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Image capture and synthesis
✦ Image capture

• Goal: acquire sharper images 
• Degradations: noise, motion blur, 

defocus blur, etc.

✦ Image synthesis
• Goal: reduce simulation cost
• Complex light transport 
• Complex imaging: simulate 

defocus and motion blur

✦ Better understanding of image formation can 
lead to efficient synthesis algorithms 
and capture strategies
•Fourier analysis!
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Blurring phenomena

✦ Motion blur
• integral over shutter time

✦ Defocus blur
• integral over aperture

✦ Glossy highlights
• integral over incident light

✦ Soft shadows
• integral over light source
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Sampling

✦ Digital image sampling & aliasing

✦ Monte Carlo integration: random sampling
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Fourier to the rescue!

✦ Both blur and sampling are well 
expressed in the Fourier domain

✦ Studied in appropriate space:
• Space-time for motion blur
• 4D light field for depth of field

✦ Disclaimer: different from Fourier optics...
and I will sweep diffraction under the rug
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Standing on the shoulders of giants

✦ Fourier analysis in graphics
• Light field sampling 

[Chai, Isaaksen, Ng,...]
• Signal processing for reflection 

[Ramamoorthi, Basri,...]

✦ PSF engineering
• Wavefront coding

 [Cathey & Dowski, ...]
• Flutter shutter 

[Raskar]
• ...
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Basic Recipe

✦ Use high dim Fourier space
• Signal is anisotropic 

(slope depends on speed/distance)
• Imaging = integral = convolution => bandlimits

✦ Capture
• Use deconvolution to remove blur
• Modify optics to bandlimit less

✦ Synthesis
• Exploit bandwidth & anisotropy for sparse sampling

First, let’s look at motion blur
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Scene with motion
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The space time volume

xyt- space-time volume

xt-slice
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Space-time Fourier domain
 Primal Domain
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x

Frequency Domain

Objects
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Frequencies 
from possible 

motions: 
double wedge

Slope = 1/velocity
 Primal Domain

t

x

Frequency Domain

Velocity 2

Velocity 1

Static
Objects
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Static object: high response
Higher velocities: low

Camera integration => motion blur
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Velocity 2

Velocity 1

Static

Camera 
integration 

function

Vertical integration segment
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Flutter shutter (Raskar et al 2006)
 Primal Domain

t

x

Frequency Domain
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x

Objects

Camera 
integration 

function

Higher velocities: 
better than static camera

Vertical but discontinuous 
integration segment

Velocity 2

Velocity 1

Static
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The OTF for given velocity is a slice of the Fourier 
transform of the camera integration function

General camera with moving sensor

t

x

Camera 
integration 

function

OTF Velocity 1

 Primal Domain
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x

Frequency Domain

Objects
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Recap

✦ 3D space time

✦ Motion = shear, 
slope = 1/velocity

✦ OTF for given velocity is a slice 
of Fourier transform of camera 
integration function
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Motion Invariant Photography
with Levin, Cho, Sand & Freeman, Siggraph 08

✦ Goals:
• Make blur invariant to velocity
• Maximize MTF for a range of 

velocities

✦ Inspired by wavefront coding
[Cathey & Dowski]

✦ Caveat: works only for 1D 
motion (known direction, 
arbitrary velocity)

Image with motion blur. 
Instead, we want all 
objects to be sharp. 
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Parabolic sensor motion
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Motion invariant blur
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Motion invariant blur

After DECONVOLUTION
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x

Property 1: parabolic curve is shear invariant

x

Static object coordinates Moving object coordinates

Shearing:

Sheared parabola                     Shifted parabola

Only curve with this property

t t

This means it’s invariant to velocity changes
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Equal high response in all range

Property 2: parabola yields uniform MTF
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

function

Parabola

Velocity 2

Velocity 1

Static
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Bounded budget per column
(norm of power spectrum)

Information budget
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Bounded number 
of photons

?
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For each column, distribute budget 
uniformly within wedge  nnnnnnnn

