Vision & Graphics

Frédo Durand MIT CSAIL

Interaction is already strong

 Rick Szeliski received the Siggraph Achievement Award 2011

- Anat Levin received the Eurographics Young Researcher Award 2010
- Vision is used in special effects
- Computational photography

Saturday, November 5, 2011

Bibliometrics: top vision papers

Academic

Publication » Conference » Journal »

Organization »

Keyword :

- Snakes
- SIFT
- Edge detection
- Multiview geometry
- Iterated Closest Point
- Optical flow
- Anisotropic diffusion
- Ransac
- Stereo
- Harris corners
- ... are used in graphics

Academic > Top publications in Computer Vision			1 - 100 of 47,126 res
Computer Science	 Computer Vision 	▼ All Years ▼	
Publication			Citat
Snakes: Active contour models (1988)			367
Distinctive Image Features from Scale-Invariant Keypoints (2004)			351
A computational approach to edge detection (1986)			346
Multiple view geometry in computer vision (2000)			295
A Method for Registration of 3-D Shapes (1992)			220
Determining Optical Flow (1981)			211
Scale-Space and Edge Detection Using Anisotropic Diffusion (1990)			204
Random Sample Consensus: A Paradigm for Model Fitting with Applicationsto Image Analysis a Automated Cartography (1981)			nd 202

Advanced Search

Computer vision

Add value to visual inputs

- Be open minded about
 - input
 - active, passive, 2D, 3D, 4D, etc.
 - added value
 - depth, recognition, flow, etc.
 - way to add
 - math, hack, stat, engineering, etc.

Acquisition

- Geometry
 - Also non-Lambertian materials
 - Also messy materia
- Complex deformi

Acquisition: Geometry++

- A depth map is often not the final answer
 - not even always necessary
- Segments, parametric patches
- Full volumetric model
- Procedural models
 - buildings, trees
- Finding symmetries

Acquisition

- Material Appearance
- Volumetric media
 - clouds, smoke, fire
- Articulated characters
 - active or markerless mocap
- Complex deforming geometry
 - physical parameters for simulation

Input Range Scans

Poseable, Articulated 3D Model

Saturday, November 5, 2011

Active techniques

- They're great, don't overlook them
- Still require a lot of computation

Content creation

- Biggest challenge in graphics
- Can vision help?
- related to capture, 3D acquisition, etc.
- Sketch-based modeling
- Priors for modeling/editing

Analysis-resynthesis for editing

• Recipe:

- Analyze input/ decompose
- Edit layers/channels/components recombine / rerender

- Images
 - HDR
 - relighting
- 3D data
- Motion

=> low to mid-level analysis is important

Priors for synthesis

- Can we use natural priors to synthesize motion, images?
- Texture synthesis
 - inpainting
 - making CG more real
- Motion
 - Used a lot for humans (see Aaron)
 - Cloth, hair, fluids?
 - Directly from video?

Priors used directly in 3D renderer?

Applying vision to other signals

- Geometry
 - challenge: domain is conflated with range
- Motion capture data
- PDEs, signal processing, edge detection
- Features, retrieval, recognition
- Priors

(Feature detection)

Feature description

Vector quantization

Bag of expressions

Fig. 2. Flow of the ShapeGoogle algorithm.

Using graphics for Vision

Ground truth, training data

- The image formation equations are the same
 - Example: motion blur, depth of field
 - Graphics knows more about light transport, material appearance
- Human motion modeling

Where graphics culture is better

- Connection to the real world
- Speed, scalability
- Systems issues, languages, API
- Most important publications easy to identify
 Fewer siggraph papers than ICCV+CVPR+ECCV
- ... Siggraph parties are better but vision conference locations are better

Recap: connections

- Acquisition
 - Geometry, material appearance, motion
- Active techniques
- Content creation
- Analysis-resynthesis for editing
- Priors for synthesis
 - images, motion
- Applying vision to other signals
 - motion, geometry
- Using graphics for vision

