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Abstract

Major advances in the field of medical imaging over the past two decades have provided
physicians with powerful, non-invasive techniques to probe the structure, function, and
pathology of the human body. This increasingly vast and detailed amount of information
constitutes a great challenge for the medical imaging community, and requires significant
innovations in all aspect of image processing.

To achieve accurate and topologically-correct delineations of anatomical structures from
medical images is a critical step for many clinical and research applications. In this thesis,
we extend the theoretical tools applicable to the segmentation of images under topological
control, apply these new concepts to broaden the class of segmentation methodologies, and
develop generally applicable and well-founded algorithms to achieve accurate segmentations
of medical images under topological constraints.

First, we introduce a digital concept that offers more flexibility in controlling the topol-
ogy of digital segmentations. Second, we design a level set framework that offers a subtle
control over the topology of the level set components. Our method constitutes a trade-off
between traditional level sets and topology-preserving level sets. Third, we develop an algo-
rithm for the retrospective topology correction of 3D digital segmentations. Our method is
nested in the theory of Bayesian parameter estimation, and integrates statistical information
into the topology correction process. In addition, no assumption is made on the topology
of the initial input images. Finally, we propose a genetic algorithm to accurately correct
the spherical topology of cortical surfaces. Unlike existing approaches, our method is able
to generate several potential topological corrections and to select the maximum-a-posteriori
retessellation in a Bayesian framework. Our approach integrates statistical, geometrical,
and shape information into the correction process, providing optimal solutions relatively to
the MRI intensity profile and the expected curvature.
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0.1 Notations

In this dissertation, we make use of the following notations, which might be used as a
reference throughout this dissertation. Bold fonts denote vectorial variables.

• Cortical surface: the cortical surface will be denoted by C.

• Spherical representation: The spherical representation of the cortical surface will be
denoted by S.

• A mapping from the cortical surface C onto the sphere S is denoted by M.

• A rectangular decomposition of a compact surface C is denoted by D(C). We note v, e,
and f the number of vertices, edges and faces in the decomposition D(C) respectively.

• The Euler-characteristic χ of a surface C is the number χ(C) = v − e + f , computed
from any polyhedral decomposition of the surface D(C).

• The genus of a surface C is g(C). It is related to the Euler-characteristic χ through
the formula: χ = 2(K − g), where K is the number of connected components of the
surface.

• An evolving active contour is represented by Γ.

• The level set representation of an evolving active contour Γ is denoted by φ.

• The outward normal and mean curvature of a surface are denoted by n and H respec-
tively. The velocity field of an active contour is denoted by v.

• Nn(x) is the set of grid points which are n-adjacent to x ; we define N ∗
n(x) = Nn(x) \

{x}.

• Cn(x, X) is the set of n-connected components of X \ {x} that are n-adjacent to x.
Cn(X) is the set of n-connected components of X.

• Nk
n(x, X) denotes the geodesic neighborhood of a point x ∈ X of order k; N .

n(x, X)
denotes Nk

n(x, X) where k equals 2, 3, 2, and 1 when n is 6, 6+, 18, and 26 respectively.

• The topological numbers of a digital point x under the topology (n,n) are defined by:
Tn(x, X) = |Cn(x, N .

n(x, X))| and Tn(x, X) = |Cn(x, N .
n(x, X))|.

• The extended topological numbers of a digital point x under the topology (n,n) are
defined by: T+

n (x, X) = |Cn(x, X)| and T+
n (x, X) = |Cn(x, X)|

13
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Chapter 1

Introduction

The field of medical imaging has undergone revolutionary advances over of the past two
decades. New medical imaging technologies have provided physicians powerful, non-invasive
techniques to probe the structure, function, and pathology of the human body. A few years
ago, only a small number of non-invasive techniques was available to radiologists. Besides
much experience/practice, deep insight, even intuition, was required for clinical diagnostic
imaging. In recent years, the improvement and the development of many image acquisition
techniques, the enhancement of the general quality of the acquired images, advances in
image processing and development of large computational capacities, have considerably
eased this task.

Acquisition of medical images in two (2D), three (3D), or higher dimensions, has be-
come a routine task for clinical and research applications. Image acquisition techniques
include magnetic resonance imaging (MRI), magnetoencephalography (MEG), 3D ultra
sound imaging, computed tomography (CT), positron emission tomography (PET), single
photon emission computed tomography (SPECT), functional MRI (fMRI), and diffusion
weighted imaging (DWI). This increasingly vast and detailed amount of information needs
to be interpreted in a timely and accurate manner in order to provide better diagnosis and
treatment options for a family of clinical applications. It requires significant innovation in all
aspects of image processing, such as image segmentation, image registration, visualization,
compression and communication, among others.

In medical image processing, the automated recognition of “meaningful” image compo-
nents, anatomical structures, and other regions of interest, is a fundamental task commonly
referred to as image segmentation. Image segmentation greatly facilitates visualization and
manipulation of specific structures. It is a critical step that often dictates the outcome of
the entire clinical or research analysis.

One approach to image segmentation is to have a trained anatomist or technician man-
ually label some regions of interests. However, manual approaches are considerably time
consuming. For instance, the labeling of some or all the structures in the brain can take
up to a week for high-resolution images. Also, manual or interactive segmentations, which
are often restricted to 2D slice-wise processing, often suffer from inconsistency across seg-
mented slices. Finally, studies have shown a large amount of variance among manual seg-
mentations, an effect which seems to increase the risks related to inter- and intra-observer
reliability [52, 29].

Quantitative analysis of medical images requires reproducible, accurate and efficient
segmentation methods. In medical imaging studies, the segmentation of a large number
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of images is often necessary for obtaining meaningful (i.e. statistically significant) results.
Therefore, automated segmentation is desirable. However, the challenge is that images are
usually corrupted by several artifacts, such as image noise, image intensity inhomogeneity
or non-uniformity, and partial volume averaging effect. In recent years, many segmentation
algorithms have been proposed and designed to account for such unwanted artifacts. While
these techniques produce repeatable and accurate results, few of them guarantee that the ob-
tained segmentations respect the true anatomy of the structures. Too often, segmentations
contain small geometric inaccuracies that alter the true anatomy of the modelled structures.
For instance, cortical segmentations often include handles that incorrectly connect different
regions of the cortex.