Upper bound given velocity range
 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Frequencies 
from possible 

motions

?
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slope wedge

slope wedge

slope wedge

slope wedge

Cameras and information preservation

Static Flutter shutter Parabolic Upper bound
Bounded 
“budget” per 
column

Constant horizontally

Spends frequency 
“budget” outside 
wedge 

Handles 2D motion

Near optimal 
“budget” usage at 
all frequencies 
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Comparing camera reconstruction

Note: synthetic rendering, exact PSF is known

Static Flutter Shutter Parabolic 
Blurred 

input 

Deblurred 
output 
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Hardware construction

• Ideally move sensor                                                         
 (requires same hardware as existing stabilization systems)

• In prototype implementation: rotate camera 

variable 
radius  
cam

Rotating 
platform

Lever
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 Static camera

Unknown and 
variable blur kernels

Our parabolic input

Blur kernel is invariant 
to velocity

Our output after 
deblurring

NON-BLIND 
deconvolution
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Input from a static camera Deblurred output from our camera 

Human motion- no perfect linearity
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Application #2
with Egan, Tseng, Holzschuch & Ramamoorthi

✦ Fast image synthesis

✦ Goal: reduce noise in Monte-Carlo simulation of 
motion blur
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Observation

• Motion blur is expensive
• Motion blur removes spatial complexity
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Standard Method

• Use axis-aligned pixel filter at each pixel
–space => antialiasing
–time => motion blur

• Requires many samples

SPACE

TI
M

E

space-time 
samples

axis-aligned 
filter
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Our Method

• Use a different filter shape at each pixel
• Filter sheared in space-time
• Fewer samples and faster renders

SPACE

TI
M

E

space-time 
samples

sheared  filter
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Sampling in Fourier Domain

Ωt

Ωxt

x

• Sampling produces replicas in Fourier domain
• Sparse sampling produces dense replicas

Fourier DomainSpace-Time Domain
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But spectra have wedge shape

• And we can compute (local) bandwidth based 
on velocity

Ωt

Ωx

Fourier Domain

 min 
speed max 

speed
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Standard Reconstruction Filter

• Aliasing with sparse sampling

Ωt

aliasing

Ωx

Fourier Domain
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Sheared Reconstruction Filter

• No aliasing with sparse sampling
=> no noise in Monte-Carlo integration

Ωt

Ωx

No aliasing!

Fourier Domain
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Making it happen

• Compute per-pixel bandwidth
–local velocity
–moving shadows, moving highlights

• Sample based on bandwidth
• Reconstruct final image 

with sheared filter

To appear in the ACM SIGGRAPH conference proceedings
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Figure 3: (a) A moving surface, in this case a sphere, with a rotating en-
vironment map. As the object moves, the specular reflections are motion-
blurred. (b) A moving shadow from blockers, in this case a tree. As the oc-
cluder moves, so does the occluded region, leading to motion-blurred shad-
ows on the receiver. We obtain space-time and frequency-domain shears
based on the effective pixel velocities. (Note that since our analysis is local,
curved global paths for specular highlights and shadows are not an issue.)

For simplicity, we consider flatland or 2D reflections, similar
to [Durand et al. 2005; Ramamoorthi et al. 2007]. A diagram is
shown in Figure 4. We write the standard reflection equation for
f (x, t), but extend it by considering its time-varying nature,

f (x, t) =

∫

l(θ, t)r(2n(x, t) − θ) dθ, (10)

where l(θ, t) is the (time-varying) incident lighting1 and r is a ra-
dially symmetric BRDF (like Lambertian or Phong), including the
cosine term. As shown in Figure 4, we consider a single overhead
view, so that the angle between lighting and reflected directions is
given by 2n − θ where n is the normal.

There are two sources of time-dependence or motion blur. First,
the lighting may vary with time—for concreteness, we consider
moving the lights. For distant illumination, this corresponds to a
rotation, with α being the angular velocity. We can also linearize
motions of local sources to a rotation and angular velocity,

l(θ, t) = l(θ − θ0(t)) = l(θ − αt). (11)

1The lighting can canonically be thought of as a distant environment
map, but can also correspond to the local environment at x = 0 (assuming
the spatial variation of lighting is moderate, such as mid-range illumination).

view normal

incoming
lighting

θ

2n
n

lighting l(θ, t) α

β

re!ected view

moving
receiver

rotation speed

Figure 4: BRDF effects and shading with motion blur. The basic (planar
or flatland 2D) setup shows a complex lighting environment l(θ, t) that can
rotate with angular velocity α. The surface can also move with speed β.

