Fast Bilateral Filtering for the Display of High-Dynamic-Range Images

> Frédo Durand & Julie Dorsey Laboratory for Computer Science Massachusetts Institute of Technology

Contributions

- · Contrast reduction for HDR images
 - Local tone mapping
 - Preserves details
 - No halo
 - Fast
- Edge-preserving filter

Contrast reduction • Match limited contrast of the medium • Preserve details Real world 10⁻⁶ High dynamic range 10⁶ Picture 10⁻⁶ Picture 10⁻⁶ Low contrast

A typical photo

- Sun is overexposed
- · Foreground is underexposed

Gamma compression on intensity

 Colors are OK, but details (intensity high-frequency) are blurred
Intensity
Gamma on intensity

Chiu et al. 1993

- Reduce contrast of low-frequencies
- Keep high frequencies

- Anisotropic diffusion [Perona & Malik 90] – Blurring as heat flow
 - LCIS [Tumblin & Turk]
- Bilateral filtering [Tomasi & Manduci, 98]

Edge-preserving filtering & LCIS

- [Tumblin & Turk 1999]
- Multiscale decomposition using LCIS (anisotropic diffusion)

Simplified (at multiple scales) Compressed

Details

Layer decomposition

- [Tumblin et al. 1999]
- For 3D scenes
- Reduce only illumination layer

Illumination layer Compressed

Output

Comparison with our approach

- We use only 2 scales
- Can be seen as illumination and reflectance
- Different edge-preserving filter from LCIS

Plan

- Review of bilateral filtering [Tomasi and Manduchi 1998]
- Theoretical framework
- Acceleration
- · Handling uncertainty
- Use for contrast reduction

Plan

- Review of bilateral filtering [Tomasi and Manduchi 1998]
- Theoretical framework
- Acceleration
- Handling uncertainty
- Use for contrast reduction

Theoretical framework

- Framework of robust statistics
 - Output = estimator at each pixel
 - Less influence to outliers (because of g)
- Unification with anisotropic diffusion
 - Mostly equivalent
 - Some differences
- Details and other insights in paper

Spatial support

Spatial support

• Anisotropic diffusion cannot diffuse across edges

	\downarrow	1	1	1
	T	X	-	+
			-	- 21 - 2
-		1		

Support of anisotropic diffusion

Spatial support

- Anisotropic diffusion cannot diffuse across edges
- Bilateral filtering can
- Larger support => more reliable estimator

Acceleration • Non-linear because of g $J(x) = \frac{1}{k(x)} \sum_{\xi} f(x,\xi) \quad g(I(\xi) - I(x)) \quad I(\xi)$

Acceleration

- Linear for a given value of I(x)
- Convolution of g I by Gaussian f

Acceleration

- Linear for a given value of I(x)
- Convolution of g I by Gaussian f
- Valid for all x with same value I(x)

Acceleration

- Discretize the set of possible I(x)
- Perform linear Gaussian blur (FFT)
- Linear interpolation in between

Handling uncertainty Sometimes, not enough "similar" pixels Happens for specular highlights Can be detected using normalization k(x) Simple fix (average with output of neighbors)

Weights with high uncertainty

Uncertainty

Conclusions

- Edge-preserving filter
- Framework of robust statistics
- Acceleration
- Handling uncertainty
- Contrast reduction
- Can handle challenging photography issues
- Richer sensor + post-processing

Future work

- Uncertainty fix
- Other applications of bilateral filter (meshes, MCRT)
- Video sequences
- High-dynamic-range sensors
- Other pictorial techniques

Informal comparison

Gradient-space [Fattal et al.]

Bilateral [Durand et al.]

Photographic [Reinhard et al.]

Informal comparison

Gradient-space [Fattal et al.] Bilateral [Durand et al.] Photographic [Reinhard et al.]