An Invitation to Discuss Computer Depiction

"Philosophical" interrogations

- What are the goals/context of NPR?
- What are the goals of computer graphics?
- Are photos photorealistic?
- After the Grail, then what?
- Does Pr=NPr?
- What is picture making?
- Interdisciplinary class The Art and Science of Depiction
- SIGGRAPH course *Perceptual and Artistic Principles* for Effective Computer Depiction (Sunday)

How is NPR different?

- Style
 - Imitation of traditional media (pencil, oil, etc.)
- Interaction
 - Less automatic, more user control

Emphasis on aesthetic, legibility Subjective assessment

What are the frustrating points?

- Not satisfying name
- What are the issues?
- Hard to explain what we do
 Hard to set goals
- Modularity
- Lack of common language

Outline

- NOT photorealism vs. non-photorealism
- General issue of depiction
- Control & interaction are overlooked
- Look for a language
 - So far, we have written complex sentences
 - We need to discuss the basic vocabulary and grammar
- Plan
 - Picture making is more complex than we think
 - Framework

3D and 2D attributes

- Show a die to children (~6-7)
- They usually draw a rectangle
- The rectangle could stand for one face

3D and 2D attributes

- Show coloured or numbered die to children (6-7)
- The still draw a rectangle
- But different colours or many points
- The rectangle stands for the whole die
- The notion of 3D object with corners is translated as a 2D object with corners

Mixed 2D-/3D-driven: group photo

- 3D position are determined by 2D goals
- See also the technique of trenching

Summary

- One-way pipeline is powerful yet limited
- Requires user feedback loop
- Depiction is an inverse of inverse
- Can go from 3D to 2D via interpretation and/or from 2D to 3D

Realistic image simulation

The computer solves the optimization

- Route maps [Agrawala 01]
- Lighting optimization [Schacked 01]
- Composition [Gooch 01]
- Paint with relaxation [Haeberli 91, Hertzman 01]
- Define the energy function
- Exploration of a highly-non-linear parameter space
- Or come up with a set of direct rules [He 96]

When the human solves

- Fast feedback
- Relevant degrees of freedom
- Uniform and meaningful parameter space
- Controls in image space
- High-level controls related to goals & constraints
- Pictorial techniques to alter the picture

General case: computer+human

- The computer solves some issues, the human has control and adds the "magic"
- Decouple relevant dimensions of depiction
- Exciting challenge: Convergence of games and movies

Framework: Representation systems

- Adaptation of Willats [1997]
- With inspiration from cartography
- Decompose depiction into orthogonal issues
- Vocabulary
- Modularity
- Coarse-grain definition of style

ART AND

Representation systems

- Spatial
- Eye-balled perspective
- Primitives
- Lines
- Attributes
 Color, thickness
- Marks
 - Physical stroke

Classification with dimensions

- Inputs and outputs
- 3D: object space
 (3D colors, intrinsic colors, light intensity)
- 2D: picture space (2D coordinates, extrinsic color)
- 2.5D: Intermediate representations – Z-buffer, normal maps, G-buffer, etc.
- Perspective matrix: $3D \rightarrow 2D$ spatial system
- Realistic local shading: 3D→2D attribute system
- Painting with light: $2D \rightarrow 3D$ attribute system

Imaging vs. interaction

- Direct picture making always decreases dimension
 - Globally, $3D \rightarrow 2D$
- Interaction might require to increase to propagate picture-space goals & constraints

Spatial systems

 Map 3D spatial properties and 2D spatial properties

Examples of spatial techniques

- $3D \rightarrow 2D$
- 4*4 perspective matrices
- Non-linear projections
- $2.5D \rightarrow 2D$
 - View warping [Chen 93]
- $2D \rightarrow 2D$
- Correcting perspective distortions [Zorin 95]
- $2D \rightarrow 3D$
 - Image-based modeling [e.g. Debevec 96]
 - Sketch-based modeling [Zeleznik 96]
 - View-dependent geometry [Rademacher 99]

Primitive systems

• Map 3D primitives (points, lines, surfaces, volumes) to 2D primitives (points, lines, regions)

Primitive systems

 Map 3D primitives (points, lines, surfaces, volumes) to 2D primitives (points, lines, regions)

Les devises Shadok

Can be complex

Examples of primitive techniques

- Classical graphics: continuous point
- Silhouette rendering:
 - 3D \rightarrow 2D: e.g. [Markosian 97]
 - $-2.5D \rightarrow 2D$ z-buffer-based, e.g. [Saito 90, Raskar 99]
 - $-2D \rightarrow 2D$ edge detection, e.g. [Canny 86, Pearson 90]

Attributes systems

• Assign visual properties to primitives - E.g. Color, texture, thickness, wiggleness, orientation

Examples of attribute techniques

- $3D \rightarrow 2D$
 - Realistic shading
 - NPR shading [Gooch 98]
 - Line shading [Gooch 99]
- $2.5D \rightarrow 2D$
 - Comprehensible rendering [Saito 96]Lumo [Johnston 02]
- $2D \rightarrow 2D$
 - Painting/drawing systems
 - Brightness/contrast/saturation

Mark systems

- Implementation of the primitives placed at their spatial location with their attributes
- Medium simulation, physical strokes

Marks vs. primitives

• Discrete 0D marks, but 1D line primitives

NPR marks

- Most NPR papers have a mark component
- Watercolor [Curtis 97]
- Engraving [Ostromoukhov 99]
- Issue of temporal coherence

Invitation

- Express PR & NPR techniques in this framework
- Find-out missing categories
- Use it for modularity
- Extension to animation
- Complex coupling between representation systems
- Finer notion of style
- Abstraction
- Different pictures, different users, different contexts
- Back to art history & perception

Mapping of curvature

- Convex: positive curvature - 3D example: Egg
 - 2D: Convex contour
- Concave: negative curvature
 3D example: Interior of cup
 2D: Nothing, hidden contour
- Saddle: mix of positive and negative curvature
 - 3D example:Saddle (surprising!)
 - 2D: Concave contour

Mapping of curvature

- But some artists map 3D concave objects to 2D concave outlines
- This maps the property of concavity
- The left view of the plate is more "correct" but does not convey the notion of concavity

Summary

- Images: direct optical recording/simulation
- Pictures: more general visual representation
- Depiction is more than direct rendering
- Complex interaction/mapping between 3D and 2D
- Depiction is an optimization problem