Next, consider normal n(x, t). If the object is translating,

n(x, t) = n(x − x0(t)) = n(x − βt), (12)

where we now use β for the velocity of motion (to distinguish from
a used previously). Finally, the normal can be locally linearized so
that n(x) = κx + η, with κ related to the surface curvature,2

n(x − βt) = κ(x − βt) + η = κx − κβt + η. (13)

Now, substituting Equations 11 and 13 into Equation 10 and using
κ′ = 2κ and η′ = 2η to account for the factor of 2n(·),

f (x, t) =

∫

l(θ − αt)r(κ′x − βκ′t − θ + η′) dθ, (14)

The above equation can be integrated by substituting ω = θ − αt,

f (x, t) =

∫

l(ω)r
([

κ′x − (α + βκ′)t + η′
]

− ω
)

dω. (15)

The right-hand side of the above equation is a convolution. Defining
γ = α+βκ′—where γ is the relative angular velocity of lighting and
surface—and using ⊗ for convolution,

f (x, t) = (l ⊗ r) (κ′x − γt + η′), (16)

where the result is evaluated at (κ′x − γt + η′).

It is possible to bring Equation 16 into the same form as Equa-
tion 4, unifying two seemingly quite different phenomena—
motion-blurred texture/geometry and specular reflections. To do so,
we simply need to define g = l⊗ r, so that in analogy to Equation 4,

f (x, t) = g

(

κ′
[

x −
γ

κ′
t +
η′

κ′

])

h(x, t) =

∫

f (x, t′)w(t − t′)dt′. (17)

In this case, the effective velocity a from Equation 4 is simply γ/κ′,
which is the effective spatial rate of motion (relative angular veloc-
ity divided by curvature). The η′/κ′ term is only a constant offset,
which will become a simple phase shift in Fourier space. The cur-
vature κ′ multiplies x to convert from spatial to angular coordinates.

Fourier Analysis: The convolution of lighting and BRDF in
Equation 16 leads to a product in Fourier space,

F(Ωx,Ωt) = L

(

Ωx

κ′

)

R

(

Ωx

κ′

)

ei2πΩxη
′/κ′δ
(

Ωx

γ

κ′
+Ωt

)

. (18)

The scale of κ′ in the arguments of Equations 16 and 17 leads to the
Fourier scale factors of 1/κ′. Equation 18 is essentially identical
to Equation 8 for moving objects, if we define effective velocity
a = γ/κ′, and G(Ωx) = (LR)(Ωx/κ

′). In both cases, the signal is a
shear in both space-time and Fourier domains.

2Since the surface may be tilted with respect to the image scanline along
which the spatial dimension x is measured, κ is actually the screen-space
curvature, and differs by a cosine factor from the geometric curvature.

4
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Car Scene

Stratified Sampling
4 samples per pixel

Our Method,
4 samples per pixel
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Ballerina

Stratified
16 samples / pix

4 min 2 sec

Our Method
8 samples / pix
3 min 57 sec

Stratified
64 samples / pix
14 min 25 sec

Equal Time Equal Quality
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Motion blur recap

✦ Space-time; slope = speed

✦ OTF = slice of Fourier transform 
of camera integration function 

✦ Capture
• shear invariance
• high & uniform MTF
• upper bound

✦ Synthesis
• sparse sampling 
• sheared reconstruction => sparser 
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Depth of field

✦ The same, just different

✦ Replace 3D space time 
by 4D light field

Tuesday, October 13, 2009



hello 7

de
pt

h

horizontal position

Lightfield : 4D radiance reaching lens 

flatland 2D lightfield
a

b

b plane

a plane

a

b
=> lens
    aperture

=> conjugate
     of image
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hello 7

de
pt

h

horizontal position

Lightfield tutorial

flatworld 1D scene 2D lightfield
a

b

2 plane parameterization [Levoy and Hanrahan 96]

b plane

a plane

a

b
=> lens
    aperture

=> image
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hello 8

de
pt

h

horizontal position

flatworld 1D scene 2D lightfield
a

b

Lightfield tutorial

2 plane parameterization [Levoy and Hanrahan 96]

b plane

a plane

a

b
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hello 9

flatworld 1D scene 2D lightfield
a

bde
pt

h

horizontal position

Lightfield tutorial

2 plane parameterization [Levoy and Hanrahan 96]

b plane

a plane

a

b
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hello 12

de
pt

h

horizontal position

sensor plane

aperture

Lens, focused at blue object

flatworld 1D scene 2D lightfield
a

b

b plane

a plane

a

b
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Similarity with motion blur