In medical imaging, the overall shape of a region of interest is prescribed by medical
knowledge; it is usually known a priori. Segmentation techniques should be able to produce
results that reflect the anatomy of the structures. Several clinical and research applications
(e.g. visualization, surgical planning, surface-based processing of functional data, surface-
based atlas, inter-subject registration, . . . ) depend critically on the accuracy and correctness
of the representations.

However, accurate segmentation under anatomical consistency is challenging. Mathe-
matically, the anatomical consistency refers to the notion of topological correctness of the
segmented shape. One of the difficulties arises from the continuous nature of topological
notions: they are difficult to transpose into a practical discrete framework that is applicable
to the segmentation of medical images. Also, the anatomical consistency of a segmentation
refers to the global connectivity of the geometric shape as well as to its local properties.
This concept which is both local and global is difficult to model and integrate into the seg-
mentation process. Overall, few methods have been proposed to precisely locate structures
of interest while ensuring the correctness of their topology (i.e. the correct anatomy).

The objective of this research is to improve and extend the theoretical tools applicable to
the segmentation of images under topological constraints, to apply these concepts to broaden
the class of segmentation methodologies, and to develop generally applicable and well-
founded algorithms to achieve accurate segmentations of medical images under topological
constraints. Although the focus is on the segmentation of MR brain images, the set of
potential applications extends well beyond the field of medical imaging.

1.1 Segmentation of Brain Structures from Magnetic Reso-

nance Images

Excluding pathological cases, the shape of most macroscopic brain structures can be contin-
uously deformed into a sphere. In mathematical terms, these structures have the topology
of a sphere1. Particularly, this implies that most brain structures consist of one single
connected object that does not possess any handles (i.e. holes) or cavities. This is the
case for the subcortical structures, such as left and right ventricle, putamen, pallidum,
amygdala, hippocampus, thalamus, and caudate nucleus (Fig. 1-1-a), but it also holds for
the cortex under some specific conditions. The human cerebral cortex is a highly folded
ribbon of gray matter (GM) that lies inside the cerebrospinal fluid (CSF) and outside the
white matter (WM) of the brain. Locally, its intrinsic “unfolded” structure is that of a 2D
sheet, several millimeters thick. In the absence of pathology and assuming that the midline

1Topology is a mathematical discipline that aims at characterizing the connectivity of geometrical shapes.
Necessary background in topology is reviewed in Chapter 2.
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Figure 1-1: a) Subcortical structures have a spherical topology. For instance, the shape of the
hippocampus can be continuously deformed onto a sphere. b) The human cerebral cortex is a highly
folded ribbon of gray matter that lies inside the cerebrospinal fluid and outside the white matter
of the brain. The green surface represents the interface between WM and GM, and the red surface
(i.e. the pial surface) models the interface between GM and CSF. When the midline connections
between the left and right hemisphere are artificially closed, these two surfaces have the topology of
a sphere. c) 3D rendering of the highly folded pial surface. Opposite regions of a sulcus are often
self-touching.

hemispheric connections are artificially closed, each cortical hemisphere can be considered
as a simply-connected 2D sheet of neurons that carries the simple topology of a sphere2

(Fig. 1-1-b).

Many recent segmentation algorithms are able to identify and precisely locate diverse
brain structures, albeit without ensuring the validity of final topology (i.e. the one of a
sphere). Medical images often contain various artifacts that are difficult to predict and
model. For instance, the finite resolution of images makes it particularly difficult to accu-
rately locate the cortical pial surface that separates GM from CSF (Fig. 1-1-b). Opposite
banks of the cortical gray matter often appear connected, and the interface between GM and
CSF becomes invisible. This type of artifact is referred to as the partial volume effect, and
is illustrated in Fig 1-2-a. Consequently, segmentation methods that ignore this constraint
of “separation” often produce segmentations with erroneously connected regions. These
regions form handles in the segmentation that are hard to detect and correct retrospec-

2The true topology of the cortical surface is not the one of a sphere, due to the midline connections
between the left and right hemisphere, such as the anterior and the posterior commisures.

Figure 1-2: a) Due to the partial volume effect, it becomes hard to distinguish opposite banks of a
the gray matter. b) Segmentation algorithm that do not constrain the topology often produce cortical
segmentations with several topological defects (i.e. handles, cavities, disconnected components). c)
A close-up of a topologically-incorrect cortical surface representation.
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tively [44, 28, 43, 56]. Figure 1-2 shows an example of an incorrect cortical segmentation
with several handles.

Many clinical and research applications require accurate segmentations that respect the
true anatomy of the targeted structures. However, only a few techniques have been proposed
to achieve accurate and topologically-correct segmentations. Yet, these methods are limited
by the several artifacts present in the images, and by the few topological concepts that are
applicable to the segmentation of medical images.

In the remainder of this chapter, we describe the significance of accurate and anatomically-
consistent segmentation. We present the difficulties and challenges in MR Brain image
segmentation and report the objective and contributions of this thesis. An overview of the
dissertation concludes this chapter.

1.2 Importance of Accurate and Anatomically-Consistent Seg-

mentation

Achieving accurate and topologically correct representations of different structures is of
critical importance for various clinical and research applications.

The cortex, which is a highly folded ribbon of gray matter, is composed of cortical neu-
rons (pyramidal and granular/Stellate cells) that are oriented horizontally to the surface. Its
functional organization is essentially 2-dimensional with functional units of cortical activity
organized in groups of neurons, oriented perpendicularly to the surface. Consequently, stud-
ies characterizing the functional organization of the brain require accurate models of the
cortical surface [17]. These studies analyze how different regions of the cortex are connected
and are related to each other.

Small geometric errors in a segmentation can easily change the apparent connectivity of
the segmented structure, posing a problem to studies that aim at analyzing the connected-
ness of different regions. In particular, distances between regions can be changed, such that
points appear much closer than they are (i.e. underestimation of true cortical (geodesic)
distances). This is often the case in cortical representations, where small handles in the final
segmentation artificially connect opposite banks of a sulcus. The accuracy and correctness
of the representations contribute the success of such studies.

Many neurodegenerative disorders, psychiatric disorders, and healthy aging are fre-
quently associated with structural changes in the brain. These changes, which can cause
alterations in the imaging properties of the brain tissue, as well as in morphometric prop-
erties of brain structures, can be captured and detected by elaborate segmentation tech-
niques [29, 55, 96, 95, 22]. For instance, the thickness of the cerebral cortex carries important
information relative to aging [83]. Accurate 3D models are necessary for estimating the true
cortical thickness (methods that only use 3D slices to estimate cortical thicknesses always
lead to overestimated distances).

