Conservative Visibility Preprocessing using Extended Projections

Frédo Durand, George Drettakis, Joëlle Thollot and Claude Puech

iMAGIS-GRAVIR/IMAG-INRIA (Grenoble, France) Laboratory for Computer Science – MIT (USA)

Special thanks

- Leo Guibas
- Mark de Berg

Introduction

- Walkthrough of large models
 - Simulators, games, CAD/CAM, urban planning
 - Millions of polygons
 - Not real-time with current graphics hardware
- Acceleration
 - Geometric Levels of Detail (LOD)
 - Image-based simplification (impostors)
 - View Frustum culling
 - Occlusion-culling

Occlusion culling - Principle

- Quickly reject hidden geometry
- [Jones 71, Clark 1976]

Occlusion culling - Principle

- Quickly reject hidden geometry
- [Jones 71, Clark 1976]

"trivially" occluded

Occlusion culling - Principle

- Quickly reject hidden geometry
- Z-buffer for final visibility

Occlusion culling - Problem

 How can we detect the "trivially" occluded objects?

Online point-based / Preprocessing (cells)

[Greene 93, Coorg 96, Zhang 97, Luebke 95, etc.]

[Teller 91, Airey 91, Cohen-Or 98, etc.]

• Online point-based / Preprocessing (cells)

Preprocessing (cells)

Online point-based /
Occluders /

[Greene 93, Coorg 96, Zhang 97, Cohen-Or 98, etc.]

[Teller 91, Airey 91, Luebke 95, etc.]

Preprocessing (cells)

Portals

Online point-based /

Occluders

.

[Teller 91, Airey 91, Coorg 96, Hudson 97, Cohen-Or 98, etc.]

[Greene 93, Zhang 97, etc.]

• Online point-based /

- Occluders
- Object space

Preprocessing (cells) Portals Image space

- Online point-based /
- Occluders
 Object space

- Online point-based /
- Occluders
 Object space

Preprocessing (cells) Portals

Image space

- Online point-based /
- Occluders
 Object space

Preprocessing (cells) Portals

Image space

Our approach

- Visibility preprocess
 - Objects invisible from a volumetric cell
- Conservative computation
 - Do not declare a visible object hidden
- Occluder fusion
 - Occlusion by multiple rather than single occluder(s)
- Extension of image-space point-based occlusion culling

Very related work - Fuzzy visibility

- Similar initial idea as ours
- Unfortunately unknown to us for final version
- [Toward a Fuzzy Hidden Surface Algorithm. Hong Lip Lim Computer Graphics International, Tokyo, 1992]
- Read the updated version of our paper http://graphics.lcs.mit.edu/~fredo

On-line point-based occlusion culling

• [Greene *et al.* 93, Zhang *et al.* 97]

occludee

On-line point-based occlusion culling

- Projection from a point volume
- Overlap and depth test •

- Projection from a point volume
- Overlap and depth test
- Fixed plane 3D position
- Will be discussed

occluder

occludee

Olecp

- Conservative
 - Underestimate the occluders
 - Overestimate the occludees

occluder

occludee

OBOP

• Conservative

- Intersection for the occluders
- Union for the occludees

- Conservative
 - Underestimate the occluders
 - Overestimate the occludees

cell

occluder

occludee

1000

Occluder fusion

• *Projection* of the first occluder

cell

Occluder fusion

- Projection of the second occluder
- Aggregation in a pixel-map

Occluder fusion

- Test of the occludee
- The occlusion due to the combination of *A* and *B* is treated

Fuzzy visibility

[Lim 1992]

- Extended projection as a fuzzy analysis
- Same definition with unions/intersections
- However, plane at infinity (direction space)
 Thus works only for infinite umbra
- Concave mesh projection

Our new method

- New Projection algorithms
- Heuristic for choice of projection plane
- Reprojection
- Occlusion sweep
- Improved projection
- Occlusion culling system

Occludee Projection

Occludee Projection

- Reduced to two 2D problems
- Supporting/separating lines

cell

Convex occluder Projection

- Convex cell =>
 - intersection of views from vertices of the cell
- Hardware computation using the stencil buffer
- Conservative rasterization

Concave occluder slicing

 Intersection occluder-projection plane

Difficulty of choosing the plane

- First possible plane
- Fine

Difficulty of choosing the plane

- Other possible plane
- The intersection of the views is null

Choosing the plane

- Heuristic (maximize projected surface)
- Works fine for most cases (e.g. city)

Problem of the choice of the plane

Solution

- Project on plane 1
 - Aggregate extended projections

Re-projection

• Re-project aggregated occlusion map onto plane 2

plane

planer

• Convolution [Soler 98]

• Initial projection plane

- Re-projection
- *Projection* of new occluders

- Re-projection
- *Projection* of new occluders

- Re-projection
- *Projection* of new occluders

Improved Extended Projection

- Detect more occlusion for some configurations
- For convex and planar occluders
- Do not use unions for occludees (supporting lines only)

Adaptive preprocessing

• If cell has too many visible objects

Adaptive preprocessing

• If cell has too many visible objects then subdivide

Interactive viewer

- Potentially Visible Set precomputation
- Visibility flag in the object hierarchy
- No cost at runtime
- Moving objects: motion volume

Results - Single projection plane

- City scene (6 million polygons)
- 165 minutes of preprocess (0.81 seconds per cell)
- 18 times speedup wrt view frustum culling
- Informal comparison with [Cohen-Or *et al.* 98] (no occluder fusion, single occluder):
 - 4 times fewer
 remaining objects
 - 150 times faster

Video

Video

Results – Occlusion sweep

- Forest scene (7.8 million polygons)
- 15 plane positions
- 23 seconds per cell
- 24 times speedup wrt view frustum culling

Discussion

- More remaining objects than on-line methods
- No moving occluders
- + Occluder fusion
 + No cost at display time
 + Prediction capability

 scenes which do not fit into main memory
 pre-fetching (network, disk)

Future work

- Better concave occluder Projection
 - e.g. adaptation of [Lim 1992]
- On-demand computation
- Application to global illumination
- Use with other acceleration methods
 - LOD or image-based acceleration
 - Driven by semi-quantitative visibility
 - Take perceptual masking into account