✦ Motion blur
• Domain: 3D space time
• Slope = 1/speed
• OTF = slice

✦ Depth of field
• Domain: 4D light field
• Slope = 1/depth
• OTF = slice

✦ And very similar to ambiguity function
• [Zhang, Accardi, Oh]
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Bayesian lightfield imaging
✦ [Levin et al. ECCV 08]

✦ Show that wavefront coding = 
parabola in light field
• This inspired our 

motion-invariant photography

✦ Model imaging as linear 
light field projection

✦ New prior on light field

✦ Camera decoding: Bayesian inference 
problem 

✦ Framework and software for 
comparison across camera 
configurations in flatland

y = T x
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4D frequency analysis of depth of field
✦ Siggraph 2009, with Levin, Hasinoff, Green & Freeman

✦ Upper bound

✦ Dimensionality gap: only a 3D 
subset of the 4D light field 
spectrum is useful
• Images focused at all depths: 1D 

family of 2D images (3D)
• Full light field: 4D

✦ Previous designs spend energy 
outside this 3D subset
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Lattice focal lens

✦ Takes into account dimensionality gap

✦ Lattice of lens elements with different powers

✦ samples the focusing distances

✦ See Anat levin’s talk on Thursday

Online Submission ID: 0465

4D Frequency Analysis of Computational Cameras for Depth of Field Extension

Standard lens image Our lattice-focal lens: input Lattice-focal lens: all-focused output

Figure 1: Left: Image from a standard lens showing limited depth of field, with only the rightmost subject in focus. Center: Input from our
lattice-focal lens. The defocus kernel of this lens is designed to preserve high frequencies over a wide depth range. Right: An all-focused
image processed from the lattice-focal lens input. Since the defocus kernel preserves high frequencies, we achieve a good restoration over the
full depth range.

