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Interaction is already strong
• Rick Szeliski received 

the Siggraph Achievement 
Award 2011

• Anat Levin received the 
Eurographics Young Researcher 
Award 2010

• Vision is used in special effects

• Computational photography
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Bibliometrics: top vision papers
• Snakes

• SIFT

• Edge detection

• Multiview geometry

• Iterated Closest Point

• Optical flow

• Anisotropic diffusion

• Ransac

• Stereo

• Harris corners

• ... are used in graphics

Image gradients Keypoint descriptor
Figure 7: A keypoint descriptor is created by fi rst computing the gradient magnitude and orientation
at each image sample point, as shown on the left. These are weighted by a Gaussian window,
indicated by the overlayed circle. These samples are then accumulated into orientation histograms
summarizing the contents over larger regions, as shown on the right, with the length of each arrow
corresponding to the sum of the gradient magnitudes near that direction within the region. To reduce
clutter, this fi gure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas most
experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

A better approach has been demonstrated by Edelman, Intrator, and Poggio (1997). Their
proposed representation was based upon a model of biological vision, in particular of com-
plex neurons in primary visual cortex. These complex neurons respond to a gradient at a
particular orientation, but the location of the gradient on the retina is allowed to shift over a
small receptive fi eld rather than being precisely localized. Edelman et al. hypothesized that
the function of these complex neurons was to allow for matching and recognition of 3D
objects from a range of viewpoints. They have performed detailed experiments using 3D
computer models of object and animal shapes which show that matching gradients while
allowing for shifts in their position results in much better classifi cation under 3D rotation.
For example, recognition accuracy for 3D objects rotated in depth by 20 degrees increased
from 35% for correlation of gradients to 94% using the complex cell model. Our imple-
mentation described below was inspired by this idea, but allows for positional shift using a
different computational mechanism.

6.1 Descriptor representation
Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient
magnitudes and orientations are sampled around a keypoint, using the scale of the keypoint
to select the level of Gaussian blur for the image. For effi ciency, the gradients are precom-
puted for all levels of the pyramid as described in Section 5. These are illustrated with
small arrows at each sample location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor
window is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls
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FIG. 8. Flow patterns computed for simple rotat ionand simple contraction of a brightness pattern. 
In the first case, the pattern is rotated about 2.8 degrees per time step, while it is contracted about 
5% per time step in the second case. The estimates after 32 times steps are shown. 
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FIG. 9. Flow patterns computed for flow around a line vortex and two dimensional flow into a sink. 
In each case the estimates after 32 iterations are shown. 

boundaries constitute a one dimensional subset of the plane and so one can 
expect that the relative number of points at which the estimated flow is 
seriously in error will decrease as the resolution of the image is made finer. 

In Appendix B it is shown that there is a direct relationship between the 
Laplacian of the flow velocity components  and the Laplacian of the surface 
height. This can be used to see how our smoothemess constraint will fare for 
different objects. For example, a rotating polyhedron will give rise to flow 

Saturday, November 5, 2011



Computer vision
• Add value to visual inputs

• Be open minded about
- input

- active, passive, 2D, 3D, 4D, etc. 
- added value

- depth, recognition, flow, etc. 
- way to add

- math, hack, stat, engineering, etc. 
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Acquisition
• Geometry

- Also non-Lambertian materials
- Also messy materials (hair, etc.)

• Complex deforming geometry

!"#$%&'&(&)*&$+,(-./
!""#"$%&'(%&!)*+"#%&!(%&!",$-.#"/%&0(%&1234"$%&!(%&5$6..%&7(&89:9(&;)<=>?2,#)@/&1)4<#"&1=6@&A,B@2$"&6C&D,*),#&
5"63"@$/(&!"#$%&'()*$+&',-*$./%&E%&F$@)*#"&E9&GH2#/&89:9I%&J&B,<".(&KLM&N&:9(::EOP:QQRQSO(:QQRQQQ&
=@@BTPP-6)(,*3(6$<P:9(::EOP:QQRQSO(:QQRQQQ(

",01(234/$5,/2*&
0"$3)..)64&@6&3,+"&-)<)@,#&6$&=,$-&*6B)".&6C&B,$@&6$&,##&6C&@=).&U6$+&C6$&B"$.64,#&6$&*#,..$663&2."&).&<$,4@"-&
U)@=62@&C""&B$6V)-"-&@=,@&*6B)".&,$"&46@&3,-"&6$&-).@$)W2@"-&C6$&B$6!&@&6$&-)$"*@&*633"$*),#&,-V,4@,<"&
,4-&@=,@&*6B)".&.=6U&@=).&46@)*"&64&@="&!&$.@&B,<"&6$&)4)@),#&.*$""4&6C&,&-).B#,/&,#64<&U)@=&@="&C2##&*)@,@)64(&
A6B/$)<=@.&C6$&*63B64"4@.&6C&@=).&U6$+&6U4"-&W/&6@="$.&@=,4&FA7&32.@&W"&=646$"-(&FW.@$,*@)4<&U)@=&
*$"-)@&).&B"$3)@@"-(&'6&*6B/&6@="$U)."%&@6&$"B2W#).=%&@6&B6.@&64&."$V"$.%&@6&$"-).@$)W2@"&@6&#).@.%&6$&@6&2."&,4/&
*63B64"4@&6C&@=).&U6$+&)4&6@="$&U6$+.&$"X2)$".&B$)6$&.B"*)!&*&B"$3)..)64&,4-P6$&,&C""(&0"$3)..)64.&3,/&W"&
$"X2".@"-&C$63&02W#)*,@)64.&K"B@(%&FA7%&M4*(%&8&0"44&0#,Y,%&12)@"&Q9:%&Z"U&[6$+%&Z[&:9:8:>9Q9:%&C,\&]:&
G8:8I&RSJ>9ER:%&6$&B"$3)..)64.^,*3(6$<(
_&89:9&FA7&9Q`9>9`9:P89:9P9Q>Fa'E9&b:9(99&KLM&:9(::EOP:QQRQSO(:QQRQQQ&
=@@BTPP-6)(,*3(6$<P:9(::EOP:QQRQSO(:QQRQQQ

High-Quality Single-Shot Capture of Facial Geometry

Thabo Beeler1,2 Bernd Bickel1,2 Paul Beardsley2 Bob Sumner2 Markus Gross1,2

1ETH Zurich 2Disney Research Zurich

Figure 1: Left: Face model captured using a seven camera studio setup; Center: capture systems; Right: Face model captured using
consumer binocular-stereo camera. Facial geometry in all figures is best viewed in the electronic version.

Abstract

This paper describes a passive stereo system for capturing the 3D
geometry of a face in a single-shot under standard light sources.
The system is low-cost and easy to deploy. Results are sub-
millimeter accurate and commensurate with those from state-of-
the-art systems based on active lighting, and the models meet the
quality requirements of a demanding domain like the movie indus-
try. Recovered models are shown for captures from both high-end
cameras in a studio setting and from a consumer binocular-stereo
camera, demonstrating scalability across a spectrum of camera de-
ployments, and showing the potential for 3D face modeling to move
beyond the professional arena and into the emerging consumer mar-
ket in stereoscopic photography.

Our primary technical contribution is a modification of standard
stereo refinement methods to capture pore-scale geometry, using a
qualitative approach that produces visually realistic results. The
second technical contribution is a calibration method suited to
face capture systems. The systemic contribution includes multi-
ple demonstrations of system robustness and quality. These include
capture in a studio setup, capture off a consumer binocular-stereo
camera, scanning of faces of varying gender and ethnicity and age,
capture of highly-transient facial expression, and scanning a physi-
cal mask to provide ground-truth validation.

CR Categories: I.3.2 [Computer Graphics]: Graphics
Systems—Stand-alone systems; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing,
and texture I.4.1 [Image Processing and Computer Vision]: Digiti-
zation and Image Capture

1 Introduction

1.1 Motivation

Capturing a high-quality model of a human face is of interest in
multiple domains - for the movie and games industries, in medicine,
to provide more natural user-interfaces, and for archival purposes.
A key application is the synthesis of a desired sequence of speech
and facial expression under arbitrary lighting. This problem has
motivated striking results in rendering [Donner and Jensen 2006;
Donner et al. 2008], in performance-driven facial animation [Hyne-
man et al. 2005; Alexander et al. 2009], and in physics-based ani-
mation [Sifakis et al. 2005]. However, reproducing realistic human
faces is still a challenge for computer graphics because humans are
sensitive to facial appearance and quickly sense any anomalies in
3D geometry or dynamics.

