuously accelerate to the left

Intuition: 
                               
For any velocity, there is one instant 
where we track perfectly.

 

Sensor position x

Time t

Friday, April 3, 2009



Motion invariant blur
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Motion invariant blur
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Motion invariant blur
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Motion invariant blur
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Motion invariant blur

After DECONVOLUTION
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 Static camera

Unknown and 
variable blur kernels

Our parabolic input

Blur kernel is invariant 
to velocity

Our output after 
deblurring

NON-BLIND 
deconvolution
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Recall: challenge with motion 
✦ Blur destroys information

• Often box filter

✦ Kernel identification
• Spatially varying
• We have addressed this by making the kernel 

invariant to velocity

big 
blur no 

blur
big 
blur

no 
blur
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Assume: we could perfectly identify blur kernel 
 
Which camera has motion blur that is easy to invert?
      - Static? Flutter Shutter? Parabolic?

Our papers proves that parabolic motion achieves near optimal 
information preservation

Deblurring and information loss

blurred input deblurred static input 
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The space time volume

xyt- space-time volume

xt-slice

x

y

x
t

t
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Frequencies 
from possible 

motions

Bounded velocities range=>                                                        need to 
preserve a double wedge in the frequency domain

Space-time Fourier domain
 Primal Domain

t

x

Frequency Domain

t

x

Velocity 2

Velocity 1

Static

Camera 
integration 

curve

Objects
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Static object: high response
Higher velocities: low

Static camera
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Velocity 2

Velocity 1

Static

Camera 
integration 

curve

Vertical integration segment
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Higher velocities: 
better than static camera

 Primal Domain
t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Vertical but discontinuous 
integration segment

Flutter shutter (Raskar et al 2006)

Velocity 2

Velocity 1

Static
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Static camera
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Static object: high response
Higher velocities: low

Vertical integration segment

Velocity 2

Velocity 1

Static
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Flutter shutter (Raskar et al 2006)

 Primal Domain
t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Higher velocities: 
better than static camera

Vertical but discontinuous 
integration segment

Velocity 2

Velocity 1

Static
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Equal high response in all range

Our parabolic camera
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Parabola

Velocity 2

Velocity 1

Static
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Flutter shutter (Raskar et al 2006)

 Primal Domain
t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Higher velocities: 
better than static camera

Vertical but discontinuous 
integration segment

Velocity 2

Velocity 1

Static
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Equal high response in all range

Our parabolic camera
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Parabola

Velocity 2

Velocity 1

Static
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Bounded budget per column
(norm of power spectrum)

Information budget
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Bounded number 
of photons

?
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For each column, distribute budget 
uniformly within wedge  nnnnnnnn

Upper bound given velocity range
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Frequencies 
from possible 

motions

?
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slope wedge

slope wedge

slope wedge

slope wedge

Cameras and information preservation

Static Flutter shutter Parabolic Upper bound
Bounded 
“budget” per 
column

Constant horizontally

Spends frequency 
“budget” outside 
wedge 

Handles 2D motion

Near optimal 
“budget” usage at 
all frequencies 
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Comparing camera reconstruction

Note: synthetic rendering, exact PSF is known

Static Flutter Shutter Parabolic 
Blurred 

input 

Deblurred 
output 

Friday, April 3, 2009



Hardware construction

• Ideally move sensor                                                         
 (requires same hardware as existing stabilization systems)

• In prototype implementation: rotate camera 

variable 
radius  
cam

Rotating 
platform

Lever
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Linear rail

Our parabolic input-                   Blur 
is invariant to velocity

Static camera input-
Unknown and variable blur
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Linear rail

Static camera input-
Unknown and variable blur

Our output after deblurring-        
NON-BLIND deconvolution 
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Input from a static camera Deblurred output from our camera 

Human motion- no perfect linearity
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Violating 1D motion assumption- forward motion

Input from a static camera Deblurred output from our camera 
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Violating 1D motion assumption- stand-up 
motion

Input from a static camera Deblurred output from our camera 
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Violating 1D motion assumption- rotation

Input from a static camera Deblurred output from our camera 
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Parabolic curve – issues

• Spatial shift- but does not affect visual quality in deconvolution
• Parabola tail clipping: not exactly the same blur