Abstract1

Depth of field (DOF), the range of scene depths that appear sharp2

in a photograph, poses a fundamental tradeoff in photography—3

wide apertures are important to reduce imaging noise, but they also4

increase defocus blur. Recent advances in computational imaging5

modify the acquisition process to extend the DOF through decon-6

volution. Because deconvolution quality is a tight function of the7

frequency power spectrum of the defocus kernel, designs with high8

spectra are desirable. In this paper we study how to design effective9

extended-DOF systems, and show an upper bound on the maximal10

power spectrum that can be achieved. We analyze defocus kernels11

in the 4D light field space and show that in the frequency domain,12

only a low-dimensional 3D manifold contributes to focus. Thus,13

to maximize the defocus spectrum, imaging systems should con-14

centrate their limited energy on this manifold. We review several15

computational imaging systems and show either that they spend en-16

ergy outside the focal manifold or do not achieve a high spectrum17

over the DOF. Guided by this analysis we introduce the lattice-focal18

lens, which concentrates energy at the low-dimensional focal man-19

ifold and achieves a higher power spectrum than previous designs.20

We have built a prototype lattice-focal lens and present extended21

depth of field results.22

Keywords: Computational camera, depth of field, Light field,23

Fourier analysis.24

1 Introduction25

Depth of field, the depth range over which objects in a photograph26

appear acceptably sharp, presents an important tradeoff. Lenses27

gather more light than a pinhole, which is critical to reduce noise,28

but this comes at the expense of defocus outside the focal plane.29

While some defocus can be removed computationally using decon-30

volution, the results depend heavily on the information preserved31

by the blur, as characterized by the frequency power spectrum32

of the defocus kernel. Recent advances in computational imag-33

ing [Dowski and Cathey 1995; Levin et al. 2007; Veeraraghavan34

et al. 2007; Hausler 1972; Nagahara et al. 2008] modify the image35

acquisition process to enable extended depth of field through such36

a deconvolution approach.37

Computational imaging systems can dramatically extend depth of38

field, but little is known about the maximal frequency magnitude39

response that can be achieved. In this paper, we use a standard40

computational photography tool, the light field, e.g. [Levoy and41

Hanrahan 1996; Ng 2005; Levin et al. 2008a], to address these is-42

sues. Using arguments of conservation of energy and taking into43

account the finite size of the aperture, we present bounds on the44

power spectrum of all defocus kernels.45

Furthermore, a dimensionality gap has been observed between the46

4D light field and the space of 2D images over the 1D set of depths47

[Gu et al. 1997; Ng 2005]. In the frequency domain, only a 3D48

manifold contributes to standard photographs, which corresponds49

to focal optical conditions. Given the above bounds, we show that50

it is desirable to avoid spending power in the other afocal regions51

of the light field spectrum. We review existing camera designs and52

find that some spend significant power in these afocal regions, while53

others do not achieve a high spectrum over the depth range.54

Our analysis leads to the development of the lattice-focal lens—a55

novel design which allows for improved image reconstruction. It56

is designed to concentrate energy at the focal manifold of the light57

field spectrum, and achieves defocus kernels with high spectra. The58

design is a simple arrangement of lens patches with different focal59

powers, but the patches’ size and powers are carefully derived. The60

defocus kernels of a lattice-focal lens are high over a wide depth61

range, but they are not depth invariant. This both requires and en-62

ables coarse depth estimation. We have constructed a prototype and63

demonstrate encouraging extended depth of field results.64

1.1 Depth of field evaluation65

Similar to previous work, we focus on Lambertian scenes and as-66

sume locally constant depth. The observed image B of an ob-67

ject at depth d is then described as a convolution B = !d ⊗ I+N,68

where I is the ideally sharp image, N is the imaging noise, and69

!d is the defocus kernel, commonly referred to as the point spread70

function (PSF). The defocus PSF !d is often analyzed in terms of71

its Fourier transform !̂d , known as the optical transfer function72

(OTF). In the frequency domain, convolution is a multiplication73

B̂(") = !̂d(")Î(")+ N̂(") where hats denote Fourier transforms.74

In a nutshell, deblurring divides every spatial frequency by the ker-75

nel spectrum, so the information preserved at a spatial frequency "76

depends strongly on the kernel spectrum. If |!̂d(")| is low, noise is77

amplified and image reconstruction is degraded. To capture scenes78

with a given depth range d ∈ [dmin,dmax], we want PSFs !d whose79

1
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Figure 12: Our prototype lattice-focal lens and PSFs calibrated at
three depths. The prototype attaches to the main lens like a stan-
dard lens filter. The PSFs are a sum of box filters from the different
subsquares, where the exact box width is a function of the deviation
between the subsquare focal depth and the object depth.