We provide a non-exhaustive list of potential applications that would benefit from ac-
curate and topologically-correct representations.

• Visualization. The accurate and topologically-correct segmentation of various struc-
tures allows the direct visualization of the 3D geometrical shape of the structures.
Also, functional data can be easily projected and displayed onto the surfaces for illus-
tration, visual analysis, and post-processing [17, 99, 16].

• Spherical Coordinate System and Surface-based atlas. The analysis of cortical
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data is greatly facilitated by the use of accurate 2D models of the cortical sheet [17, 99].
These models alleviate most problems of the 3D embedding space (such as the un-
derestimation of true cortical distances or the overestimation of cortical thicknesses).
Also, models of the brain surface allow for the establishment of a global 2D coordinate
system onto the whole cortical surface; these coordinate systems can then be used to
generate 2D spherical atlases. The display and the analysis of anatomical (e.g. thick-
ness) and functional (e.g. fMRI, MEG) data of the brain cortex is greatly improved
by the use of surface-based atlases [23, 99, 31, 27]. In addition, surface-based atlases
can be used to evaluate and diagnose precisely brain abnormalities. Recent studies
have found that Alzheimer’s disease was associated with the thinning of GM volume
and the enlargement of cortical sulci [91]. This information can be carefully inte-
grated into statistical surface-based atlases to help the early detection of Alzheimer’s
pathology [22].

• Shape Analysis. Structural changes in the brain can be captured and detected by
elaborate segmentation techniques. These changes can be used to characterize many
neurodegenerative disorders, psychiatric disorders, and healthy aging [29, 55, 96, 95,
22].

• Surface-based processing of functional data. The functional organization of the
human cerebral cortex is essentially 2-dimensional. Projecting functional data (e.g.
fMRI, MEG) onto valid representations of the cortical surface greatly facilitates and
improves the identification and localization of various functional brain areas [17].

• Inter-subject Registration. Accurate and topologically-correct representations of
specific structures of interest provide important anatomical landmarks (e.g. sulcal
depth, cortical thickness, sulcal crest lines) that can be used to improve the registration
of different subjects [31, 92, 98]

1.3 Challenges in Magnetic Resonance Image Segmentation

The segmentation of medical images under topological constraints is a difficult task for a
variety of reasons.

First, segmentation algorithms operate on the intensity or texture variations of the im-
age and are therefore sensitive to the artifacts produced by the image acquisition process.
These limitations include image noise, image intensity inhomogeneity or non-uniformity, RF
inhomogeneities, partial volume averaging effect, and subject motion. In the case of cortical
segmentations, the partial volume effect makes it particularly difficult to accurately locate
the pial surface of the cortex (Fig. 1-2-a). Due to its highly folded nature, opposite banks of
the sulcus often appear connected, and small gaps between adjacent folds of the neocortical
gray matter become invisible in finite resolution MR images. The detection of the substruc-
tures is also difficult as many of them are defined by weakly visible boundaries. For instance,
the intensity pattern of the thalamus in MRI images looks similar to the neighboring white
matter. Segmentation methods cannot solely rely on the MR images in order to distinguish
these structures, and prior information is often necessary to capture common attributes
of anatomical structures in a population. In general, segmentation techniques that do not
integrate any topological constraints generate segmentations that often contain some small
deviations from the true anatomy of the structures of interest. These deviations are called
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topological defects and can be of three types: cavities, disconnected components, or handles
(i.e. holes) that incorrectly connect parts of the volumes (Sect. 2.2.4). We note that several
good reviews of segmentation techniques can be found in the literature [103, 9, 75].

Next, the integration of topological constraints significantly increases the complexity
of the task. Topology is both a global and a local concept; small and local modifications
of a geometric shape can change its global connectivity. Also, topology is intrinsically a
continuous concept and topological notions are difficult to adapt into a discrete framework.
Therefore, the amount of techniques available and applicable to the segmentation of images
are quite limited.

Only a few automatic techniques have been proposed to produce topologically-correct
segmentations. The current state of the art in medical image segmentation under topology
control is reviewed in details in Chapter 2. Here we provide a brief summary of the relevant
existing techniques. In general, they can be divided in two categories.

One set of approaches incorporates directly the topological constraints into the seg-
mentation process. Active contours and digital models, reviewed in Chapter 2, have been
extensively used for this purpose. An initial model, carrying the correct topology, is de-
formed, usually by gradient descent, while preserving its topology. However, these methods
are quite sensitive with regard to initialization, and large geometrical errors are often pro-
duced due to the strict topology preservation. The strict topology preservation is often too
restrictive for most applications. The generation of cavities or disconnected components as
well as the formation of handles is prevented. The primary concern is handles that are diffi-
cult to retrospectively correct [44, 28, 43, 56]. On the other hand, changes in the number of
connected components or cavities during the deformation of an object are less problematic.
We tackle these limitations in Chapter 3 by introducing a concept based on the theory of
digital topology. In addition, in Chapter 4, we describe a flexible segmentation technique
that offers a subtle topological control.

More recently, another set of approaches has been recently proposed to retrospectively
correct the topology of already segmented images. These techniques, which do not enforce
any topological constraints during the segmentation process, can focus on more accurate seg-
mentations. However, the performance of these methods have not proved to be sufficiently
satisfactory. First, they cannot be used to correct the topology of arbitrary segmentations,
as they make assumptions about the topology of the initial input image. Also, they do
not use any statistical information to locate and correct the topological defects, and the
corresponding corrections may not correspond to the ones a trained operator would make.
Particularly, for each topological defect, they only evaluate a small number of potential
solutions, and most often fail to produce optimal solutions. We focus on the retrospec-
tive topology correction of medical images in Chapters 5 and 6. Chapter 5 introduces a
novel framework to retrospectively correct the topology of digital images, while Chapter 6
is dedicated to the topology correction of cortical surfaces.
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1.4 Motivation

Achieving accurate and topologically-correct segmentations of medical structures is a crucial
step for many post-processing tasks in medical imaging. While existing methods can be
effective, they have a number of limitations. The work presented in this dissertation is
motivated by these limitations.