This paper is concerned with the capture of 3D geometry of the
face. The current method of choice for this task is an active system
based on laser, structured light or gradient-based illumination. Ac-
tive light brings robustness because it effectively augments an ob-
ject surface with known information. On the other hand, it requires
special-purpose hardware and often employs time-multiplexing.
Polarization-based methods further constrain deployment to a sin-
gle camera at a fixed viewpoint. Contrast this with passive stereo
vision, which has the potential to be an extremely versatile modal-
ity for constructing 3D models - it captures in a single shot, readily
adapts to different arrangements and numbers of cameras with no
constraint on camera position, seamlessly integrates 3D data cap-
tured over multiple distances and at different scales in a scene, cap-
tures texture that is intrinsically registered with the recovered 3D
data, and uses commodity hardware. However, in the past, the re-
liability and accuracy of passive stereo have fallen short of what is
available from active systems, and it has not been used for capturing
high-quality face models.

This paper presents a passive stereo vision system that computes
the 3D geometry of the face with reliability and accuracy on a par
with a laser scanner or a structured light system. We introduce an
image-based embossing technique to capture mesoscopic facial ge-
ometry1, so that the quality of synthesized faces from our system

1We use the term mesoscopic for geometry at the scale of pores and fine

ACM Transactions on Graphics, Vol. 29, No. 4, Article 40, Publication date: July 2010.

Hair Photobooth: Geometric and Photometric Acquisition of Real Hairstyles
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(d) rendering
(new viewpoint, new lighting)

(c) reference photograph 
(not in input data)

(b) rendering(a) reconstructed geometry

Figure 1: Our method acquires photometric and geometric models of real hairstyles. It computes an accurate geometric
model (a) which is used in combination with an image-based rendering technique to produce images (b). The results closely
match an actual photograph (c) which is not part of the data set used by our algorithm. The hair can be rendered from
arbitrary viewpoints and under arbitrary illumination (d).

Abstract
We accurately capture the shape and appearance of a per-
son’s hairstyle. We use triangulation and a sweep with
planes of light for the geometry. Multiple projectors and
cameras address the challenges raised by the reflectance and
intricate geometry of hair. We introduce the use of struc-
ture tensors to infer the hidden geometry between the hair
surface and the scalp. Our triangulation approach affords
substantial accuracy improvement and we are able to mea-
sure elaborate hair geometry including complex curls and
concavities. To reproduce the hair appearance, we capture
a six-dimensional reflectance field. We introduce a new re-
flectance interpolation technique that leverages an analytical
reflectance model to alleviate cross-fading artifacts caused by
linear methods. Our results closely match the real hairstyles
and can be used for animation.

Keywords: hair, active vision, image-based rendering

1 Introduction
Human hair is a significant challenge in image synthesis be-
cause of its geometric and photometric complexity. The
problem becomes even harder when one wants to reproduce
faithfully the hairstyle of a given person, because traditional

3D scanners usually fail with objects that do not correspond
to a well-defined surface of Lambertian material. In this pa-
per, we present a new scanning technique to reconstruct the
geometry and reflectance of a person’s hairstyle. We seek
to capture complex geometric effects and individual hair
strands for hairstyles with non-convex features, as well as
complex appearance effects using image-based rendering.

We build on recent advances that have enabled the cap-
ture of hair geometry from image sequences [Paris et al. 2004;
Wei et al. 2005]. Both rely on the extraction of hair orienta-
tion in images and chain these 3D orientations head-to-tail
to build the geometry inside a visual hull. These methods
were the first to enable hair capture, but ambiguities inher-
ent to the visual hull make it difficult to capture complex
features such as concavities and curls.

Our technique alleviates these limitations using triangu-
lation between a plane of light and a camera. While the
principle of triangulation is standard in 3D scanning, hair
raises several challenges due to its intricate geometry and
reflectance. The highly-specular BRDF rarely reflects the
light towards the camera, and the filtering techniques imple-
mented in scanning software heavily rely on the assumption
that the object has a well-defined surface. Individual hair
fibers are tiny and, while a hairstyle has a volumetric nature,
it is hard to measure hair close to the scalp. A high-quality
3D model of hairstyle requires the reconstruction of individ-
ual hair fibers, especially when it is to be used for animation.
We introduce a new hole-filling technique based on structure
tensors to generate orientation inside the hairstyle volume.

While Marschner et al. [2003] have recently proposed a
comprehensive analytical model of hair reflectance, acquir-
ing a description of the BRDF of real hair remains unsolved
and their paper only shows qualitative manual fits. Instead,
we use a data-driven approach and acquire images under dif-
ferent lighting directions and from a number of cameras to
recover a hair reflectance field. We introduce a new image-

A Linear Formulation of Shape from Specular Flow
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Abstract

When a curved mirror-like surface moves relative to its

environment, it induces a motion field—or specular flow—

on the image plane that observes it. This specular flow is

related to the mirror’s shape through a non-linear partial

differential equation, and there is interest in understand-

ing when and how this equation can be solved for sur-

face shape. Existing analyses of this ‘shape from specular

flow equation’ have focused on closed-form solutions, and

while they have yielded insight, their critical reliance on

externally-provided initial conditions and/or specific mo-

tions makes them difficult to apply in practice. This paper

resolves these issues. We show that a suitable reparameteri-

zation leads to a linear formulation of the shape from specu-

lar flow equation. This formulation radically simplifies the

reconstruction process and allows, for example, both mo-

tion and shape to be recovered from as few as two specular

flows even when no externally-provided initial conditions

are available. Our analysis moves us closer to a practical

method for recovering shape from specular flow that oper-

ates under arbitrary, unknown motions in unknown illumi-

nation environments and does not require additional shape

information from other sources.

1. Introduction
An image of a curved, mirror-like surface presents an ob-
server with a distortion of its surrounding environment, and
there is interest in understanding when and how a mirror’s
shape can be recovered from these distortions. Of particu-
lar interest are cases like those in Fig. 1, where the surface
is viewed in a natural lighting environment, and little or no
information about the environment is available from other
image cues. This reconstruction problem is difficult for two
reasons: 1) it is ill-posed, and 2) the relationship between a
mirror’s shape and its image is quite complex.

One promising approach for coping with these difficul-
ties is to exploit motion [16, 19, 1, 18]. When a specu-
lar surface moves relative to its environment, it induces a
motion field on the image plane, and this motion field—

Figure 1. Specular surfaces under natural lighting present the ob-
server with a distortion of the surrounding lighting environment.
We explore when and how surface shape can be recovered from
these observed distortions. (Image credits: Flickr users *spud*
and R�DS.

termed specular flow [16]—provides valuable information
about surface shape. In particular, it allows one to avoid
reasoning about the content of the unknown environment by
reasoning about the (simpler) relative motion instead. Such
reasoning is facilitated by the basic relationship between a
moving specular surface and the specular flow it induces, as
has been recently derived by Adato et al. [1]. According to
their formulation, when the surface and the observer move
as a fixed pair relative to a distant environment, the observed
specular flow field and the object motion yield a non-linear
partial differential equation (PDE) in terms of the surface
shape. This equation has been referred to as the shape from

specular flow (SFSF) equation, and previous analyses have
explored closed-form solutions for shape when one or more
observed flows are available [1, 18].

Despite the insight it affords, reconstruction according
to the existing formulation of the SFSF equation has two
severe limitations. First, due to the complexity of the non-
linear PDE, solutions thus far have only been determined
for a very specific class of motions [1]. Second, even in
these restricted cases, the solution cannot be obtained unless
significant initial conditions (e.g., multiple known surface
curves) are provided by an external source [1, 18].

This paper resolves both of these limitations. We develop
an alternative formulation of the shape from specular flow
problem that produces a linear differential equation instead
of a non-linear one. This linear formulation is intuitive and
provides additional insights regarding the qualitative struc-

1
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Azimuth track and  knob

angular motion track and knob

Figure 6. Results with captured data. Left: Acquisition system that enables camera/object rotation about arbitrary axes. Middle: Object under study.
Right: Shape recovered from two specular flows, shown with a comparable view of the object.

As in previous work, this paper focusses on the task of
recovering shape when specular flow is known, and it does
not address the problem of estimating specular flow from
image data. Accurately recovering specular flow in the pres-
ence of singularities induced by parabolic surface points is
an interesting open problem, and it is one that is likely to
benefit from the linear formulation presented here.