depth also specifies the location of the xy light field plane. The DOF499

is defined by the range [dmin,dmax] corresponding to slopes ±S/2.500

From Eq. (2), the depth range can be expressed as do/(1± S/2),501

yielding a DOF of [35,!]cm for S = 2 and [66.2,74.3]cm for502

S = 0.1. The pixel size in the light field is " = "0/M, where503

M = f/(do− f ) = 0.13 is the magnification. We set the effective504

aperture size A to 1000" = 1000"0/M = 50.6mm, which corre-505

sponds to f/1.68.506

5.2 Implementation507

Hardware construction: To demonstrate our design we have508

built a prototype lattice-focal lens. As shown in Figure 12, our509

lattice-focal lens mounts to a main lens using the standard threaded510

interface for a lens filter. The subsquares of the lattice-focal511

lens were cut from spherical plano-convex lens elements using a512

computer-controlled saw.513

By attaching our lattice-focal lens to a high-quality main lens514

(Canon 85mm f1.2L), we reduce aberrations. Since most of the fo-515

cusing is achieved by the main lens, our new elements require low516

focal powers, and correspond to very low-curvature surfaces with517

limited aberrations (in our prototype, the subsquare focal lengths518

varied from 1m to 10m).519

In theory the lattice-focal element should be placed in the plane of520

the main lens aperture or at one of its images, e.g. the entrance or521

exit pupils. To avoid disassembling the main lens to access these522

planes, we note that a sufficiently narrow stop in front of the main523

lens redefines a new aperture plane. This lets us attach our lattice-524

focal lens at the front, where the stop required to define a new aper-525

ture still let us use 60% of the lens diameter.526

The minimal subsquare size is limited by diffraction. Since a527

normal lens starts being diffraction limited around an f/12 aper-528

ture [Goodman 1968], we can fit about 100 subsquares within an529

f/1.2 aperture. To simplify the construction, however, our pro-530

totype included only 12 subsquares. The DOF this allowed us to531

cover was small and, as discussed in Sec. 5.1, in this range the532

lattice-focal lens advantage over wavefront coding is limited. Still533

our prototype demonstrates the effectiveness of our approach.534

Given a fixed budget of m subsquares of a given width, we can in-535

vert the arguments in Sec. 4 and determine the DOF it can cover in536

the optimal way. As illustrated in Figure 8(b), for every point in the537

optimal DOF, there is exactly one subsquare achieving defocus di-538

ameter of less than 1 pixel. This constraint also determines the focal539

length for each of these subsquares. For our prototype we focused540

the main lens at 180cm and chose subsquare focal lengths covering541

a depth range of [60,180]cm. Given the limited availability of com-542

mercial plano-convex elements, our subsquares’ coverage was not543

perfectly uniform. However, for a custom-manufactured lens this544

would not be a limitation.545

Calibration: To calibrate the lattice-focal lens, we used a planar546

white noise scene and captured a stack of images at varying depths.547

Given a blurred and sharp pair of images Bd , Id at depth d, we548

solved for the kernel #d minimizing |#d ⊗ Id −Bd |. We show the549

recovered PSF at 3 depths in Figure 12. As discussed in Sec. 4, the550

PSF is a superposition of boxes of varying sizes, but the exact ar-551

rangement of boxes varies with depth. For comparison, we did the552

same calibration using a standard lens as well.553

Depth estimation: Given the calibrated per-depth PSFs, we de-
blur an image using sparse deconvolution [Levin et al. 2007]. This
algorithm computes the latent image Id as

Id = argmin
I

|#d ⊗ I−B|2+$%
i

[

&(gx,i(I))+&(gy,i(I))
]

, (28)

where gx,i,gy,i denote horizontal and vertical derivatives of the i-th554

pixel, & is a robust function, and $ is a weighting coefficient.555

Since the PSF varies over depth, rough depth estimation is required
for deblurring. If an image region is deconvolved with a PSF cor-
responding to the incorrect depth, the result will include ringing
artifacts. To estimate depth, we start by deconvolving the entire
image with the stack of all depth-varying PSFs, and obtain a stack
of candidate deconvolved images {Id}. Since deconvolution with
the wrong PSF leads to convolution error, we can locally score the
explanation provided by PSF #d around pixel i as:

Ei(d) = |Bi− B̃d,i|2+$
[

&(gx,i(Id))+&(gy,i(Id)
]

, (29)

where B̃d = #d ⊗ Id . We regularize the local depth scores using556

a Markov random field (MRF), then generate an all-focus image557

using the Photomontage algorithm of Agarwala et al. [2004].558

Results: Figure 13 shows all-focus images and depth maps cap-559

tured using our lattice-focal lens (more results are available in the560

supplementary file). Since the MRF of Agarwala et al. [2004] seeks561

invisible seams, the layer transitions usually happen at low-texture562

regions and not at the actual object contours. Despite the MRF’s563

preference for piecewise-constant depth structures we still can han-564

dle continuous depth variations, as shown in the rightmost column565

of Figure 13.566

The results in Figure 13 were obtained fully automatically. How-567

ever, depth estimation can fail, especially next to occlusion bound-568

aries, which presents a general problem for all computational569

extended-DOF systems [Dowski and Cathey 1995; Nagahara et al.570

2008; Levin et al. 2007; Veeraraghavan et al. 2007]. While a prin-571

cipled solution to this problem is beyond the scope of this paper,572

most artifacts can be eliminated with simple manual layer refine-573

ment. Relying on depth estimation in the decoding of a lattice-focal574

lens is a disadvantage compared to depth-invariant solutions, but it575

also allows coarse depth recovery. In Figure 14 we used the rough576

depth map to synthetically refocus a scene post exposure.577

In Figure 15 we compare the reconstruction using our lattice-focal578

lens with a standard lens focused at the middle of the depth range579
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3D Display