• Topologically constrained segmentation methods are too restrictive. Meth-
ods that aim at directly segmenting a structure of interest using strict topological
constraints require an initialization of the model that is close to its final configura-
tion. This is essentially due to the fact that topological barriers can easily lead to
large geometrical errors, which are difficult to correct retrospectively. Medical images
often contain artifacts (noise, image inhomogeneities, . . . ) or unexpected structures
(tumors), which are hard to predict. Topologically constrained segmentation methods,
which strictly preserve the topology of the initial contour, are too restrictive: they
prevent the formation of cavities and disconnected components as well as the genera-
tion of handles. A finer degree of control over topological changes would certainly be
of importance.

• Retrospective topological corrections may not be optimal. Most retrospective
methods do not make full use of all available information. Most methods assume that
the topological defects in the segmentation are located at the thinnest parts of the
volume and aim at correcting the topology by minimizing the amount of modifications
in the original segmentation. Most often, the resulting topological corrections do not
correspond to the ones that a trained operator would make. This is illustrated by
Fig. 1-3.

Figure 1-3: Minimal topological corrections might not be optimal. Methods that aim at correcting
the topology of a segmentation by minimizing the amount of modifications in the segmentation
might not achieve valid corrections. a) A topological defect is identified in red on the original
topologically-incorrect cortical surface. b) An incorrect topological correction that was only based
on the size of the defect. In this case, cutting the handle corresponds to a “smaller” modification
of the surface than filling the corresponding hole. However, this topological correction is not the
correct one and results in an inaccurate cortical representation. c) Correct topological correction
realized by a trained operator.

• Most methods to retrospectively correct the topology cannot deal with
arbitrary segmentations. Retrospective methods assume a fully-connected volume
and cannot deal with segmentations that contain cavities of disconnected compo-
nents. Subcortical segmentations are difficult to segment if solely based on intensity
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properties. Imaging artifacts, anatomical variability, varying contrast properties, and
poor registration, often result in segmentations that contain a few topological defects.
While a small number of modifications is usually sufficient to correct the topology, no
assumptions can be made on the topology of the initial segmentation.

• At most, two candidate solutions per topological defect are generated and
evaluated. Methods to retrospectively correct the topology of an object fail to gen-
erate multiple potential solutions in order to select an optimal solution. They only
produce two solutions. In the case of a handle, these two solutions correspond to
either cutting the handle or filling the corresponding hole. Other solutions, such as
the ones a trained operator would make are not generated. This problem is usually
inherent to the proposed framework that is not adapted to the generation of multiple
candidate solutions. Figure 1-4 illustrates the difficulty of finding an optimal solution
when the topological defect is complex.

Figure 1-4: Some topological defects are quite complex and extremely hard to optimally correct.
Existing methods only produce a few potential topological solutions and the chosen solution rarely
is optimal. a) A complex topological defect formed by 3 handles. b) One sagital MRI slice of the
topological defect, illustrating the complexity of the underlying MRI intensity profile. c) Optimal
solution realized by our method developed in Chapter 6 under the supervision of a human expert.
Note that the solution does not correspond to a simple cut of the main handle. d) Sagital cut of the
MRI volume showing the location of the surface of the corrected defect. The optimal solution was
optimized relative to the underlying MRI intensity profile and the expected local curvature of the
surface. A human expert asserted the correctness and optimality of the solution.

Also, in medical imaging, depending on the application, different types of information
are required and different data structures are used; the most common cases are surfaces
modeled by tessellations, and volumes that use 3-dimensional Cartesian grids. Even though
the segmentation of a structure of interest relies in part on intensity information extracted
from one or several 3-dimensional images, the data structure might not use the 3-dimensional
grid to encode the final segmentation, e.g. tessellations. It is important to develop methods
for both types of data structures, 3-dimensional volumes or surfaces.
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1.5 Objective and Contributions of this Thesis

In this dissertation, we propose type-specific (i.e. surface-based or volume-based) methods
to address previous limitations. We extend the set of tools applicable to the segmentation
of medical images under topology control, and develop techniques to achieve accurate seg-
mentations under topological constraints. Our contributions can be broadly divided in two
categories.

A - Topologically-constrained segmentation of medical images

We first focus on methods that integrate topological constraints directly into the seg-
mentation process. These methods which strictly preserve the topology of the models are
quite sensitive with regard to their initializations, and to the presence of noise and unex-
pected structures in the images. We address these limitations in the following:

• Definition of a novel digital concept.
Topological concepts are hard to adapt into a discrete framework and the number
of available tools are limited. We introduce a novel digital concept, the concept of
multisimple point, which offers more flexibility in controlling the topology of segmen-
tations.

• A new active contour framework.
Deformable models have been extensively used for the purpose of image segmentation.
We improve the control of topological changes with the level set method. Our method,
the genus-preserving level sets, offers a subtle topological control over the topology
of the level set components, and constitutes a trade-off between traditional level sets
and topology-preserving level sets [46].

B - Retrospective topology correction of medical image segmentations

In the second part, we focus on the retrospective topology correction of already segmented
structures. Existing methods to correct retrospectively the topology of segmentations suf-
fer from some important limitations. They do not integrate any statistical or geometric
information into the topology correction process and they do not guarantee the optimality
of the topological corrections. Our contributions address these limitations:

• Bayesian formulation
We integrate statistical and geometric information into the topology correction process
using a Bayesian framework. The correction of a topological defect makes use of
additional information, such as the underlying MRI intensity profile or the expected
local curvature of the corrected defect. As a consequence, accurate solutions can be
generated.

• Optimal correction of the topology
While existing methods only evaluate a small number of potential topological correc-
tions, and fail to produce optimal solutions, we introduce (in Chapter 6) a method
that generates multiple potential solutions. The optimal correction is selected as the
maximum-a-posteriori solution in a Bayesian framework.

23



In addition, we propose two algorithms for the retrospective topology correction of the
two most common data structures used in medical images: 3D digital images and surfaces.

• Topology correction of 3D binary images
We develop an algorithm for the retrospective topology correction of 3D digital seg-
mentations. Our method is phrased within the theory of Bayesian parameter estima-
tion, and integrates statistical information into the topology correction process. In
addition, no assumption is made on the topology of the initial input images.