In fact, our linear formulation of shape from specular
flow should enable deeper studies of the problem in gen-
eral. Directions to consider include an expanded use of the
integrability constraint, which yields significant power and
may even be sufficient to allow single-flow reconstructions.
Another is the case in which a specular object moves rela-
tive to the observer, which is more natural for a human or
robotic observer.
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Acquisition: Geometry++
• A depth map is often not the final answer

- not even always necessary

• Segments, parametric patches

• Full volumetric model

• Procedural models
- buildings, trees

• Finding symmetries

Symmetry Factored Embedding And Distance

Yaron Lipman Xiaobai Chen Ingrid Daubechies Thomas Funkhouser
Princeton University

Abstract

We introduce the Symmetry Factored Embedding (SFE) and the
Symmetry Factored Distance (SFD) as new tools to analyze and
represent symmetries in a point set. The SFE provides new coordi-
nates in which symmetry is “factored out,” and the SFD is the Eu-
clidean distance in that space. These constructions characterize the
space of symmetric correspondences between points – i.e., orbits.
A key observation is that a set of points in the same orbit appears
as a clique in a correspondence graph induced by pairwise simi-
larities. As a result, the problem of finding approximate and par-
tial symmetries in a point set reduces to the problem of measuring
connectedness in the correspondence graph, a well-studied problem
for which spectral methods provide a robust solution. We provide
methods for computing the SFE and SFD for extrinsic global sym-
metries and then extend them to consider partial extrinsic and intrin-
sic cases. During experiments with difficult examples, we find that
the proposed methods can characterize symmetries in inputs with
noise, missing data, non-rigid deformations, and complex symme-
tries, without a priori knowledge of the symmetry group. As such,
we believe that it provides a useful tool for automatic shape analysis
in applications such as segmentation and stationary point detection.

1 Introduction

Symmetry plays a central role in nature. It is related to efficient
and robust arrangements, and it is prevalent in both natural and
man-made objects. As such, detecting, representing, and exploit-
ing symmetries is an important research topic in many disciplines,
including computer graphics and computer vision. Its numerous
applications in graphics include registration, segmentation, recog-
nition, compression, de-noising, viewpoint selection, completion,
beautification, and several others.

The goal of our work is to investigate a new method for analysis
and representation of symmetries in 3D objects. This problem is
difficult when objects have complex, multiple symmetries (e.g., the
4 rotations and 4 reflections of the Jewelry model in Figure 1), par-
tial symmetries (e.g., due to missing data and extra parts in the scan
of the flower statue), approximate symmetries (e.g., due to noise in
scanned data), and when the symmetry groups expected in the input
data are not known in advance.

Recent approaches to address this problem have relied upon meth-
ods that analyze symmetries in terms of their generating transfor-
mations. For example, [Podolak et al. 2006] proposed a continuous
measure assessing the degree to which an object is symmetric with
respect to every transformation within a prescribed group (e.g., pla-

Figure 1: Symmetry Factored Distance measured from the points
marked by black arrows (blue is small distance, red is large).

nar reflections), and [Mitra et al. 2006] described a method to de-
tect symmetries by clustering “votes” for transformations that align
boundary points with similar local shape descriptors. These meth-
ods have demonstrated their usefulness in several applications, but
they have a few problems: 1) they require knowing a priori which
symmetry transformations are expected (so that votes can be accu-
mulated in an appropriate parameterization of the transformation
space); 2) they require a large amount of processing and/or storage
in high dimensional spaces (e.g., rigid body transformations have
six dimensions); 3) they are able to represent symmetries only for
transformations that can be parameterized (e.g., not arbitrary non-
rigid deformations); 4) they cluster votes based on Euclidean dis-
tances in transformation space, which may not be meaningful due
to the (usually) non-linear dependence on the parameterization; 5)
they do not usually leverage the inter-dependence of repeated struc-
tures (e.g., rotations by 120 and 240 degrees), which appear as dis-
joint clusters in transformation space; and, 6) they do not explicitly
produce correspondences between symmetric points, which are re-
quired for many applications (e.g., symmetrization, segmentation,
de-noising, etc.).

Our approach is to find orbits, i.e., we search for correspondences
between symmetric points rather than the transformations that align
them. These correspondences are represented in a symmetry corre-
spondence matrix, a (usually sparse) n× n non-negative matrix C
that, roughly speaking, encodes symmetry relations between pairs
of n points sampled from the input data. Of course, this approach
is related to earlier methods that have computed fuzzy correspon-
dence matrices for alignment and matching problems [Gold et al.
1998; Lipman and Funkhouser 2009]. However, a symmetry cor-
respondence matrix has special properties that make it particularly
well-suited for symmetry detection. In particular, the top eigenvec-
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Figure 7. Views of three different reconstructions of the “torch” dataset. The same two input images were used for all methods.
Since all methods reconstruct the input views, only novel views of the reconstructed flame are shown.

reconstruction method (views) RMS error
input all

flame sheet solution (2) 0 26.6
multiplication solution (2) 0 21.5
blob-based method (3) 13.3 19.0
flame sheet decomposition (3) 10.1 18.4
flame sheet decomposition (3/7) 11.5 15.8

Table 1. Per-pixel RMS image reconstruction error for dif-
ferent algorithms applied to the “jet” dataset. For the last
entry, three input views were used for basis generation and
seven for optimizing photo-consistency. Note that the first
two reconstructions reproduce the input views exactly.
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Figure 8. Dependence of image error on the number B of
generated basis fields (Section 5.2, Step 1).

7. Concluding Remarks

A current limitation of our multi-view technique is the
planar configuration of the input viewpoints. While pla-
narity is used for efficiency reasons, it may be possible
to derive an efficient reconstruction method that combines
Flame Sheets from non-planar views.
More generally, the question of how best to capture the

global 3D structure and dynamics of fire remains open. To-
ward this goal, we are investigating new spatio-temporal co-
herence constraints and are studying ways to integrate our
approach with traditional fire simulation methods.
Finally, while our limited experiments suggest that

Flame Sheets and the Flame-Sheet Decomposition Algo-
rithm are useful for fire reconstruction, these tools may also

prove useful in more general contexts. This includes sparse-
view tomography problems in medical diagnostics [17] and
accelerated image-based methods for volume rendering.
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Figure 4: Above: We identify corresponding markers in multiple
views in reference to the parametric domain. Below: Once corre-
sponding image points are identified, we intersect eye rays to deter-
mine the 3D location.

3.1 Entropy as an Analytical Tool

We optimize our correspondence technique by analyzing the in-
formation provided by different cues. In this framework we can
accurately minimize the number of neighbors required for corre-
spondence and observe folds better. We can compare our work to
previous methods using this framework (figure 6).

It takes log2 M bits to determine the identity of each observed
marker on a garment with M total markers. Because independent in-
formation adds linearly, we can compute the information needed to
meet this threshold by adding information from the different cues:
color, neighbors and strain. However, structural ambiguities in the
pattern subtract information lost to determine which neighbor is
which. As a result, we compute our information budget (I ) as:

N = number of observed neighbors
C = color information per marker
A = information lost to structural ambiguities
S = information gained from strain constraints

I = (N +1)∗C +S−A

As an example, imagine a rectangular grid of markers and a cor-
respondence method that uses a single immediate neighbor. This
neighbor is one of four possible neighbors – thus it takes two bits to
specify which neighbor we found (A = 2). In this case, the equation
reduces to I = 2∗C−2+S.

Given almost any structured pattern, we can detect regions by in-
creasing N until I > log2(M) bits. However, larger marker regions
have the disadvantage that curvature can cause local occlusions and
prevent observation of the entire region. Our best efforts are to im-
prove C – the number of bits from each marker observation. We do
this by picking marker color from the full colorspace instead of a
small discrete set of colors.

Figure 5: Neighborhood detection methods require that all markers
in a fixed geometric pattern in the image neighborhood be neighbors
on the cloth. Occluding contours break up neighborhood regions
and limit the effectiveness of neighborhood methods in folded re-
gions. We eliminate neighborhood requirements in the final stage
of our correspondence algorithm.