[Zwicker et al. 06]

✦ 3D Displays
• lenticular or barrier
• Pretty much 4D light field 

displays

✦ 4D aliasing
• Depth of field problem as 

well!
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Image synthesis: sparse sampling 

Stratified
lens sampling 

(70 lens samp/pixel)

Our algorithm
Adaptive sampling
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Dimensionalities

✦ Motion blur: 
• space of (linear) motions: 2D 

(parameterized by image-space velocity)
• integration domain (time): 1D
• Dimensionality mismatch => not enough integration 

dimensions => 1D motion only

✦ Depth of field
• space of distances: 1D
• integration domain (aperture): 2D
• Dimensionality mismatch: too many integration 

dimensions => loss of optimality, only subset of 4D 
space is useful
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Fourier analysis of Light transport
• 4D radiance signal in neighborhood of ray
• Light sources are input signal
• Interactions are filters/transform

–Transport in free space
–Visibility
–shading by BRDF
–Etc. 

• [Durand et al. 2005]
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Summary: 
Frequency in space & angle
• Transport in free space
→ shear

• Occlusion
→ multipl./convolution

Simpler in Ray space
• BRDF

 → convo./multipl.
Simpler in Fourier

• Curvature
 → shear
• Proof of concept:

– Bandwidth prediction
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Recap: Fourier analysis for
✦ Motion blur

• 3D space time
• Shear, slope = 1/speed
• Motion-invariant photo, upper bound
• Synthesis: sparse sampling, sheared filter

✦ Depth of field
• 4D light field
• Shear, slope = 1/depth
• Dimensionality gap, upper bound
• Lattice-focal lens
• 3D display depth of field
• Synthesis: sparse sampling

✦ Light transport in scenes

Online Submission ID: 0465
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0
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8
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Figure 12: Our prototype lattice-focal lens and PSFs calibrated at
three depths. The prototype attaches to the main lens like a stan-
dard lens filter. The PSFs are a sum of box filters from the different
subsquares, where the exact box width is a function of the deviation
between the subsquare focal depth and the object depth.