• Topology correction of cortical surfaces
We propose a genetic algorithm to accurately correct the spherical topology of cortical
surfaces. Unlike existing approaches, our method is able to generate several poten-
tial topological corrections and to select the maximum-a-posteriori retessellation in
a Bayesian framework. Our approach integrates statistical, geometrical and shape
information into the correction process, providing optimal solutions relatively to the
MRI intensity profile and the expected curvature.

1.6 Thesis Overview

This thesis is organized in three parts. The first part consists of the necessary background
to understand the contributions of our work. It corresponds to Chapter 2. Some elementary
notions of topology are introduced and we describe how to apply these notions to discrete
imaging. We summarize the current state of the art in medical image segmentation under
topological constraints. Existing techniques to achieve accurate segmentations under some
topological constraints are presented, and their limitations are described.

The second part, consisting of Chapters 3 and 4, presents our contributions to topo-
logically constrained segmentation. We focus on the limitations inherent to methods that
strictly preserve the topology of an object.

For this purpose, we introduce in Chapter 3 a new concept of digital topology that
extends and generalizes the notion of simple points (this concept is clearly defined in
Sect. 2.3.1). Simple points guarantee that the topology of a digital object is preserved
during a deformation. However, the generation of cavities or disconnected components as
well as the formation of handles are prevented. The extension of the concept of simple point
to multi-label images, that we call multisimple point, ensures that no topological defects are
generated while splitting or merging the components of the object.

Based on this concept, in Chapter 4, we then introduce an active contour framework,
where level sets evolve under topological control. Level set components are allowed to merge,
split, be destroyed or generated, but not to produce any handle during the evolution. The
resulting active contour evolution is more flexible than topology-preserving deformations.
This algorithm, which introduces a finer degree of control over topological changes in level-
set-based image segmentation, fills the gap between the original level set framework and
topology-preserving level set methods.

In the third part of this work, we focus on the retrospective topology correction of
segmentations. It consists of Chapter 5 and Chapter 6.

In Chapter 5, we develop a fully automated volume-based method to correct the topol-
ogy of any binary volumetric segmentation under any digital connectivity. The novelty of
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our approach comes from the fact that any initial segmentation, containing disconnected
regions, handles, or cavities, will be corrected. A multiple region growing process allows
us to simultaneously work on different parts of the volume and to incorporate statistical
information.

Finally, in Chapter 6, we specifically focus on the cortical reconstruction problem that
is intrinsically more challenging than the topology correction of subcortical structures. We
introduce a technique that directly extends the approach taken by Fischl et al. in [28],
addressing most of its limitations (self-intersection, optimality, vertex elimination). Our
approach integrates statistical, geometrical and shape information into the correction pro-
cess, providing optimal solutions relative to the MRI intensity profile and the expected
curvature.

At the end of each chapter, we will refer to the main contributions that were presented
and indicate the associated publications. The proofs of Chapter 4 are provided in Appendix
A. Appendix B lists all of our publications. All the algorithms developed in this thesis are
part of the freely available cortical surface reconstruction and flattening software Freesurfer,
associated with [16, 30, 31, 27, 28, 29, 32, 84, 85, 86].
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Chapter 2

Preliminaries: Theory of Topology

in Medical Imaging

In this chapter, we present background material of central importance for this dissertation. We

introduce some elementary notions of topology and show how these notions can be adapted into a

discrete framework and applied to the segmentation of medical images under topological constraints.

Particularly, we introduce the essential concept of Euler-characteristic, and we describe the theory

of digital topology. Isocontours methods are also presented. Next, we describe the current state-of-

the-art segmentation of images under topological constraints. We first present methods that aim at

directly integrating the topological constraint into the segmentation process, followed by approaches

that try to correct retrospectively the topology of already segmented images. The limitations of both

approaches are explicated.

2.1 Introduction

This chapter presents background material of central importance for this dissertation. We
first introduce some general notions of topology and present the strong connections of
topology with differential geometry. The Euler-characteristic and the genus of a surface
are defined. Next, we show how the continuous theory of topology can be applied to
the segmentation of medical images under topological constraints. Particularly, we de-
scribe how topological notions can be adapted to the two most common data structures
used in medical imaging: 3D voxel grids and surfaces. Also, we present methods for ex-
tracting topologically-consistent isocontours from digital images. Finally, we present the
state-of-the-art segmentation of medical images under topological constraints. The most
common segmentation algorithms are described and their limitations clearly reported. Some
of the material presented in this section were taken from Mathworld [63] and the work of
Bertrand [7, 8]. We refer the reader to the following text books [70, 37, 48] for a complete
introduction to topology and algebraic topology.

2.2 General Notions of Topology

2.2.1 A Continuous Theory

Topology is a branch of mathematics that studies the properties of geometric figures that
are preserved through deformations, twistings and stretchings, without regard to size and
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absolute position. In topology, the important mathematical notions are those of continu-
ity and of continuous transformations; tearing, which would generate discontinuities, is
prohibited.

Topology studies the properties of spatial objects by abstracting their inherent connec-
tivity while ignoring their detailed form. One of the central ideas is that geometric objects,
such as circles, curves, surfaces, can be treated as objects in their own right, independently
of how they are represented or how they are embedded in space. The exact geometry of
the objects, their location and the details of their shape are irrelevant to the study of their
topological properties. In essence, this amounts to characterizing the topology of an object
by its number of disconnected components, holes and cavities, but not by their position.
For instance, a circle is topologically equivalent to any closed loop, no matter how different
these two curves may appear. Similarly, the surface of a coffee mug with a handle is topo-
logically the same as the surface of a doughnut (this type of surface is called a one-handled
torus).

However, by ignoring the embedding space, it then becomes impossible to distinguish
a torus from a knotted torus (Fig. 2-1-a). This has led mathematicians to define several
levels of topological equivalence depending on the chosen set of continuous transformations.
Given a specific set of transformations, two geometric figures represent the same topological
object, or the same equivalence class, if both of them can be deformed into a third one by
using continuous transformations from the considered set only.

Figure 2-1: a-b) Two tori that are homeomorphically equivalent. They share the same intrinsic
topology. However, they do not share the same homotopy type as one can not be continuously
transformed into the other. c) A geometric object with a spherical topology; its Euler-characteristic
is χ = v − e + f = 8 − 12 + 6 = 2. d) A geometric object with a toroidal topology and an
Euler-characteristic of χ = v − e + f = 16− 32 + 16 = 0.