3.2 Garment Design and Color Processing

We print a random colored pattern on the surface of cloth in an at-
tempt to maximize the information available per pixel. While our
pattern is composed of tesselated triangles (figure 5), any shape
that tiles the plane will work (squares and hexagons are also nat-
ural choices). To maximize the density of reconstructed points, we
print the smallest markers that we can reliably detect. To maximize
the information contained in the color of each marker, we print col-
ors that span the gamut of the printer-camera response, then use a
gaussian color model (section 4.1).

From a system view, the printer-camera response is a sequence of
lossy steps: we generate a color image on a computer, send the
image to the printer, pose the cloth, and capture it with a camera.
Our experiments suggest that loss is largely attributable to camera
response because larger markers produced substantially more in-
formation. Illumination is also problematic and takes two forms:
direct illumination on a lambertian surface and indirect illumina-
tion. To correct for variations in direct illumination, we remove the
luminosity component from our color modelling. We do not correct
for indirect illumination.

Each marker in the printed pattern has a randomly chosen color,
subject to the constraint that neighboring marker colors must be dis-
similar. In the recognition stage, we detect markers by comparing
colors to a known color. These comparisons must be made in the
proper color space: we photograph the surface of the printed cloth
with our video cameras to minimize the effect of non-linearities in
the printing process.

4 Acquisition
The goal of our acquisition pipeline is to compute correspondence
using minimal neighborhoods. We accomplish this through an iter-
ative algorithm where we alternate between computing correspon-
dence and pruning bad matches based on those correspondences.
After each iteration we shrink the size of the neighborhood used
to match. We start with N = 3 and end with N = 0. In the final
iteration, markers are matched using color and strain alone.

This iterative approach allows us to match without neighborhoods.
This is better than label propagation methods. To be successful,
propagation methods [Guskov et al. 2003; Scholz et al. 2005; Lin
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set of observations. Even data acquired using gonioreflec-
tometers often do not contain many samples and can exhibit
noise, e.g. [Bor03]. These limitations prevent the direct use
of the measured data and make the fit to an analytical model
a requirement. The low sampling rate and noise level make
the BRDF fitting very underconstrained, and the final vi-
sual result is heavily dependent on the choice of the model.
Dana et al. [DNGK97] fit a wide range of materials to BRDF
models. However, their data set is limited in resolution (205
viewing/illumination combinations), and they only fit to the
Oren-Nayar model [ON94] and the Koenderink representa-
tion [KvDS96] based on Zernike polynomials.

1.2. Overview

In this paper, we provide experimental analysis and insights
that should guide practitioners in the field. While previous
work in BRDF modeling has validated the proposed models
using physical measurements, the number of materials used
in the validation is typically small and often confined to the
category on which the model is primarily focused. In our
study we quantify and compare the performance of seven an-
alytical BRDF models on a data set of 100 isotropic BRDFs
acquired at high resolution and covering a wide range of ma-
terials. We also conduct a study on a data set of 4 common
anisotropic materials measured at high resolution. The read-
ers should refer to our website† for complete fitting results
and instructions for raw data access.

We observe that most isotropic materials under natu-
ral illumination can be represented reasonably well using
physically-based reflectance models. One of our observa-
tions is that constructions based on the mirror-angle poorly
model real reflectance. In particular, we emphasize that the
basis functions of the Lafortune et al. [LFTG97] model are
not a good match to the shape of the primary reflection lobe
of many materials (Section 4.5).

Our study indicates that some anisotropic materials can
exhibit a complexity that exceeds the expressive power
of current parametric BRDF models. We show that the
microfacet-based BRDF generator proposed by Ashikhmin
et al. [APS00] provides many more degrees of freedom and
is able to reproduce these measurements qualitatively. We
describe an iterative method to estimate the microfacet dis-
tribution directly from the measured BRDF (Section 5).

2. Data set and acquisition

2.1. Isotropic BRDFs

We use a data set of 100 BRDFs measured with high pre-
cision acquired by Matusik et al. [MPBM03]. The data set
includes metals, plastics, painted surfaces, and fabrics. We
acknowledge that our data set does not cover the full range

† http://groups.csail.mit.edu/graphics/brdf/

of materials, and effects such as retroreflection might be
underrepresented. In fact, our BRDFs have no valid sam-
ples within 3 degrees from the retroreflection direction since
the light source occludes the detector. The BRDFs were ac-
quired by capturing images of a sphere sample lit by a point
source from a dense set of directions, similar to Marschner
et al. [MWL∗99]. This image-based method allows for high
angular resolution measurement since many radiance sam-
ples can be recorded in one single image. However, this mea-
surement setup is limited to isotropic BRDFs and requires
spherical samples.

2.2. Anisotropic BRDF acquisition setup

In this work, we extend the image-based BRDF acquisi-
tion setup to handle anisotropic materials (Figure 1), simi-
lar to Lu et al. [LKK00]. Spherical samples provide a two-
dimensional set of normals in each image, but it is diffi-
cult to manufacture spherical samples for some materials.
Marschner et al. [MWL∗99] also use a cylindrical target
shape for some measurements but only acquire BRDFs in the
incidence plane. Using a cylindrical target any planar sam-
ple that is flexible can be wrapped on the surface without
distortion. In our setup we compensate for the lost degree
of freedom in the normal variations by mounting the cylin-
der on a precision motor and performing measurements at
different tilt angles. In order to account for anisotropy the
rectangular strips on the cylinder are obtained from a pla-
nar sample of the material at different orientations. Together
with the degree of freedom for the light position, we are able
to acquire the full 4D BRDF using a large set of two dimen-
sional images. Figure 2 shows an example input image of a
acquired velvet sample.

Cylinder (1D normal variation)
with stripes of the material 
at different orientations (1D)

Light source
Light source path (1D)

Rotation of 
cylinder (1D)

Precision 
motor

Camera
Precision 

motor

Figure 1: Acquisition setup for anisotropic materials. The
cylinder tilt, surface normal variation, light position and
strip orientation each contributes to one degree of freedom
for acquiring the 4D BRDF.

The sampling density of the light position and cylinder
positions can be adjusted easily as they are controlled by

c© The Eurographics Association 2005.
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Figure 2: System Prototype. Our system consists of an array of small, low-cost, low-power ultrasonic sources and detectors (microphones)
placed on the body (left). The ultrasonic sources (top-middle) sequentially emit ultrasonic pulses, which are received by the microphones
(bottom-middle) and processed to yield distance measurements for all source-microphone pairs. To increase precision and the sampling rate,
as well as to alleviate visibility problems, each sensor board is also equipped with a 3-axis gyroscope and a 3-axis accelerometer that measure
rotation rates and linear accelerations respectively (bottom-middle). The data collection is managed by a small driver box (right) using a
laptop hard disk for storage; both the driver box and the laptop are carried by the user in a backpack.

Therefore, our signal sources employ off-the-shelf piezoelectric
transducers (Figure 2 top-center) to emit pulses at ultrasonic fre-
quencies (40 kHz). They are mounted onto small plastic plates,
attached to the garment, and wired to the pulse-generating driver
box. The pulses are detected by conventional audio microphones
(Figure 2, bottom-center). Although they do not exhibit optimal re-
sponse in the 40 kHz range, they are able to clearly detect our ultra-
sonic pulses while offering several advantages over ultrasonic de-
tectors: they are small in size (2.5mm3); they have a wide-angle re-
sponse — there is no need for accurate alignment with the sources;
and they have a wide bandwidth — we do not need to tune them
to the exact frequency of the ultrasonic source. We arranged the
ultrasonic sources such that they see most of the microphones most
of the time: seven sources around the chest and belly pointing for-
ward, with the eighth source on the brim of a hat pointing down
(Figure 2, left).

In addition to the microphone, each sensor board (Figure 2, bottom-
center) is equipped with a 3-axis rotation rate sensing unit (the
gyroscope), and a 3-axis linear acceleration sensing unit (the ac-
celerometer). Their measurements enhance the precision and frame
rate of the ultrasonic components. Furthermore, they alleviate the
line-of-sight problems associated with acoustic signals. An on-
board micro-controller collects the inertial data, combines it with
the acoustic signal, and sends it to the driver box.

The driver box has three main tasks: to generate pulses that drive
each ultrasonic source, sample the data from each of the sensor
boards, and provide power to all inertial and ultrasonic components.
As a result, all of our data is perfectly synchronized (we know ex-
actly when the pulses are emitted with respect to each sensor sig-
nal). The sampling rate of the A/D converters in the driver box is
about 150kHz, well above the Nyquist rate of the 40kHz ultrasonic
pulses and the 13kbps inertial data (see below). In addition, the box
houses a USB hub through which the sampled signals from each
sensor board are transferred to a hard disk.