depth also specifies the location of the xy light field plane. The DOF499

is defined by the range [dmin,dmax] corresponding to slopes ±S/2.500

From Eq. (2), the depth range can be expressed as do/(1± S/2),501

yielding a DOF of [35,!]cm for S = 2 and [66.2,74.3]cm for502

S = 0.1. The pixel size in the light field is " = "0/M, where503

M = f/(do− f ) = 0.13 is the magnification. We set the effective504

aperture size A to 1000" = 1000"0/M = 50.6mm, which corre-505

sponds to f/1.68.506

5.2 Implementation507

Hardware construction: To demonstrate our design we have508

built a prototype lattice-focal lens. As shown in Figure 12, our509

lattice-focal lens mounts to a main lens using the standard threaded510

interface for a lens filter. The subsquares of the lattice-focal511

lens were cut from spherical plano-convex lens elements using a512

computer-controlled saw.513

By attaching our lattice-focal lens to a high-quality main lens514

(Canon 85mm f1.2L), we reduce aberrations. Since most of the fo-515

cusing is achieved by the main lens, our new elements require low516

focal powers, and correspond to very low-curvature surfaces with517

limited aberrations (in our prototype, the subsquare focal lengths518

varied from 1m to 10m).519

In theory the lattice-focal element should be placed in the plane of520

the main lens aperture or at one of its images, e.g. the entrance or521

exit pupils. To avoid disassembling the main lens to access these522

planes, we note that a sufficiently narrow stop in front of the main523

lens redefines a new aperture plane. This lets us attach our lattice-524

focal lens at the front, where the stop required to define a new aper-525

ture still let us use 60% of the lens diameter.526

The minimal subsquare size is limited by diffraction. Since a527

normal lens starts being diffraction limited around an f/12 aper-528

ture [Goodman 1968], we can fit about 100 subsquares within an529

f/1.2 aperture. To simplify the construction, however, our pro-530

totype included only 12 subsquares. The DOF this allowed us to531

cover was small and, as discussed in Sec. 5.1, in this range the532

lattice-focal lens advantage over wavefront coding is limited. Still533

our prototype demonstrates the effectiveness of our approach.534

Given a fixed budget of m subsquares of a given width, we can in-535

vert the arguments in Sec. 4 and determine the DOF it can cover in536

the optimal way. As illustrated in Figure 8(b), for every point in the537

optimal DOF, there is exactly one subsquare achieving defocus di-538

ameter of less than 1 pixel. This constraint also determines the focal539

length for each of these subsquares. For our prototype we focused540

the main lens at 180cm and chose subsquare focal lengths covering541

a depth range of [60,180]cm. Given the limited availability of com-542

mercial plano-convex elements, our subsquares’ coverage was not543

perfectly uniform. However, for a custom-manufactured lens this544

would not be a limitation.545

Calibration: To calibrate the lattice-focal lens, we used a planar546

white noise scene and captured a stack of images at varying depths.547

Given a blurred and sharp pair of images Bd , Id at depth d, we548

solved for the kernel #d minimizing |#d ⊗ Id −Bd |. We show the549

recovered PSF at 3 depths in Figure 12. As discussed in Sec. 4, the550

PSF is a superposition of boxes of varying sizes, but the exact ar-551

rangement of boxes varies with depth. For comparison, we did the552

same calibration using a standard lens as well.553

Depth estimation: Given the calibrated per-depth PSFs, we de-
blur an image using sparse deconvolution [Levin et al. 2007]. This
algorithm computes the latent image Id as

Id = argmin
I

|#d ⊗ I−B|2+$%
i

[

&(gx,i(I))+&(gy,i(I))
]

, (28)

where gx,i,gy,i denote horizontal and vertical derivatives of the i-th554

pixel, & is a robust function, and $ is a weighting coefficient.555

Since the PSF varies over depth, rough depth estimation is required
for deblurring. If an image region is deconvolved with a PSF cor-
responding to the incorrect depth, the result will include ringing
artifacts. To estimate depth, we start by deconvolving the entire
image with the stack of all depth-varying PSFs, and obtain a stack
of candidate deconvolved images {Id}. Since deconvolution with
the wrong PSF leads to convolution error, we can locally score the
explanation provided by PSF #d around pixel i as:

Ei(d) = |Bi− B̃d,i|2+$
[

&(gx,i(Id))+&(gy,i(Id)
]

, (29)

where B̃d = #d ⊗ Id . We regularize the local depth scores using556

a Markov random field (MRF), then generate an all-focus image557

using the Photomontage algorithm of Agarwala et al. [2004].558

Results: Figure 13 shows all-focus images and depth maps cap-559

tured using our lattice-focal lens (more results are available in the560

supplementary file). Since the MRF of Agarwala et al. [2004] seeks561

invisible seams, the layer transitions usually happen at low-texture562

regions and not at the actual object contours. Despite the MRF’s563

preference for piecewise-constant depth structures we still can han-564

dle continuous depth variations, as shown in the rightmost column565

of Figure 13.566

The results in Figure 13 were obtained fully automatically. How-567

ever, depth estimation can fail, especially next to occlusion bound-568

aries, which presents a general problem for all computational569

extended-DOF systems [Dowski and Cathey 1995; Nagahara et al.570

2008; Levin et al. 2007; Veeraraghavan et al. 2007]. While a prin-571

cipled solution to this problem is beyond the scope of this paper,572

most artifacts can be eliminated with simple manual layer refine-573

ment. Relying on depth estimation in the decoding of a lattice-focal574

lens is a disadvantage compared to depth-invariant solutions, but it575

also allows coarse depth recovery. In Figure 14 we used the rough576

depth map to synthetically refocus a scene post exposure.577

In Figure 15 we compare the reconstruction using our lattice-focal578

lens with a standard lens focused at the middle of the depth range579
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