Frequency Analysis in the Space-Time and Light Field Domains

Frédo Durand MIT CSAIL

in collaboration with Levin, Freeman, Green, Hasinoff, Egan, Ramamoorthi, Holzschuch, Soler, Subr, Sil lion, Chan, Zwicker, Matusik, Tseng, Cho, Sand

Image capture and synthesis

- ✤ Image capture
 - Goal: acquire sharper images
 - Degradations: noise, motion blur, defocus blur, etc.
- Image synthesis
 - Goal: reduce simulation cost
 - Complex light transport
 - Complex imaging: simulate defocus and motion blur

 Better understanding of image formation can lead to efficient synthesis algorithms and capture strategies
 Fourier analysis!

Blurring phenomena

Motion blur

• integral over shutter time

Defocus blur
integral over aperture

Glossy highlights
integral over incident light

Soft shadows
integral over light source

Sampling

- Digital image sampling & aliasing
- Monte Carlo integration: random sampling

Fourier to the rescue!

- Both blur and sampling are well expressed in the Fourier domain
- Studied in appropriate space:
 Space-time for motion blur
 - 4D light field for depth of field

Disclaimer: different from Fourier optics...
 and I will sweep diffraction under the rug

Standing on the shoulders of giants

- Fourier analysis in graphics
 - Light field sampling [Chai, Isaaksen, Ng,...]
 - Signal processing for reflection [Ramamoorthi, Basri,...]

- PSF engineering
 - Wavefront coding [Cathey & Dowski, ...]
 - Flutter shutter [Raskar]

Final Wavefront Coded™ Image

Basic Recipe

- Use high dim Fourier space
 - Signal is anisotropic (slope depends on speed/distance)
 - Imaging = integral = convolution => bandlimits
- Capture
 - Use deconvolution to remove blur
 - Modify optics to bandlimit less
- Synthesis
 - Exploit bandwidth & anisotropy for sparse sampling

First, let's look at motion blur

Scene with motion

The space time volume

Space-time Fourier domain

Slope = 1/velocity

Camera integration => motion blur

Vertical integration segment Static object: high response Higher velocities: low

Flutter shutter (Raskar et al 2006)

Tuesday, October 13, 2009

General camera with moving sensor

The OTF for given velocity is a slice of the Fourier transform of the camera integration function

Recap

- ⋆ 3D space time
- Motion = shear,
 slope = 1/velocity

 OTF for given velocity is a slice of Fourier transform of camera integration function

Motion Invariant Photography

with Levin, Cho, Sand & Freeman, Siggraph 08

+ Goals:

- Make blur invariant to velocity
- Maximize MTF for a range of velocities
- Inspired by wavefront coding [Cathey & Dowski]
- Caveat: works only for 1D motion (known direction, arbitrary velocity)

Image with motion blur. Instead, we want all objects to be sharp.

Parabolic sensor motion

Tuesday, October 13, 2009

Motion invariant blur

Tuesday, October 13, 2009

Motion invariant blur

Property 1: parabolic curve is shear invariant

This means it's invariant to velocity changes

Property 2: parabola yields uniform MTF

Information budget

Upper bound given velocity range

Cameras and information preservation

Flutter shutter

Parabolic

Constant horizontally Near optimal

Spends frequency "budget" outside wedge "budget" usage at all frequencies

Upper bound

Bounded "budget" per column

Handles 2D motion

Comparing camera reconstruction

Note: synthetic rendering, exact PSF is known

Hardware construction

Ideally move sensor

(requires same hardware as existing stabilization systems)

In prototype implementation: rotate camera

Unknown and

variable blur kernels

Our parabolic input

Our output after deblurring

Blur kernel is invariant to velocity

Human motion- no perfect linearity

Input from a static camera

Deblurred output from our camera

Application #2

with Egan, Tseng, Holzschuch & Ramamoorthi

- Fast image synthesis
- Goal: reduce noise in Monte-Carlo simulation of motion blur

Observation

- Motion blur is expensive
- Motion blur removes spatial complexity

Standard Method

Use axis-aligned pixel filter at each pixel –space => antialiasing

- -time => motion blur
- Requires many samples

Our Method

- Use a different filter shape at each pixel
- Filter sheared in space-time
- Fewer samples and faster renders

Sampling in Fourier Domain

- Sampling produces replicas in Fourier domain
- Sparse sampling produces dense replicas

But spectra have wedge shape

 And we can compute (local) bandwidth based on velocity

Standard Reconstruction FilterAliasing with sparse sampling

Sheared Reconstruction Filter

No aliasing with sparse sampling
 => no noise in Monte-Carlo integration

Fourier Domain

()~

No aliasing!