3.2 Ultrasonic Operation

Our ultrasonic subsystem operates similarly to a conventional
acoustic ranging system, where there is a single source and a sin-
gle detector. At regular intervals, the source emits a short burst of
ultrasonic energy (a “pulse”), which is subsequently sensed by the
detector. For example, our pulses are ten cycles wide at 40 kHz.
The observed time delay (“time of flight”) between the emission of
the pulse and its detection is proportional to the distance between
the two.

As the signal propagates through the air and bounces off objects in
the environment, the detector will record several pulses at differ-
ent times. The earliest detected pulse is the one that corresponds
to the direct line-of-sight (LOS) and should be used to determine
distance. The subsequent reflected pulses generally will be pro-
gressively weaker as they have to travel further through the air.

In our system, we also need to distinguish between pulses emitted
by different sources. To accomplish this, the sources emit pulses
at different times in a round-robin fashion (similarly to [Randell
and Muller 2001]). The time separation between pulses from dif-
ferent sources must be long enough to ensure that reflected pulses
from one source are not mistaken for the LOS pulse from the next
source in the sequence. We have selected a conservative time inter-
val of about 8 ms between the subsequent pulses. At the average
speed of sound, this corresponds to a distance of about 2.75m the
pulse will travel before another pulse is emitted by another source.
We have found this to be sufficient to ensure that the LOS pulse
is considerably stronger than any reflected pulse from a previous
source. Since our system includes eight sources, each individual
source emits pulses at 64 ms intervals.

The microphone on each of our sensor boards senses the ultrasonic
pulses from all the visible ultrasonic sources. As the top row of
Figure 3 visualizes, the corresponding analog signal is amplified
and filtered in order to enhance its quality in the 40kHz range. The
resulting analog signal, together with the digital inertial signal, is
sent to the driver box and and stored on the laptop’s hard disk.
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Analysis-resynthesis for editing
• Recipe: 

- Analyze input/ decompose
- Edit layers/channels/components

recombine / rerender

• Images 
- HDR
- relighting

• 3D data

• Motion

• => low to mid-level analysis is important
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Figure 9: (a) Classical clone brushing. The user first clicks on i0 to specify the source region and then paint brushes starting at b0, which
assigns the translation. b is then a simple copy of i. (b) Perspective-corrected clone brushing. The column geometry has been changed to
a cylinder, and the carpet has been removed and clone brushed onto the ceiling. (c) Flood-fill parameterization. Fully active pixels are in
red. The active front is in yellow. The green pixel is set active, and its initial (u′,v′) parameters are computed using the gradient of its active
neighbors.

The average of the values computed from the active neighbors is
used. This formula results in an optimal initial value, provided the
geometry is planar.

Freezing and clone brushing

The parameterization proceeds as the user interactively clone
brushes. It must be faster than the speed of the brush to ensure
smooth interaction. In practice, we have found that subsampling
the layer was necessary in order to obtain real-time feedback. We
compute (u,v) values every 4×4 pixels and interpolate bilinearly.
This process does not take into account the local bumps in the ge-
ometry, but fits the global shape.
As soon as a pixel has been clone brushed, its (u,v) coordinates

must be frozen to avoid artifacts that would occur if the same pixel
were re-used with different coordinate values due to subsequent op-
timization iterations.
Clone brushing a destination pixel with coordinate (u,v) involves

inverting the mapping of the source image. Note that in the general
case, no pixel will have the exact (u,v,) coordinates. We thus use
the four pixels with the nearest coordinates and perform bilinear in-
terpolation. To find these pixels, we use a marching method. Since
a brush corresponds to a set of contiguous pixels, we only need to
compute a seed value and march from it along the gradient to find
the inverse mapping of subsequent pixels.
Our optimization is clearly not as accurate as the method of Levy

and Mallet [LM98, Mal89]. However, it provides an exact solu-
tion in the case of planar geometry and has worked well in practice
for curved geometry. This is because our case is simpler than the
general mesh-parameterization problem. Our data is a height field
transformed by a perspective matrix, which greatly decreases po-
tential distortions. Moreover, our layers are segmented by the user
into different spatial objects that prevent strong discontinuities.

5 Texture-illuminance decoupling filter
We now present a filter that factors the image into a texture compo-
nent and an illumination component. This is useful both for relight-
ing and clone brushing, since the decoupled texture channel has a
uniform level of illumination.

Most previous relighting work relies on a light transport simu-
lation to remove the effect of existing lighting [FGR93, DRB97,
Deb98, YDMH99, LFD+99, LDR00]. Loscos et al. use texture
synthesis to remove artifacts along shadow boundaries, but still re-
quire an initial physical simulation [LDR00]. In contrast, our ap-
proach is not physically based. It is an image-processing filter that
removes lighting effects from uniformly textured objects.
A related approach was introduced by Nayar and Bolle [NB93].

Our approach differs from theirs in that they deal with non-textured
regions and focus on the segmentation and computation of re-
flectance ratios, while we deal with texture extraction.

5.1 Large- and small-scale feature separation
We make the following simple assumption: Large-scale luminance
variations are due to the lighting, while small-scale details are due
to the texture. In practice, this means that large stains will be treated
as illuminance variations (which is actually desirable in most prac-
tical cases), while shadows of small objects will not be handled
correctly. Small detailed shadows are the main limitation of our
technique.
We have developed a non-linear filter that factors an image into

a texture channel and an illuminance channel respecting the above
assumption. We do not claim that these are the true texture and illu-
minance, but we will use these terms for simplicity. This problem is
related to image denoising, but the “noise” in this case is the texture
information that we want to retrieve.
To begin, the user specifies a feature size of the texture by drag-

ging a line segment over a pattern. The basic idea is to blur the
image with a low-pass Gaussian filter G , specified by the feature
size (in practice we use σspatial = f eature size). If I0 is the input
image, and p and p′ are pixel locations, we have:

I1(p) =
Σp′G(p, p′,σspatial)I0(p′)

Σp′G(p, p′,σspatial)
. (5)

Only large-scale illuminance variations remain. We moreover as-
sume that the average color comes from the texture component, so
we divide the illuminance obtained by the normalized average color
value. We then divide the initial image by this blurred version to
compute a uniform texture component (Fig. 10(b) and (c)).
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Data-Driven Elastic Models for Cloth: Modeling and Measurement

Huamin Wang James F. O’Brien Ravi Ramamoorthi

University of California, Berkeley

(a) Gray Interlock (b) Pink Ribbon Brown (c) Navy Sparkle Sweat (d) 11oz Black Denim (e) White Dots on Black

Figure 1: When worn by the same mannequin model, shirts made of different cloth materials exhibit distinctive patterns of wrinkles and
folds in our simulation. For example, the Gray Interlock shirt has many small wrinkles since it is compliant in stretching and bending, while
the shirt made of the stiffer Pink Ribbon Brown material tends to form a few larger wrinkles. Images copyright Huamin Wang, James F. O’Brien, and Ravi Ramamoorthi.

Abstract

Cloth often has complicated nonlinear, anisotropic elastic behav-
ior due to its woven pattern and fiber properties. However, most
current cloth simulation techniques simply use linear and isotropic
elastic models with manually selected stiffness parameters. Such
simple simulations do not allow differentiating the behavior of dis-
tinct cloth materials such as silk or denim, and they cannot model
most materials with fidelity to their real-world counterparts. In this
paper, we present a data-driven technique to more realistically an-
imate cloth. We propose a piecewise linear elastic model that is a
good approximation to nonlinear, anisotropic stretching and bend-
ing behaviors of various materials. We develop new measurement
techniques for studying the elastic deformations for both stretch-
ing and bending in real cloth samples. Our setup is easy and inex-
pensive to construct, and the parameters of our model can be fit to
observed data with a well-posed optimization procedure. We have
measured a database of ten different cloth materials, each of which
exhibits distinctive elastic behaviors. These measurements can be
used in most cloth simulation systems to create natural and realistic
clothing wrinkles and shapes, for a range of different materials.

