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Computational Photography
• Computation is an inherent part of image 

formation

• ...or anything where computation helps with 
imaging
- quantitively
- qualitatively
- automatically
- user-assitedly
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Figure 12: Our prototype lattice-focal lens and PSFs calibrated at
three depths. The prototype attaches to the main lens like a stan-
dard lens filter. The PSFs are a sum of box filters from the different
subsquares, where the exact box width is a function of the deviation
between the subsquare focal depth and the object depth.

depth also specifies the location of the xy light field plane. The DOF499

is defined by the range [dmin,dmax] corresponding to slopes ±S/2.500

From Eq. (2), the depth range can be expressed as do/(1± S/2),501

yielding a DOF of [35,!]cm for S = 2 and [66.2,74.3]cm for502

S = 0.1. The pixel size in the light field is " = "0/M, where503

M = f/(do− f ) = 0.13 is the magnification. We set the effective504

aperture size A to 1000" = 1000"0/M = 50.6mm, which corre-505

sponds to f/1.68.506

5.2 Implementation507

Hardware construction: To demonstrate our design we have508

built a prototype lattice-focal lens. As shown in Figure 12, our509

lattice-focal lens mounts to a main lens using the standard threaded510

interface for a lens filter. The subsquares of the lattice-focal511

lens were cut from spherical plano-convex lens elements using a512

computer-controlled saw.513

By attaching our lattice-focal lens to a high-quality main lens514

(Canon 85mm f1.2L), we reduce aberrations. Since most of the fo-515

cusing is achieved by the main lens, our new elements require low516

focal powers, and correspond to very low-curvature surfaces with517

limited aberrations (in our prototype, the subsquare focal lengths518

varied from 1m to 10m).519

In theory the lattice-focal element should be placed in the plane of520

the main lens aperture or at one of its images, e.g. the entrance or521

exit pupils. To avoid disassembling the main lens to access these522

planes, we note that a sufficiently narrow stop in front of the main523

lens redefines a new aperture plane. This lets us attach our lattice-524

focal lens at the front, where the stop required to define a new aper-525

ture still let us use 60% of the lens diameter.526

The minimal subsquare size is limited by diffraction. Since a527

normal lens starts being diffraction limited around an f/12 aper-528

ture [Goodman 1968], we can fit about 100 subsquares within an529

f/1.2 aperture. To simplify the construction, however, our pro-530

totype included only 12 subsquares. The DOF this allowed us to531

cover was small and, as discussed in Sec. 5.1, in this range the532

lattice-focal lens advantage over wavefront coding is limited. Still533

our prototype demonstrates the effectiveness of our approach.534

Given a fixed budget of m subsquares of a given width, we can in-535

vert the arguments in Sec. 4 and determine the DOF it can cover in536

the optimal way. As illustrated in Figure 8(b), for every point in the537

optimal DOF, there is exactly one subsquare achieving defocus di-538

ameter of less than 1 pixel. This constraint also determines the focal539

length for each of these subsquares. For our prototype we focused540

the main lens at 180cm and chose subsquare focal lengths covering541

a depth range of [60,180]cm. Given the limited availability of com-542

mercial plano-convex elements, our subsquares’ coverage was not543

perfectly uniform. However, for a custom-manufactured lens this544

would not be a limitation.545

Calibration: To calibrate the lattice-focal lens, we used a planar546

white noise scene and captured a stack of images at varying depths.547

Given a blurred and sharp pair of images Bd , Id at depth d, we548

solved for the kernel #d minimizing |#d ⊗ Id −Bd |. We show the549

recovered PSF at 3 depths in Figure 12. As discussed in Sec. 4, the550

PSF is a superposition of boxes of varying sizes, but the exact ar-551

rangement of boxes varies with depth. For comparison, we did the552

same calibration using a standard lens as well.553

Depth estimation: Given the calibrated per-depth PSFs, we de-
blur an image using sparse deconvolution [Levin et al. 2007]. This
algorithm computes the latent image Id as

Id = argmin
I

|#d ⊗ I−B|2+$%
i

[

&(gx,i(I))+&(gy,i(I))
]

, (28)

where gx,i,gy,i denote horizontal and vertical derivatives of the i-th554

pixel, & is a robust function, and $ is a weighting coefficient.555

Since the PSF varies over depth, rough depth estimation is required
for deblurring. If an image region is deconvolved with a PSF cor-
responding to the incorrect depth, the result will include ringing
artifacts. To estimate depth, we start by deconvolving the entire
image with the stack of all depth-varying PSFs, and obtain a stack
of candidate deconvolved images {Id}. Since deconvolution with
the wrong PSF leads to convolution error, we can locally score the
explanation provided by PSF #d around pixel i as:

