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High-dynamic-range (HDR) images Contrast reduction

* CG Images ! * Match limited contrast of the medium
 Preserve details

* Multiple exposure photo [Debevec & Malik 1997] ) )
High dynamic range
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. Low contrast

A typical photo Gamma compression

* Sun is overexposed « X—>X/
» Foreground is underexposed  Colors are washed-out

Input Gamma




Gamma compression on intensity

* Colors are OK,
but details (intensity high-frequency) are blurred

Intensity _h Gamma on intensity

Color

The halo nightmare

* For strong edges
* Because they contain high frequency

Low-freq. Reduce low frequency

Multiscale decomposition
* Multiscale retinex [Jobson et al. 1997]

Low-freq. l Mid-freq. E Mid-freq.
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 Perceptual filters [Pattanaik et al. 1998]
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Chiuetal. 1993

» Reduce contrast of low-frequencies

» Keep high frequencies

Low-freq. I Reduce low frequency

Our approach

* Do not blur across edges
* Non-linear filtering

Large-scale Output

Detail

Edge-preserving filtering
* Blur, but not across edges

Input | | Gaussian blur Edge-preserving

* Anisotropic diffusion [Perona & Malik 90]
— Blurring as heat flow
— LCIS [Tumblin & Turk]

« Bilateral filtering [Tomasi & Manduci, 98]




Edge-preserving filtering & LCIS

e [Tumblin & Turk 1999]

* Multiscale decomposition using LCIS
(anisotropic diffusion)

Simplified
(at multiple scales)
Compressed

Comparison with our approach

* We use only 2 scales
+ Can be seen as illumination and reflectance
« Different edge-preserving filter from LCIS

Large-scale Detail

Compressed

Start with Gaussian filtering

* Here, input is a step function + noise

output = —]

Layer decomposition

e [Tumblin et al. 1999]
e For 3D scenes

* Reduce only illumination layer

< e
Illumination layer eflectance layer Output

Compressed

Plan

* Review of bilateral filtering [Tomasi and Manduchi 1998]
* Theoretical framework

* Acceleration

* Handling uncertainty

» Use for contrast reduction

Start with Gaussian filtering

* Spatial Gaussian f

output = —_;




Start with Gaussian filtering

* Output is blurred

output =]

The problem of edges

» Here, 1(&¢) “pollutes” our estimate J(x)
* It is too different

J(X) = Z f(x,rf)

output —

Bilateral filtering

Gaussian filter as weighted average

» Weight of & depends on distance to x

2 S8

output =

Principle of Bilateral filtering

[Tomasi and Manduchi 1998]

* Spatial Gaussian
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output = —]

[Tomasi and Manduchi 1998]

 Penalty g on the intensity difference

g(&)—1(x))
1(x)
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output —

Bilateral filtering

[Tomasi and Manduchi 1998]
* Spatial Gaussian f

» Gaussian g on the intensity difference

J(x) = k()Z S8 gUE)-1(x)  1(S)
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Normalization factor Bilateral filtering is non-linear

[Tomasi and Manduchi 1998] [Tomasi and Manduchi 1998]

s k(x)= Z ‘ Jx8)  gUE)~1(x) ‘ + The weights are different for each output pixel
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Plan Theoretical framework

. e Framework of robust statistics

o Theoretical framework — Output = estimator at each pixel
A lerati — Less influence to outliers (because of g)
e Acceleration . . . ) o .
« Unification with anisotropic diffusion

— Mostly equivalent
Use for contrast reduction — Some differences

Handling uncertainty

¢ Details and other insights in paper

Spatial support Spatial support

* Anisotropic diffusion cannot diffuse across edges

X
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Support of anisotropic diffusion




Spatial support

* Anisotropic diffusion cannot diffuse across edges

* Bilateral filtering can

 Larger support => more reliable estimator
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Support of anisotropic diffusion Support of bilateral

Acceleration

* Linear for a given value of I(x)
» Convolution of gl by Gaussian f

1
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Acceleration

* Discretize the set of possible I(x)
 Perform linear Gaussian blur (FFT)
* Linear interpolation in between

J(x) = %‘C) Y f(xE gU©-1x) 1)

¢

* k(x) treated similarly

Acceleration

* Non-linear because of g
1
T =15 & J®H  gU@-I6) &)
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Acceleration

¢ Linear for a given value of I(x)
« Convolution of gl by Gaussian f
+ Valid for all x with same value I(x)
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Handling uncertainty

* Sometimes, not enough “similar” pixels

» Happens for specular highlights

+ Can be detected using normalization k(x)

» Simple fix (average with output of neighbors)
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Weights with high uncertainty Uncertainty




Contrast reduction
Contrast
too high!

Contrast reduction

Input HDR . |

Large scale

Bilateral
Filter
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Contrast reduction
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Large scale

Contrast reduction

Contrast reduction

Fast
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Contrast reduction

Input HDR
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Color

Large scale




Contrast reduction

Input HDR image |

Intensity b,

Bilateral

Color

Conclusions

Live demo

» Edge-preserving filter

» Framework of robust statistics
* Acceleration

* Handling uncertainty

Contrast reduction
Can handle challenging photography issues
Richer sensor + post-processing

Informal comparison

* Xx GHz Pentium Whatever PC

Future work

Gradient-space Bilateral Photographic
[Fattal et al.] [Durand et al.] [Reinhard et al.]

 Uncertainty fix

 Other applications of bilateral filter
(meshes, MCRT)

Video sequences
High-dynamic-range sensors
Other pictorial techniques

Informal comparison

Gradient-space Bilateral Photographic
[Fattal et al.] [Durand et al.] [Reinhard et al.]