• Motion boundaries break the convolution model
• Assumes: Object motion horizontal
                     Object motion linear up to 1st order approximation
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Conclusions

Acknowledgments: 
NSF CAREER award 0447561 
Royal Dutch/Shell Group      NGA 
NEGI-1582-04-0004
Office of Naval Research MURI
MSR New Faculty Fellowship                              
Sloan Fellowship

x

t
xt-slice

• Camera moved during exposure, parabolic displacement 

• Blur invariant to motion:
 - Same over all image (no need to segment)
 - Known in advance (no kernel identification)

• Easy to invert (near optimal frequency response)

• For 1D motion
   - Somewhat robust to 1D motion violation
   - Future work: 2D extensions
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Plan

✦ Introduction of computational photography
• Enhance our vision
• Capture visual information

✦ Motion Invariant Photography
• Move sensor to make kernel 

- invariant
- high frequency response

• Upper bound

✦ Potpourri 

✦ Big Ideas in Computational Photography
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Image and Depth from a 
Conventional Camera with a 
Coded Aperture

with Levin, Fergus, Freeman [Siggraph 2007]
RGB & coarse depth from single image

Friday, April 3, 2009



✦ Objects far from focusing distance are blurrier

✦ By inferring blur, 
we can infer depth

Defocus & depth

SensorLens

Defocus 
blur

In focus

Out of 
focus
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Challenge: hard to infer depth

✦ For each candidate depth, 
try to deconvolve with corresponding kernel

✦ “Too close” not so different from “correct”

... ...

(not to scale)

too far correct too close

✓ ✓✗
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✦ Increase kernel variation: 
Put a mask (code) on aperture plane (diaphragm)
➡more structured blur
➡ easier to identify kernel/depth
➡ easier to remove blur

Opposite solution: Coded aperture

Conventional Coded
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Why code helps

✦ Wrong blur is making more mess

Conventional aperture

correcttoo far too close

✓✗ ✓

Coded aperture
✓✗ ✗
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Input
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Deconvolved (all-focus)
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Close up

Original image

All-focus image
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Depth
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Deconvolved (all-focus)
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Refocusing (from single image!)
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Refocusing (from single image!)
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Refocusing (from single image!)
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Results
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Input
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Deconvolved
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Refocusing (from single image!)
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Refocusing (from single image!)
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Refocusing (from single image!)
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Deconvolution given kernel

✦ Ill-posed

✦ Traditional algorithms lead to ringing

⊗=

⊗=

Richardson-Lucy
deconvolution
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Idea: Natural image prior

✦ Random 2D arrays of colors don’t look like the 
world around us

✦ If we can characterize natural images, 
we can bias algorithms to output better results

ADD 
CITATIONS
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Sparse derivatives prior

✦ Natural images have sparse derivative
(the gradient is small almost everywhere)

✦ Add an optimization term
(a.k.a. regularization)
Pay penalty where gradient is non-zero

||∇x|| ||∇x||∑
||∇x||0.8
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Sparsity prior for deconvolution

Input

Richardson-Lucy Our sparse prior

∑
||∇x||0.8
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Blind Deconvolution

✦ [Levin et al. CVPR 09]

✦ Even more ill-posed: 
ambiguity between blur kernel & image

✦ Usually resolved using sparse derivative prior

✦ But we show common wisdom to be misleading
• Prior can’t tell sharp images
• More important: pose problem properly

⊗= ?

⊗= ??

Non-blind:

Blind:
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Bayesian lightfield imaging
✦ [Levin et al. ECCV 08]

✦ Model imaging as linear 
light field projection

✦ New prior on light field

✦ Camera decoding expressed as a 
Bayesian inference problem 

✦ Framework and software for 
comparison across camera 
configurations in flatland

y = T x
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Beyond photography

✦ 3D Displays
• Fourier analysis of light 

field for antialiasing
• [Zwicker et al. 06]

✦ Rendering
• Motion blur, depth of field 
• Frequency analysis of light 

field or time space for 
adaptive sampling and 
improved reconstruction

• e.g. [Durand et al. 05, 
Soler et al. 09]
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Plan

✦ Introduction of computational photography
• Enhance our vision
• Capture visual information