2.2.2 Notions of Topological Equivalence

In this work, we are interested in locating anatomical structures from medical images. These
structures are geometric entities, which are often referred to as topological spaces in the
mathematics community. These shapes can be represented equivalently as surfaces or as
volumes. Depending on the context, a topological space X might refer to the volume or
surface representation. Using these two dual representations, two distinct levels of topolog-
ical equivalence are usually considered. But we first need to introduce some mathematical
definitions.

Definition 2.1 Homeomorphism
An homeomorphism M from a space X into a space Y is a continuous, one-to-one trans-
formation with a continuous inverse M−1.
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Homeomorphisms have some important properties that we will use later in this dissertation
(particularly in Chapter 6). The Jacobian JM = |∂M

∂x
| of the transformation1 is non-singular

(i.e. strictly positive or strictly negative). This is, of course, the multidimensional analog
of monoticity. Another important property of the Jacobian is the fact that it relates the
n-dimensional volumes of X and Y : dny = JMdnx, where y = J(x).

Definition 2.2 Homotopy
An homotopy is a continuous transformation from one function into another. An homotopy
between two functions f and g from a space X into a space Y is a continuous map G :
X × [0, 1]→ Y with G(x, 0) = f(x) and G(x, 1) = g(x), where × denotes set pairings. One
says that two maps f0 and f1 are homotopic if there exists a homotopy connecting them,
and one writes f0 ' f1.

In simpler terms, two objects are said to be homotopic if one can be continuously de-
formed into the other. For instance, a line segment is homotopic to a point, and a circle
is homotopic to a solid torus. We note that, contrary to homeomorphism, homotopy does
not consider the dimension of the topological objects. For instance, the unit ball in Rn,
{x ∈ Rn/ ‖x‖ ≤ 1}, is homotopically equivalent to the point {x = 0}. Other levels of
topological equivalence can be defined by considering the dimensionality of the topological
objects. Homotopy is one of the main concepts of Algebraic Topology. For more details on
homotopies and algebraic topology, we refer the reader to an excellent book on algebraic
topology [48].

Using these two sets of continuous transformations, two levels of topological equivalence
are usually considered:

• Intrinsic Topology : the intrinsic topology of an object is defined by the set of properties
that are preserved by homeomorphic transformations defined on the surface of the
considered object. Under this set of equivalence, the embedding space is ignored: a
knotted solid torus has the same intrinsic topology as a simple torus; and a hollow
sphere is of the same topology as two spheres.

• Homotopy type: the homotopy type of an object is the set of properties that are
preserved by homotopic transformations. Formally, we define two spaces X and Y
to share the same homotopy type, or to be homotopy equivalent, if there are maps
f : X → Y and g : Y → X, such that the composition f ◦g is homotopic to the identity
map of Y (f ◦ g ' IY ), and the composition g ◦ f is homotopic to the identity map
of X (g ◦ f ' IX). Homotopy, which was first formulated by Poincarré around 1900,
provides a measure of an object’s topology by considering the embedding space. At
this level of topological equivalence, a torus is topologically different from a knotted
torus, since one cannot be continuously transformed into the other (Fig. 2-1-a,b).

In this dissertation, the required level of topological equivalence is provided by homo-
topy. The anatomical structures to be segmented define smooth 2D compact (i.e. closed)

1The fact that the Jacobian exists might seem confusing at first. Indeed, we have only assumed that
the mapping M was an homeomorphism, and we did not specify that the mapping M was differentiable.
However, in dimension 1, 2, and 3, any pair of homeomorphic smooth manifolds are diffeomorphic! This
surprising property does not hold in higher dimension.
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orientable manifolds2 embedded in the real 3D Euclidean space. For such “simple” surfaces,
the study of their differential properties provides deep insights about their topology, as the
topology of such surfaces have profound connections with differential geometry.

2.2.3 Topology and Differential Geometry

Differential geometry is the study of Riemannian manifolds. Differential geometry, which
deals with metricable notions on manifolds, has some surprising and fundamental links with
topology. The connections arise from a set of theorems of elementary geometry (we refer
the reader to the book on elementary differential geometry of O’Neill for a proof of these
theorems [71]). We first introduce a few notations and definitions.

Definition 2.3 Rectangle and 2-segment
A rectangle R is a region of the 2D plane R : a ≤ u ≤ b , c ≤ v ≤ d, with (u, v) ∈ R2.
The interior R◦ of the rectangle R is the open set a < u < b , c < v < d. A 2-segment is
a transformation from a rectangle R into R3 that is a one-to-one regular mapping from the
interior R◦ of the rectangle R into R3.

Definition 2.4 Rectangular decomposition of a surface C

A rectangular decomposition of a surface C is a finite collection of one-to-one 2-segments
whose images cover C in such a way that if any two intersect, they do so in either a single
common vertex or single common edge.

Theorem 2.1 Rectangular decomposition
Every compact surface C has a rectangular decomposition D(C).

Theorem 2.2 Euler-characteristic of a rectangular decomposition
If D(C) is a rectangular decomposition of a compact surface C, let v, e, and f be the number
of vertices, edges, and faces in D(C). Then the integer (v − e + f) is the same for every
rectangular decomposition of C. This integer χ(C) is called the Euler-characteristic of C.

The fact that a rectangular decomposition is used to compute the Euler-characteristic
of the surface is merely a convenience for the proof of the theorem. Arbitrary polygons
could as well have been used to decompose C. In the resulting polygonal decomposition,
the different polygons would still be required to fit neatly, but they would not have the
same number of sides. An arbitrary polygonal decomposition is called a tessellation, while,
when only triangles are used, the decomposition is called a triangulation of C.

Theorem 2.3 Topological invariance of the Euler-characteristic
If CM and CN are two compact orientable surfaces, χ(CM) = χ(CN) if and only if CM and

CN are homeomorphic.

Thm. 2.3 is of central importance. It states that the Euler-characteristic of a surface
is a topological invariant. Two surfaces that have the same Euler-characteristic share the
same intrinsic topology. However, we note that the Euler-characteristic does not define the
homotopy type of a surface, since the embedding space is being ignored. Particularly, this
implies that a discrete representation of a surface using a polygonal decomposition with the

2A manifold is a topological space such that each of its points has a neighborhood that is homeomorphic
to an open planar disk.
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desired Euler-characteristic might be self-intersecting in the 3D embedding space. We will
discuss this important point later.