Keywords: Nonlinear elasticity, anisotropy, data-driven model,
cloth simulation, parameter estimation.
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1 Introduction

Most real-world cloth materials exhibit nonlinear and anisotropic
behavior due to their woven nature and fibrous composition. These
properties distinguish different cloth materials by creating distinc-
tive appearances when they drape, fold or wrinkle. For example, as
shown in Figure 1, shirts composed of different materials will ap-
pear markedly different from each other even if they have the same
cut. Unfortunately, most cloth simulation techniques in graphics
ignore these properties for simplicity, and formulate cloth stiffness
with linear isotropic models whose parameters are often manually
selected. While using such a model simplifies the problem and gen-
erates physically plausible results, it is difficult to distinguish dif-
ferent cloth materials and many interesting wrinkling and folding
effects cannot be accurately generated. A natural solution to this
problem is to construct elastic models from real-world cloth data.
Unfortunately, little research has been done in this direction even
though data-driven approaches have been widely adopted in other
areas of computer graphics.

There are two main approaches to capture real-world elastic be-
haviors. In materials science and textile engineering, it is common
to design a device that isolates each material parameter and mea-
sures it directly. Since a large number of parameters are needed to
describe the behavior of real cloth, designing such a device is com-
plicated and typically results in large and expensive machines. A
further complication arises because cross-terms may cause one pa-
rameter to depend on phenomena controlled by another. Some prior
work in graphics has instead tried to estimate cloth material param-
eters from unconstrained motion in images or videos. While the un-
controlled nature of these experiments is appealing, there is a large
parameter space, which is difficult to optimize for while avoiding
local minima. Robustly tracking features from unconstrained cloth
motion is another challenging problem. Feature tracking algorithms
often suffer from noise and occlusion, which further affects the op-
timization result.

Our measurement methodology seeks to find a good balance be-
tween these two approaches. We build simple devices that deform
samples in a controlled way so that their shapes can be easily mea-
sured. However, we do not require the cloth sample to be uniformly
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Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow
Mathieu Desbrun Mark Meyer Peter Schröder Alan H. Barr

Caltech∗

Abstract
In this paper, we develop methods to rapidly remove rough features
from irregularly triangulated data intended to portray a smooth sur-
face. The main task is to remove undesirable noise and uneven
edges while retaining desirable geometric features. The problem
arises mainly when creating high-fidelity computer graphics objects
using imperfectly-measured data from the real world.
Our approach contains three novel features: an implicit integra-

tion method to achieve efficiency, stability, and large time-steps; a
scale-dependent Laplacian operator to improve the diffusion pro-
cess; and finally, a robust curvature flow operator that achieves a
smoothing of the shape itself, distinct from any parameterization.
Additional features of the algorithm include automatic exact vol-
ume preservation, and hard and soft constraints on the positions of
the points in the mesh.
We compare our method to previous operators and related algo-

rithms, and prove that our curvature and Laplacian operators have
several mathematically-desirable qualities that improve the appear-
ance of the resulting surface. In consequence, the user can easily
select the appropriate operator according to the desired type of fair-
ing. Finally, we provide a series of examples to graphically and
numerically demonstrate the quality of our results.

1 Introduction
While the mainstream approach in mesh fairing has been to enhance
the smoothness of triangulated surfaces by minimizing computa-
tionally expensive functionals, Taubin [Tau95] proposed in 1995 a
signal processing approach to the problem of fairing arbitrary topol-
ogy surface triangulations. This method is linear in the number of
vertices in both time and memory space; large arbitrary connectiv-
ity meshes can be handled quite easily and transformed into visually
appealing models. Such meshes appear more and more frequently
due to the success of 3D range sensing approaches for creating com-
plex geometry [CL96].
Taubin based his approach on defining a suitable generalization

of frequency to the case of arbitrary connectivity meshes. Using
a discrete approximation to the Laplacian, its eigenvectors become
the “frequencies” of a given mesh. Repeated application of the re-
sulting linear operator to the mesh was then employed to tailor the
frequency content of a given mesh.
Closely related is the approach of Kobbelt [Kob97], who consid-

ered similar discrete approximations of the Laplacian in the con-
struction of fair interpolatory subdivision schemes. In later work
this was extended to the arbitrary connectivity setting for purposes
of multiresolution editing [KCVS98].
The success of these techniques is largely based on their sim-

ple implementation and the increasing need for algorithms which
can process the ever larger meshes produced by range sensing tech-

∗{mathieu|mmeyer|ps|barr}@cs.caltech.edu.

(a) (b)
Figure 1: (a): Original 3D photography mesh (41,000 vertices).
(b): Smoothed version with the scale-dependent operator in two
integration step with !dt = 5 · 10−5, the iterative linear solver
(PBCG) converges in 10 iterations. All the images in this paper
are flat-shaded to enhance the faceting effect.
niques. However, a number of issues in their application remain
open problems in need of a more thorough examination.
The simplicity of the underlying algorithms is based on very ba-

sic, uniform approximations of the Laplacian. For irregular con-
nectivity meshes this leads to a variety of artifacts such as geomet-
ric distortion during smoothing, numerical instability, problems of
slow convergence for large meshes, and insufficient control over
global behavior. The latter includes shrinkage problems and more
precise shaping of the frequency response of the algorithms.
In this paper we consider more carefully the question of numeri-

cal stability by observing that Laplacian smoothing can be thought
of as time integration of the heat equation on an irregular mesh.
This suggests the use of implicit integration schemes which lead
to unconditionally stable algorithms allowing for very large time
steps. At the same time the necessary linear system solvers run
faster than explicit approaches for large meshes. We also consider
the question of mesh parameterization more carefully and propose
the use of discretizations of the Laplacian which take the underly-
ing parameterization into account. The resulting algorithms avoid
many of the distortion artifacts resulting from the application of
previous methods. We demonstrate that this can be done at only a
modest increase in computing time and results in smoothing algo-
rithms with considerably higher geometric fidelity. Finally a more
careful analysis of the underlying discrete differential geometry is
used to derive a curvature flow approach which satisfies crucial ge-
ometric properties. We detail how these different operators act on
meshes, and how users can then decide which one is appropriate in
their case. If the user wants to, at the same time, smooth the shape
of an object and equalize its triangulation, a scale-dependent diffu-
sion must be used. On the other hand, if only the shape must be
filtered without affecting the sampling rate, then curvature flow has
all the desired properties. This allows us to propose a novel class of
efficient smoothing algorithms for arbitrary connectivity meshes.

2 Implicit fairing
In this section, we introduce implicit fairing, an implicit integra-
tion of the diffusion equation for the smoothing of meshes. We will
demonstrate several advantages of this approach over the usual ex-
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Figure 1: The Bust model rendered with several different feature lines. We introduce apparent ridges on the right. They correspond to the
maxima of the normal variation with respect to the viewing plane. Note in particular the left side of the face (to the right) in the suggestive
contour drawing and the nose drawn with ridges and valleys.

Abstract

Three-dimensional shape can be drawn using a variety of feature

lines, but none of the current definitions alone seem to capture all

visually-relevant lines. We introduce a new definition of feature

lines based on two perceptual observations. First, human percep-

tion is sensitive to the variation of shading, and since shape percep-

tion is little affected by lighting and reflectance modification, we

should focus on normal variation. Second, view-dependent lines

better convey smooth surfaces. From this we define view-dependent
curvature as the variation of the surface normal with respect to a

viewing screen plane, and apparent ridges as the loci of points that

maximize a view-dependent curvature. We present a formal defi-

nition of apparent ridges and an algorithm to render line drawings

of 3D meshes. We show that our apparent ridges encompass or

enhance aspects of several other feature lines.

Keywords: Line Drawing, NPR, ridges, valleys, apparent ridges

1 Introduction

Suppose we wish to depict the shape of a rounded cube, which is

viewed from a certain direction. One approach is photorealistic

rendering. We choose a BRDF and a lighting distribution, and cal-

culate the luminance value that each pixel would have if the real

physical object were viewed under those conditions. Figures 2(a)

and (b) show two examples, with different choices of BRDF and

lighting. Depending on the choices, which are rather arbitrary, the

shading and highlights will change. With photorealism there is no

way to avoid these arbitrary choices.

An artist will often use a line drawing to convey an object’s shape

in a manner that is independent of BRDF and lighting. Figure 2(c)

shows an example. This image is not photorealistic, since there are

no conditions under which the cube’s image would actually have

these pixel values. Nonetheless the line drawing captures, in a com-

pact and abstract manner, the essential visual properties that are

shared by the photorealistic renderings. This image was generated

by the method we will describe.

(a) (b) (c)
Figure 2: Depiction of a cube with traditional computer graphics
shading and with line drawing (using our apparent ridges).
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Fig. 2. Flow of the ShapeGoogle algorithm.