Ei(d) = |Bi− B̃d,i|2+$
[

&(gx,i(Id))+&(gy,i(Id)
]

, (29)

where B̃d = #d ⊗ Id . We regularize the local depth scores using556

a Markov random field (MRF), then generate an all-focus image557

using the Photomontage algorithm of Agarwala et al. [2004].558

Results: Figure 13 shows all-focus images and depth maps cap-559

tured using our lattice-focal lens (more results are available in the560

supplementary file). Since the MRF of Agarwala et al. [2004] seeks561

invisible seams, the layer transitions usually happen at low-texture562

regions and not at the actual object contours. Despite the MRF’s563

preference for piecewise-constant depth structures we still can han-564

dle continuous depth variations, as shown in the rightmost column565

of Figure 13.566

The results in Figure 13 were obtained fully automatically. How-567

ever, depth estimation can fail, especially next to occlusion bound-568

aries, which presents a general problem for all computational569

extended-DOF systems [Dowski and Cathey 1995; Nagahara et al.570

2008; Levin et al. 2007; Veeraraghavan et al. 2007]. While a prin-571

cipled solution to this problem is beyond the scope of this paper,572

most artifacts can be eliminated with simple manual layer refine-573

ment. Relying on depth estimation in the decoding of a lattice-focal574

lens is a disadvantage compared to depth-invariant solutions, but it575

also allows coarse depth recovery. In Figure 14 we used the rough576

depth map to synthetically refocus a scene post exposure.577

In Figure 15 we compare the reconstruction using our lattice-focal578

lens with a standard lens focused at the middle of the depth range579
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Multiple-exposure & multiplexing
• Expand capabilities by 

combining multiple 
images

• Multiplex through time, 
assorted pixels, beam 
splitters, camera array 

• e.g.
- Panorama stitching
- HDR imaging
- Focus stacks
- Photomontage
- Super-resolution
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Coded Imaging

• e.g.
- motion-invariant
- coded aperture
- flutter shutter
- wavefront coding 
- compressive sensing 
- heterodyning
- warp-unwarp

Optics encodes information

Computation decodes
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Natural signal prior
• Statistics that distinguish images of the world 

from random signals

• Use to “bias” algorithms to output more likely 
results or to disambiguate ill-posed problems

• Extension of regularization

• e.g.
- Denoising
- Deconvolution
- Compressive sensing
- Light field prior

Random “Natural” image
Saturday, November 5, 2011



Edges matter but are not binary
• Sparse derivative 

image prior

• Gradient domain 
(seamless cloning,
tone mapping, 
convert2gray)

• Bilateral filter for 
decomposition

• Non-homogenous 
regularization for 
scribble propagation

OLa
D
C
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Leverage millions of images

• The ultimate 
prior?

• Reconstruct
the world

Hays & Efros 07
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The raw data is high dimensional
• Light field: 4D

(space-angle)

• Time space: 3D

• +Fourier

Space

Time

Space

Angle

Image Ng et al.
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Active imaging
• Modulate light to 

facilitate information 
gathering

• e.g. 
- Flash/no flash
- Light stages
- Dual imaging
- Structured-light 

scanning

No-flash

Flash

our 
result
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Recap: Big ideas in comp. photo.
• Multiplexing: 

quality through quantity 

• Coded imaging

• Natural signal prior

• Edges matter but should not 
be detected

• Leverage millions of images 

• Raw data is high-dimensional 
(ligh field, space-time)

• Active Imaging
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Current successes
• Panorama stitching

• High-Dynamic-RangeImaging & tone mapping
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Current successes
• Face detection (+smile +blink)

• Photo bios
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Current successes
• Poisson image editing / healing brush 

• Patch match (content-aware fill)

PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing

Connelly Barnes1 Eli Shechtman2,3 Adam Finkelstein1 Dan B Goldman2

1Princeton University 2Adobe Systems 3University of Washington

(a) original (b) hole+constraints (c) hole filled (d) constraints (e) constrained retarget (f) reshuffle

Figure 1: Structural image editing. Left to right: (a) the original image; (b) a hole is marked (magenta) and we use line constraints
(red/green/blue) to improve the continuity of the roofline; (c) the hole is filled in; (d) user-supplied line constraints for retargeting;
(e) retargeting using constraints eliminates two columns automatically; and (f) user translates the roof upward using reshuffling.