The Euler-characteristic is of great practical interest because it can be calculated from
any polyhedral decomposition D of the surface by χ = v − e + f , where v, e and f denote
respectively the number of vertices, edges and faces of the polyhedron D. The Euler-
characteristic of a sphere S is χ(S) = 2 (Fig. 2-1-c). This implies that any surface C with
χ(C) = 2 is topologically equivalent (i.e. homeomorphic) to a sphere and therefore does
not contain any handles. Surfaces with an Euler-characteristic χ(C) 6= 2 have a topology
that is different from that of a sphere. However, the Euler-characteristic does not provide
any information about the localization of the topological differences. Also, Thm. 2.2 states
that the way a surface is decomposed (i.e. tessellated) does not influence its topology. Any
polyhedral decomposition of a surface will encode for the same intrinsic topology.

In fact, any compact, connected, and orientable surface is homeomorphic to a sphere
with some number of handles. This number of handles is a topological invariant called
the genus. For example, a sphere is of genus 0 and a torus is of genus 1. The genus g is
directly related to the Euler-characteristic χ by the formula χ = 2 − 2g. In the case of
multiple surfaces involving K connected components, the total genus is related to the total
Euler-characteristic by the formula: χ = 2(K − g).

2.2.4 On Topological Defects

We have already mentioned that an anatomical structure can be either represented by a
volumetric representation or by a surface representation, the two descriptions being dual
representations. In this work, we call a topological defect any deviation from the spherical
topology. Since we are considering 2D, smooth, orientable, and compact surfaces that are
embedded in the 3D Euclidean space, 3 types of topological defects can be encountered:

• Disconnected components: in the presence of image artifacts, segmentations often
contain several connected components, which might either constitute parts of the
same structure or erroneous pieces of a segmentation.

• Cavities: cavities could be either the result of unexpected anatomical structures that
are located inside the volume of interest, such as tumors, or, most frequently, the result
of image artifacts. Cavities are usually easy to detect and correct retrospectively if
interpreted as connected background components.

• Handles or holes: a handle or hole in a volume or a surface is identified whenever
there exists a continuous loop that cannot be homotopically deformed onto a point
within the manifold itself. These loops are called non-separating loops and constitute
a fundamental concept of algebraic topology [48]. Particularly, these are used to define
the fundamental group of an object [48, 62].

Finally, we note that for each defect present in an object (i.e. the foreground object)
there exists a corresponding defect in the background: a disconnected foreground com-
ponent can be interpreted as a background cavity; a foreground cavity is a disconnected
background component; and a handle in a foreground component defines another handle in
the background component.
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This foreground/background duality provides a methodology to correct a topological
defect [56, 44] (i.e. any deviation from the spherical topology). For instance, the presence
of a handle in an object could be corrected by either cutting the handle in the foreground
object, or cutting the corresponding handle in the background object. Cutting the back-
ground handle can be interpreted as filling the corresponding hole. We will make use of this
dual representation in Chapter 5.

2.3 Topology and Discrete Imaging

In order to apply topological concepts to a discrete framework and to define the topology
type (i.e. homotopy type) of digital segmentations, the notion of continuity is transposed
into discrete spaces and discrete objects, such as images and triangulations. This is obtained
by replacing the notion of continuity with the weaker notion of connectivity.

We describe how topological notions can be adapted to the two most common data
structures used in medical imaging: 3D data structures and surfaces. Particularly, we
present the main concept of digital topology, which provides a topological framework over
the set of 3D digital images (see Sect. 2.3.1). In this work, we are interested in generating
accurate surface representations of anatomical structures. For this purpose, we generate
surfaces from segmented 3D volumes. This is achieved by using isocontour surface extraction
methods (see Sect. 2.3.3).

2.3.1 Digital Topology

Digital topology provides an elegant framework that transposes the continuous concepts
of topology to discrete images. In this theory, binary images inherit a precise topological
meaning. In particular, the concept of homotopic deformation, which is required to assign
a topological type to a digital object, is clearly defined through the notion of simple point.
An extensive discussion of these concepts can be found in [62].

In this framework, a 3D image is interpreted as a graph. The vertices of the graph are
the digital points (voxels in the image) and the edges are defined through neighborhood
relations between points. We note that the resulting “discrete” topology is not an instance of
mathematical topology à la Munkres [70] and is somehow independent of standard topology
theory.

In this section, some basic notions of digital topology are presented. The following
definitions are used to define discrete equivalents of topological continuous notions, such as
continuity and homotopic deformations. All definitions are from the work of Bertrand, to
which we refer for more details and proofs [7].

A - Connectivity

A 3D binary digital image I is composed of a foreground object X and its inverse, the
complement X. We first need to define the concept of connectivity, which specifies the
condition of adjacency that two points must fulfill to be regarded as connected. Three
types of connectivity are commonly used in 3D: 6-, 18- and 26-connectivity. Two voxels
are 6-adjacent if they share a face, 18-adjacent if they share at least an edge and 26-
adjacent if they share at least a corner (Fig. 2-2-a). In the following, we note Nn(x) the
n-neighborhood of a point x, i.e. the set of grid points which are n-adjacent to x. We
also set N∗

n(x) = Nn(x) \ {x}. Cn(X) denotes the set of all n-connected components of
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X and Cn(x, X) the set of all n-connected components of X n-adjacent to a point x. The
cardinality of a set S is denoted #S.

In order to avoid topological paradoxes, different connectivities, n and n, must be used
for one digital object X and its complement X. This leaves us with four pairs of compatible
connectivities: (6,26), (6,18), (26,6) and (18,6). In order to distinguish the 6-connectivity
for X associated with the 18-connectivity for X from the 6-connectivity associated with the
26-connectivity for X, a 6+-notation is used for the (6,18) pair of connectivities. Figure 2-
2-b illustrates with a simple 2D example one type of topological paradoxes, known as the
Jordan’s curve paradox. Jordan’s theorem states that every simple closed curve divides
the plane in two compartments, one inside the curve and one outside of it, and that it is
impossible to pass continuously from one to the other without crossing the curve. However,
if the 8-connectivity is used for the blue and red curves in Fig. 2-2-b, they continuously
intersect each-other. In order to avoid such topological paradoxes, a pair of compatible
connectivities (4,8) must be used for both curves. The result yields one continuous curve
and one discontinuous curve. In 3D, the same topological paradoxes appear; therefore,
compatible connectivities must be used for the foreground and the background objects.