The rest of this paper is organized as follows. In Section 2,

we start with a brief overview of feature-based approaches

in computer vision, focusing on methods employed in Video

Google. In Section 3, we formulate a similar approach for

shapes. We show how to detect and describe local geomet-

ric features. In Section 4, we describe the construction of bags

of geometric words. In Section 5, we explore metric learning

techniques for representing shapes as short binary codes using

Hamming embedding. Section 6 shows experimental results,

and Section 7 concludes the paper.

2. BACKGROUND: FEATURE-BASED
METHODS IN COMPUTER VISION

The construction of a feature-based representation of an image

typically consists of two stages, feature detection and feature
description, often combined into a single algorithm. The main

goal of a feature detector is to find stable points or regions

in an image that carry significant information on the one hand

and can be repeatedly found in transformed versions of the im-

age on the other. Since there is no clear definition of what is

a feature, different approaches can be employed. For example,

in the SIFT method, feature points are located by looking for

local maxima of the discrete image Laplacian (approximated

as a difference of Gaussians) at different scales. SIFT uses lin-

ear scale-space in order to search for feature points that ap-

pear at multiple resolutions of the image, which also makes

the method scale-invariant [Lowe 2004]. Maximum stable ex-

tremal region (MSER) algorithm finds level sets in the image

which exhibit the smallest variation of area when traversing

the level-set graph [Matas et al. 2004; Kimmel et al. 2010].

Finally, it is possible to select all the points in the image or a

regular subsampling thereof as the set of features (in the latter

case, the detector is usually referred to as dense [Tola et al.

2008]).

The next stage is feature description. A feature descriptor

uses a representation of local image information in the neigh-

borhood of each feature point. For example, SIFT assigns a

128-dimensional descriptor vector constructed as local his-

tograms of image gradient orientations around the point. The

descriptor itself is oriented by the dominant gradient direction,

which makes it rotation-invariant [Lowe 2004]. A similar ap-

proach, Speeded Up Robust Feature (SURF) transform [Bay

et al. 2006], uses a 64-dimensional descriptor, computed effi-

Fig. 3. Representation of text (left) and images (right) using

the bags of features paradigm.

ciently using integral images. At this stage, the image can be

compactly represented by specifying the spatial coordinates of

the detected feature points together with the corresponding de-

scriptors, which can be presented as vectors. This information

allows, for example, finding correspondence between images

by matching their descriptors [Lowe 2004].

In order to reduce the representation size, a vocabulary is

constructed by performing vector quantization in the descrip-

tor space. Descriptors can be replaced by indices in the vo-

cabulary representing visual “words”. Typical vocabulary size

can vary from a few thousand [Sivic and Zisserman 2003] up

to one million words [Chum et al. 2007]. Aggregating all the

indices into a histogram by counting the frequency of appear-

ance of each visual word, the bag of features (sometimes also

called bag of visual terms or bag of visterms) is constructed

(Figure 3).

After the feature detection and description stages, two im-

ages can be compared this way by comparing their bags of

features. This way, the image similarity problem is reduced

to the problem of comparing vectors of feature frequencies.

Typically, weighted correlation or weighted Euclidean dis-

tance is used to measure similarity of bags of features. The

weights can be chosen in such a way that features frequent

in the query shape (high term frequency) and infrequent in

the entire database (low document frequency) are assigned a
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Fig. 14 Cropped images showing every 5th frame of the MAP trajectory through an acceleration and sharp turn, starting at frame
200. The skeleton of the kinematic model is overlayed in green. The middle row corresponds to the shaded portion of Figure 13.

the average 3D Euclidean distance between predicted
and ground truth marker positions [43]. Following Hu-
manEva, relative error is computed by translating the
pelvis of the resulting pose to the correct 3D position
before measuring the 3D Euclidean distance. This re-
moves gross errors in depth.

The type of error reported is significant, as different
measures make meaningful comparisons difficult. Both
error types are reported here to allow a more direct
comparison with other methods. For example, relative
error is often used by discriminative methods which do
not recover absolute 3D depth.

The difference between the relative and absolute er-
rors is also indicative of the nature of errors made by
the tracker. Table 2 shows that, unsurprisingly, absolute
errors are lower when using two cameras. In contrast,
the plots in Figure 16 suggest a negligable gain in rel-
ative error when using two cameras. Taken together,
these results suggest that depth uncertainty remains
the primary source of monocular tracking error. With
these depth errors removed, the errors in binocular and
monocular tracking are comparable.

This is further illustrated in Figures 17(a) and 17(b)
which show frames from the monocular trackers. The
pose of the subject fits well in 2D and is likely to have
a high likelihood at that frame. However, when viewed
from other cameras, the errors in depth are evident.

Table 2 also reveals that relative error can be higher
than absolute error, particularly for binocular tracking.
This peculiar result can be explained with two observa-
tions. First, while relative error removes error from the
pelvic marker, it may introduce error in other markers.
Further, direct correspondences between positions on
any articulated model and the virtual markers of the
motion capture may not be possible as the motion cap-
ture models have significantly more degrees of freedom.
These correspondence errors can then be magnified by
the translation of the pelvic marker, particularly if there
are errors in the pelvic marker itself.

Interestingly, the monocular tracking errors shown
in Figure 15 (the green and blue curves) tend to have
significant peaks which fall off slowly with time. While
evident in all experiments, this can be most clearly seen
when tracking subject 4 from camera 2. These peaks are
the combined result of depth uncertainty and a physi-
cally plausible motion model. According to the motion
model, the only way the subject can move in depth
is by walking there. If a foot is misplaced it cannot
gradually slide to the correct position, rather the sub-
ject must take a step. This results in errors persisting
over at least one stride. However, this is also the same
behaviour which prevents footskate and ensures more
realistic motions.

Real-Time Human Pose Recognition in Parts from Single Depth Images:

Supplementary Material

Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio

Richard Moore Alex Kipman Andrew Blake

Microsoft Research Cambridge & Xbox Incubation

Figure 1. Differences in local appearance within one body part.

This supplementary material accompanies the paper

“Real-time Human Pose Recognition in Parts from Single

Depth Images” at CVPR 2011. It provides more detail on

the randomized synthetic rendering pipeline and further ex-

perimental results. Please also see the supplementary video.

1. Rendering pipeline

Even within a single body part there is considerable vari-

ation in appearance due to even just pose variation. Fig. 1

gives examples for the (screen-)right hand.

To account for this variation in the training data, we built

a comprehensive rendering pipeline of images of people

from which we randomly sample labeled training images.

The variations described below are the best approximation

we could reasonably achieve to the variations one expects

in the real world, including pose, clothing, camera noise,

etc. We cannot hope to sample all possible combinations of

variations. However, if samples contain independent vari-

ations (and we thus exclude artificial correlations such as

thin people always wear a hat), we can expect the classifier

to learn a large degree of invariance.

We now run through the variations.

Base Character We use 3D models of 15 varied base char-

acters, both male and female, from child to adult, short

to tall, and thin to fat. Some examples are shown in

Figure 2. Renders of several base character models. Top row:

without skinning. Bottom row: with random skinning of hair and

clothing.

Fig. 2 (top row). A given render will pick uniformly at

random from the characters.

Pose Having discarded redundant poses from the mocap

data, we retarget the remaining poses to each base

character, and choose uniformly at random. The pose

is also mirrored left-right with probability
1
2 to prevent

a left or right bias.

Rotation & Translation The character is rotated about the

vertical axis and translated in the scene, uniformly at

random.

Hair & Clothing We add mesh models of several hair

styles and items of clothing chosen at random; some

examples are shown in Fig. 2 (bottom row).

Weight & Height Variation The base characters already

have a wide variety of weights and heights. To add fur-

ther variety we add an extra variation in height ±10%
and weight ±10%. For rendering efficiency, this vari-

ation does not affect the pose retargetting.
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Recap: connections
• Acquisition

- Geometry, material appearance, motion

• Active techniques

• Content creation

• Analysis-resynthesis for editing

• Priors for synthesis
- images, motion

• Applying vision to other signals
- motion, geometry

• Using graphics for vision
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High-Quality Single-Shot Capture of Facial Geometry
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Figure 1: Left: Face model captured using a seven camera studio setup; Center: capture systems; Right: Face model captured using
consumer binocular-stereo camera. Facial geometry in all figures is best viewed in the electronic version.