Abstract

This paper presents interactive image editing tools using a new
randomized algorithm for quickly finding approximate nearest-
neighbor matches between image patches. Previous research in
graphics and vision has leveraged such nearest-neighbor searches to
provide a variety of high-level digital image editing tools. However,
the cost of computing a field of such matches for an entire image
has eluded previous efforts to provide interactive performance. Our
algorithm offers substantial performance improvements over the
previous state of the art (20-100x), enabling its use in interactive
editing tools. The key insights driving the algorithm are that
some good patch matches can be found via random sampling, and
that natural coherence in the imagery allows us to propagate such
matches quickly to surrounding areas. We offer theoretical analysis
of the convergence properties of the algorithm, as well as empirical
and practical evidence for its high quality and performance. This
one simple algorithm forms the basis for a variety of tools – image
retargeting, completion and reshuffling – that can be used together
in the context of a high-level image editing application. Finally, we
propose additional intuitive constraints on the synthesis process that
offer the user a level of control unavailable in previous methods.

CR Categories: I.3.6 [Computing Methodologies]: Computer
Graphics—Methodology and Techniques; I.4.9 [Computing Method-
ologies]: Image Processing and Computer Vision—Applications

Keywords: Approximate nearest neighbor, patch-based synthesis,
image editing, completion, retargeting, reshuffling

1 Introduction

As digital and computational photography have matured, researchers
have developed methods for high-level editing of digital pho-
tographs and video to meet a set of desired goals. For example,
recent algorithms for image retargeting allow images to be resized
to a new aspect ratio – the computer automatically produces a good

likeness of the contents of the original image but with new dimen-
sions [Rubinstein et al. 2008; Wang et al. 2008]. Other algorithms
for image completion let a user simply erase an unwanted portion
of an image, and the computer automatically synthesizes a fill re-
gion that plausibly matches the remainder of the image [Criminisi
et al. 2003; Komodakis and Tziritas 2007]. Image reshuffling al-
gorithms make it possible to grab portions of the image and move
them around – the computer automatically synthesizes the remain-
der of the image so as to resemble the original while respecting the
moved regions [Simakov et al. 2008; Cho et al. 2008].

In each of these scenarios, user interaction is essential, for several
reasons: First, these algorithms sometimes require user intervention
to obtain the best results. Retargeting algorithms, for example,
sometimes provide user controls to specify that one or more regions
(e.g., faces) should be left relatively unaltered. Likewise, the best
completion algorithms offer tools to guide the result by providing
hints for the computer [Sun et al. 2005]. These methods provide
such controls because the user is attempting to optimize a set of
goals that are known to him and not to the computer. Second,
the user often cannot even articulate these goals a priori. The
artistic process of creating the desired image demands the use of
trial and error, as the user seeks to optimize the result with respect
to personal criteria specific to the image under consideration.

The role of interactivity in the artistic process implies two prop-
erties for the ideal image editing framework: (1) the toolset must
provide the flexibility to perform a wide variety of seamless edit-
ing operations for users to explore their ideas; and (2) the perfor-
mance of these tools must be fast enough that the user quickly sees
intermediate results in the process of trial and error. Most high-
level editing approaches meet only one of these criteria. For ex-
ample, one family of algorithms known loosely as non-parametric
patch sampling has been shown to perform a range of editing tasks
while meeting the first criterion – flexibility [Hertzmann et al. 2001;
Wexler et al. 2007; Simakov et al. 2008]. These methods are based
on small (e.g. 7x7) densely sampled patches at multiple scales, and
are able to synthesize both texture and complex image structures
that qualitatively resemble the input imagery. Because of their abil-
ity to preserve structures, we call this class of techniques structural
image editing. Unfortunately, until now these methods have failed
the second criterion – they are far too slow for interactive use on all
but the smallest images. However, in this paper we will describe an
algorithm that accelerates such methods by at least an order of mag-
nitude, making it possible to apply them in an interactive structural
image editing framework.

To understand this algorithm, we must consider the common com-
ponents of these methods: The core element of nonparamet-
ric patch sampling methods is a repeated search of all patches
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Current successes
• Video stabilization

• match move

• Tracking
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Current successes
• Photo tourism / Photosynth
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Current successes
• Calibrate & remove blur

• e.g. DXO, Adobe, Panasonic, Mamya
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Current successes
• Light field cameras
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Open Challenges
• Upper bounds on acquisition/reconstruction

• Natural image priors

• Light field, space time priors/reconstruction

• Computational illumination

• New modalities (coherent, femtosecond)

• Video mid-level representation

• Link to other fields
- Astronomy, microscopy, medical, radar, science
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