Making it happen

Compute per-pixel bandwidth

- -local velocity
- -moving shadows, moving highlights
- Sample based on bandwidth
- Reconstruct final image with sheared filter

Stratified Sampling 4 samples per pixel

Our Method, 4 samples per pixel

Ballerina

Stratified 16 samples / pix 4 min 2 sec

Our Method 8 samples / pix 3 min 57 sec

Stratified 64 samples / pix 14 min 25 sec

Motion blur recap

- Space-time; slope = speed
- OTF = slice of Fourier transform of camera integration function
- Capture
 - shear invariance
 - high & uniform MTF
 - upper bound
- Synthesis
 - sparse sampling
 - sheared reconstruction => sparser

Depth of field

- The same, just different
- Replace 3D space time by 4D light field

Lightfield : 4D radiance reaching lens

flatland

Lightfield tutorial

flatworld 1D scene

2D lightfield

Lightfield tutorial

flatworld 1D scene

2D lightfield

Lightfield tutorial

flatworld 1D scene

2D lightfield

2 plane parameterization [Levoy and Hanrahan 96]

Tuesday, October 13, 2009

Lens, focused at blue object

flatworld 1D scene

2D lightfield

Similarity with motion blur

Motion blur

- Domain: 3D space time
- Slope = 1/speed
- OTF = slice
- Depth of field
 - Domain: 4D light field
 - Slope = 1/depth
 - OTF = slice

And very similar to ambiguity function [Zhang, Accardi, Oh]

Bayesian lightfield imaging

- ← [Levin et al. ECCV 08]
- Show that wavefront coding = parabola in light field
 - This inspired our motion-invariant photography
- Model imaging as linear light field projection
- New prior on light field
- Camera decoding: Bayesian inference problem
- Framework and software for comparison across camera configurations in flatland

4D frequency analysis of depth of field

- ♦ Siggraph 2009, with Levin, Hasinoff, Green & Freeman
- Upper bound
- Dimensionality gap: only a 3D subset of the 4D light field spectrum is useful
 - Images focused at all depths: 1D family of 2D images (3D)
 - Full light field: 4D
- Previous designs spend energy outside this 3D subset

Lattice focal lens

- Takes into account dimensionality gap
- Lattice of lens elements with different powers
- samples the focusing distances

See Anat levin's talk on Thursday

Standard lens image

Our lattice-focal lens: input

Lattice-focal lens: all-focused output

90cm

150cm

180cm

Tuesday, October 13, 2009

3D Display

[Zwicker et al. 06]

- ✤ 3D Displays
 - lenticular or barrier
 - Pretty much 4D light field displays
- 4D aliasing
 Depth of field problem as well!

Image synthesis: sparse sampling

Our algorithm Adaptive sampling

Stratified lens sampling (70 lens samp/pixel)

Dimensionalities

Motion blur:

- space of (linear) motions: 2D (parameterized by image-space velocity)
- integration domain (time): 1D
- Dimensionality mismatch => not enough integration dimensions => 1D motion only

Depth of field

- space of distances: 1D
- integration domain (aperture): 2D
- Dimensionality mismatch: too many integration dimensions => loss of optimality, only subset of 4D space is useful

Fourier analysis of Light transport

- 4D radiance signal in neighborhood of ray
- Light sources are input signal
- Interactions are filters/transform
 - -Transport in free space
 - -Visibility
 - -shading by BRDF
 - -Etc.
- [Durand et al. 2005]

Summary: Frequency in space & angle

- Transport in free space
 → shear
- Occlusion

 multipl./convolution
 Simpler in Ray space
- BRDF
 - → convo./multipl. Simpler in Fourier
- Curvature
 - \rightarrow shear
- Proof of concept:
 - Bandwidth prediction

Recap: Fourier analysis for

- Motion blur
 - 3D space time
 - Shear, slope = 1/speed
 - Motion-invariant photo, upper bound
 - Synthesis: sparse sampling, sheared filter
- Depth of field
 - 4D light field
 - Shear, slope = 1/depth
 - Dimensionality gap, upper bound
 - Lattice-focal lens
 - 3D display depth of field
 - Synthesis: sparse sampling
- Light transport in scenes

Acknowledgements

 Anat Levin, Bill Freeman, Paul Green, Sam Hasinoff, Rob Fergus, Kevin Egan, Ravi Ramamoorthi, Nicolas Holzschuch, Cyril Soler, Kartic Subr, Francois Sillion, Eric Chan, Matthias Zwicker, Wojciech Matusik, Yu-Ting Tseng, Taeg Sang Cho, Peter Sand

Motion-invariant photography: Levin et al.

Motion-blur image synthesis: Egan et al.

Space of cameras, depth of field, lattice-focal lens Levin et al. Funding: NSF, Quanta, Foxconn, Shell, INRIA

Depth of field image synthesis: Soler et al.

Tuesday, October 13, 2009