Abstract

This paper describes a passive stereo system for capturing the 3D
geometry of a face in a single-shot under standard light sources.
The system is low-cost and easy to deploy. Results are sub-
millimeter accurate and commensurate with those from state-of-
the-art systems based on active lighting, and the models meet the
quality requirements of a demanding domain like the movie indus-
try. Recovered models are shown for captures from both high-end
cameras in a studio setting and from a consumer binocular-stereo
camera, demonstrating scalability across a spectrum of camera de-
ployments, and showing the potential for 3D face modeling to move
beyond the professional arena and into the emerging consumer mar-
ket in stereoscopic photography.

Our primary technical contribution is a modification of standard
stereo refinement methods to capture pore-scale geometry, using a
qualitative approach that produces visually realistic results. The
second technical contribution is a calibration method suited to
face capture systems. The systemic contribution includes multi-
ple demonstrations of system robustness and quality. These include
capture in a studio setup, capture off a consumer binocular-stereo
camera, scanning of faces of varying gender and ethnicity and age,
capture of highly-transient facial expression, and scanning a physi-
cal mask to provide ground-truth validation.

CR Categories: I.3.2 [Computer Graphics]: Graphics
Systems—Stand-alone systems; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing,
and texture I.4.1 [Image Processing and Computer Vision]: Digiti-
zation and Image Capture

1 Introduction

1.1 Motivation

Capturing a high-quality model of a human face is of interest in
multiple domains - for the movie and games industries, in medicine,
to provide more natural user-interfaces, and for archival purposes.
A key application is the synthesis of a desired sequence of speech
and facial expression under arbitrary lighting. This problem has
motivated striking results in rendering [Donner and Jensen 2006;
Donner et al. 2008], in performance-driven facial animation [Hyne-
man et al. 2005; Alexander et al. 2009], and in physics-based ani-
mation [Sifakis et al. 2005]. However, reproducing realistic human
faces is still a challenge for computer graphics because humans are
sensitive to facial appearance and quickly sense any anomalies in
3D geometry or dynamics.

This paper is concerned with the capture of 3D geometry of the
face. The current method of choice for this task is an active system
based on laser, structured light or gradient-based illumination. Ac-
tive light brings robustness because it effectively augments an ob-
ject surface with known information. On the other hand, it requires
special-purpose hardware and often employs time-multiplexing.
Polarization-based methods further constrain deployment to a sin-
gle camera at a fixed viewpoint. Contrast this with passive stereo
vision, which has the potential to be an extremely versatile modal-
ity for constructing 3D models - it captures in a single shot, readily
adapts to different arrangements and numbers of cameras with no
constraint on camera position, seamlessly integrates 3D data cap-
tured over multiple distances and at different scales in a scene, cap-
tures texture that is intrinsically registered with the recovered 3D
data, and uses commodity hardware. However, in the past, the re-
liability and accuracy of passive stereo have fallen short of what is
available from active systems, and it has not been used for capturing
high-quality face models.

This paper presents a passive stereo vision system that computes
the 3D geometry of the face with reliability and accuracy on a par
with a laser scanner or a structured light system. We introduce an
image-based embossing technique to capture mesoscopic facial ge-
ometry1, so that the quality of synthesized faces from our system

1We use the term mesoscopic for geometry at the scale of pores and fine
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Fig. 2. Flow of the ShapeGoogle algorithm.

The rest of this paper is organized as follows. In Section 2,

we start with a brief overview of feature-based approaches

in computer vision, focusing on methods employed in Video

Google. In Section 3, we formulate a similar approach for

shapes. We show how to detect and describe local geomet-

ric features. In Section 4, we describe the construction of bags

of geometric words. In Section 5, we explore metric learning

techniques for representing shapes as short binary codes using

Hamming embedding. Section 6 shows experimental results,

and Section 7 concludes the paper.

2. BACKGROUND: FEATURE-BASED
METHODS IN COMPUTER VISION

The construction of a feature-based representation of an image

typically consists of two stages, feature detection and feature
description, often combined into a single algorithm. The main

goal of a feature detector is to find stable points or regions

in an image that carry significant information on the one hand

and can be repeatedly found in transformed versions of the im-

age on the other. Since there is no clear definition of what is

a feature, different approaches can be employed. For example,

in the SIFT method, feature points are located by looking for

local maxima of the discrete image Laplacian (approximated

as a difference of Gaussians) at different scales. SIFT uses lin-

ear scale-space in order to search for feature points that ap-

pear at multiple resolutions of the image, which also makes

the method scale-invariant [Lowe 2004]. Maximum stable ex-

tremal region (MSER) algorithm finds level sets in the image

which exhibit the smallest variation of area when traversing

the level-set graph [Matas et al. 2004; Kimmel et al. 2010].

Finally, it is possible to select all the points in the image or a

regular subsampling thereof as the set of features (in the latter

case, the detector is usually referred to as dense [Tola et al.

2008]).

The next stage is feature description. A feature descriptor

uses a representation of local image information in the neigh-

borhood of each feature point. For example, SIFT assigns a

128-dimensional descriptor vector constructed as local his-

tograms of image gradient orientations around the point. The

descriptor itself is oriented by the dominant gradient direction,

which makes it rotation-invariant [Lowe 2004]. A similar ap-

proach, Speeded Up Robust Feature (SURF) transform [Bay

et al. 2006], uses a 64-dimensional descriptor, computed effi-

Fig. 3. Representation of text (left) and images (right) using

the bags of features paradigm.

ciently using integral images. At this stage, the image can be

compactly represented by specifying the spatial coordinates of

the detected feature points together with the corresponding de-

scriptors, which can be presented as vectors. This information

allows, for example, finding correspondence between images

by matching their descriptors [Lowe 2004].

In order to reduce the representation size, a vocabulary is

constructed by performing vector quantization in the descrip-

tor space. Descriptors can be replaced by indices in the vo-

cabulary representing visual “words”. Typical vocabulary size

can vary from a few thousand [Sivic and Zisserman 2003] up

to one million words [Chum et al. 2007]. Aggregating all the

indices into a histogram by counting the frequency of appear-

ance of each visual word, the bag of features (sometimes also

called bag of visual terms or bag of visterms) is constructed

(Figure 3).

After the feature detection and description stages, two im-

ages can be compared this way by comparing their bags of

features. This way, the image similarity problem is reduced

to the problem of comparing vectors of feature frequencies.

Typically, weighted correlation or weighted Euclidean dis-

tance is used to measure similarity of bags of features. The

weights can be chosen in such a way that features frequent

in the query shape (high term frequency) and infrequent in

the entire database (low document frequency) are assigned a
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This supplementary material accompanies the paper

“Real-time Human Pose Recognition in Parts from Single

Depth Images” at CVPR 2011. It provides more detail on

the randomized synthetic rendering pipeline and further ex-

perimental results. Please also see the supplementary video.

1. Rendering pipeline

Even within a single body part there is considerable vari-

ation in appearance due to even just pose variation. Fig. 1

gives examples for the (screen-)right hand.

To account for this variation in the training data, we built

a comprehensive rendering pipeline of images of people

from which we randomly sample labeled training images.

The variations described below are the best approximation

we could reasonably achieve to the variations one expects

in the real world, including pose, clothing, camera noise,

etc. We cannot hope to sample all possible combinations of

variations. However, if samples contain independent vari-

ations (and we thus exclude artificial correlations such as

thin people always wear a hat), we can expect the classifier

to learn a large degree of invariance.

We now run through the variations.

Base Character We use 3D models of 15 varied base char-

acters, both male and female, from child to adult, short

to tall, and thin to fat. Some examples are shown in

Figure 2. Renders of several base character models. Top row:

without skinning. Bottom row: with random skinning of hair and

clothing.

Fig. 2 (top row). A given render will pick uniformly at

random from the characters.

Pose Having discarded redundant poses from the mocap

data, we retarget the remaining poses to each base

character, and choose uniformly at random. The pose

is also mirrored left-right with probability
1
2 to prevent

a left or right bias.

Rotation & Translation The character is rotated about the

vertical axis and translated in the scene, uniformly at

random.

Hair & Clothing We add mesh models of several hair

styles and items of clothing chosen at random; some

examples are shown in Fig. 2 (bottom row).

Weight & Height Variation The base characters already

have a wide variety of weights and heights. To add fur-

ther variety we add an extra variation in height ±10%
and weight ±10%. For rendering efficiency, this vari-

ation does not affect the pose retargetting.
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