✦ Motion Invariant Photography
• Move sensor to make kernel 

invariant, high frequency response
• Upper bound

✦ Potpourri 

✦ Big Ideas in Computational Photography
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Big ideas in Comp. Photo.
✦ Goals:

• Beat physics, better image quality/quantity
• More data (depth, etc.)
• Seeing the unseen 
• Creative choices during post-process
• New visual media
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Coded Imaging

✦ e.g.
• motion-invariant
• coded aperture
• flutter shutter
• wavefront coding 
• compressive sensing 
• heterodyning
• warp-unwarp

Optics encodes information

Computation decodes
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Natural signal prior

✦ Statistics that distinguish images of the world from 
random signals

✦ Use to “bias” algorithms to output more likely 
results or to disambiguate ill-posed problems

✦ Extension of regularization

✦ e.g.
• Denoising
• Deconvolution
• Compressive sensing
• Light field prior

Random “Natural” image
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Edges matter but are not binary

✦ Sparse derivative 
image prior

✦ Gradient domain 
(seamless cloning,
tone mapping, 
convert2gray)

✦ Bilateral filter for 
decomposition

✦ Non-homogenous 
regularization for 
scribble propagation

OutputLarge-scale

Detail

Color
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Leverage millions of images

✦ The ultimate 
prior?

✦ Reconstruct
the world

Hays & Efros 07
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Multiple-exposure & multiplexing

✦ Expand capabilities by 
combining multiple images

✦ Multiplex through time, 
assorted pixels, beam 
splitters, camera array 

✦ e.g.
• Panorama stitching
• High-dynamic-range imaging
• Focus stacks
• Photomontage
• Super-resolution
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The raw data is high dimensional

✦ Light field: 4D
(space-angle)

✦ Time space: 3D

✦ +Fourier

Space

Time

Space

Angle

Image Ng et al.

Friday, April 3, 2009



Active imaging

✦ Modulate light to 
facilitate information 
gathering

✦ e.g. 
• Flash/no flash
• Light stages
• Dual imaging
• Structured-light scanning

No-flash

Flash

our 
result
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Recap: Big ideas in comp. photo.

✦ Coded imaging

✦ Natural signal prior

✦ Edges matter but should not 
be detected

✦ Leverage millions of images 

✦ Raw data is high-dimensional 
(ligh field, space-time)

✦ Active Imaging
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Ecosystem
✦ Computational Photography

• Computer graphics
• Computer vision
• Traits: Geometrical optics, light field, ignore diffraction

✦ Computational Imaging
• Optics
• Electrical Engineering 
• Traits: Fourier optics, wave nature of light, often simpler 

processing

✦ Start interacting
• Workshop in Charlotte
• OSA Frontiers in optics
• IEEE International Conference on Computational Photography
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Ongoing work & important challenges: 
Fundamentals of computational imaging

✦ Understand information available in the world, 
necessary for a task, captured by a camera

✦ Frequency analysis of light field, space time, image

✦ Effect of noise, fundamental limits

✦ Unifying frameworks, comparison of strategies
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Summary
✦ Computational photography

• Enhance our vision
• Capture visual information

✦ Motion Invariant Photography
• Move sensor to make kernel 

invariant, high frequency response
• Upper bound

✦ Potpourri: 
• Coded aperture, sparse derivative, light field 

camera framework, blind deconvolution, display, 
rendering

✦ Big Ideas in Computational Photography
• Coded imaging, raw data is high-dimensional, 

prior, edges/gradients, millions of images, active 
imaging
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Challenges & opportunities
✦ Theory, frameworks, comparisons, optimality
✦ Diffraction, wave optics
✦ Putting it all together 

(engineering, system, applications)
✦ Better priors

• Kernel identification
• High-quality inversion

✦ Video
✦ Real-time enhancement (e.g. motion magnification)
✦ Applied visual perception
✦ Intrinsic images
✦ Matting
✦ Scene and object recognition
✦ Extract and leverage 3D reconstruction
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Commercialization

✦ Computational photo with existing cameras
• HDR
• Panoramas
• Photomontage
• Poisson/Healing brush
• Photosynth

✦ Co-design of optics and computation
• Is beginning slowly: 

post processing removal of optical aberration
• Niche areas (e.g. iris recognition)
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