Figure 2-2: a) The three different types of connectivity in 3D. b) A simple two-dimensional ex-
ample of the Jordan’s curve paradox: under the 8-connectivity, the two curves are continuous even
though they intersect each other. In order to avoid such topological paradoxes, a pair of compatible
connectivities (4,8) must be used for one curve and the other (one curve becomes discontinuous).
The same topological paradoxes appear in three dimensions and compatible connectivities must be
used for the foreground and background objects. c) Under the 6-connectivity, (n, n) = (6, 26), the
closed loop formed by the black dots cannot be homotopically deformed into a single point. It would
remove a hole in the digital object, since the white dots are n-connected.

One important consequence of the previous requirement is that digital topology does
not provide a consistent framework for multi-label images. No compatible connectivities
can be chosen for neighboring components of the same object. Therefore, digital topology
is strictly limited to binary images.

B - Path, Topological Defect and Elementary Deformation

An n-path π is a sequence (possibly empty) of points x0...xk with xi n-adjacent to xi−1 for
i = 1, ..., k. The path is elementary if all points in the sequence are different except possibly
x0 = xk. An elementary n-path is simple if each point of π has, at most, two n-adjacent
points in π. If x0 = xk, then π is closed. Finally, we note that any path from x0 to xk

contains an elementary path and a simple path from x0 to xk.

Once the concepts of connectivity and path have been introduced, the notion of topo-
logical defect can be defined. Similarly to the continuous formulation (see Sect. 2.2.4),
topological defects in a digital volume are constituted of holes (i.e. handles), cavities, and
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disconnected components. While a cavity in an object X (resp. X) is easily detected as a
finite n-connected (resp. n-connected) component of X (resp. X), the notion of a hole is
not simple to define. The presence of a hole in X (resp. X) is detected whenever there is
a closed n-path (resp. n-path) in X (resp. X) that cannot be deformed in X (resp. X) to
a simple point.

However, we need to clearly define the notion of deformation of a closed n-path. In the
following, P, P ′, P1, P2 and p, u1, u2 denote paths and points respectively. Let p ∈ X
be a point, called the base point. Let γ ⊂ X and γ ′ ⊂ X be two closed m-paths. We say
that γ′ is an elementary n-deformation of γ, noted γ ∼ γ ′, if γ and γ′ are of the form:

γ = pP1u1.P.u2P2p, γ′ = pP1u1.P
′.u2P2p

and:
- for n = 6, we have u1.P.u2,u1.P

′.u2 are included in a unit square (a 2× 2 square).
- for n = 6+, 18, 26, we have u1.P.u2,u1.P

′.u2 are included in a unit cube (a 2 × 2 × 2
cube).
Figure 2-2-c illustrates with a simple example why a 2× 2 square needs to be used with the
6-connectivity. If a 2 × 2 × 2 cube were to be used, the 26-connected white points would
be crossed over. Finally, we say that γ ′ is an n-deformation of γ if there is a sequence of
closed n-paths γ0...γk, such that γ = γ0 and γi−1 ∼ γi for i = 1, ..., k.

C - Geodesic Neighborhoods and Topological Numbers

Definition 2.5 Geodesic Neighborhood The geodesic neighborhood of a point x ∈ X
of order k is the set Nk

n(x, X) defined recursively by:

{
N1

n(x, X) = N∗
n(x) ∩X

Nk
n(x, X) = N1

26(x, X) ∩
⋃
{Nn(y) , y ∈ Nk−1

n (x, X)}
,

Nk
n(x, X) is the set composed of all points y of N ∗

26(x)(x, X)∩X, such that there exists
an n-path π from x to y of length less than or equal to k and all points of π, except possibly
x, belong to N∗

26(x)(x, X) ∩ X. Geodesic neighborhoods can be interpreted as a discrete
equivalent of the notion of open sets (see [37]).

Using these geodesic neighborhoods, the topological numbers relative to the point x and
the set X can be computed:

Definition 2.6 Topological numbers

T6(x, X) = #C6[N
2
6 (x, X)]

T+
6 (x, X) = #C6[N

3
6 (x, X)]

T18(x, X) = #C18[N
2
18(x, X)]

T26(x, X) = #C26[N
1
26(x, X)]

The topological numbers are the number of connected components within certain geodesic
neighborhoods. These numbers have been introduced by Bertrand in [7] as an effective way
to characterize the topology type of a given voxel. The values of Tn(x, X) and Tn(x, X)
characterize isolated, interior and border points as well as different kinds of junctions (see
tab. 2.1). Their efficient computation, which only involves the 26-neighborhood, is described
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Figure 2-3: a) The 26-neighborhood of a digital object X. Red points correspond to the foreground
object X, while blue points correspond to the background object X. b) The geodesic neighborhood
N2

6 (x, X) of the point x. c) The geodesic neighborhood N 3
6 (x, X) of the same point x. Note the

crucial difference between both neighborhoods circled in red. The circled voxel explains why the
topological numbers T6 and T6+ are different; we have T6(x, X) = 2 and T6+(x, X) = 1. Conse-
quently, the point x will be simple for the connectivity 6+ but not for the connectivity 6.

in [8]. Figure 2-4 provides several examples of digital configurations with their associated
topological numbers. N .

n(x, X) denotes Nk
n(x, X), where k equals 2,3,2, and 1, when n is

6,6+, 18, and 26 respectively. Using this notation, we have Tn(x, X) = #Cn[N .
n(x, X)].

Table 2.1: Voxel topology types and topological numbers

Tn(x, X) Tn(x, X) Topology Type of x ∈ X

Tn = 0 isolated point
Tn = 0 interior point

Tn = 1 Tn = 1 border point (simple point)
Tn = 2 Tn = 1 curve point
Tn > 2 Tn = 1 curves junction
Tn = 1 Tn = 2 surface point
Tn = 1 Tn > 2 surfaces junction
Tn > 1 Tn > 1 surface(s)-curve(s) junction

D - Simple Point and Homotopic Deformation

Definition 2.7 Simple point A point of a binary object is simple if it can be added or
removed without changing the topology of both the object and the background, i.e. without
changing the number of connected components, cavities and handles of both X and X.

A simple point is easily characterized by the two topological numbers Tn(x, X) and
Tn(x, X): a point is simple if and only if Tn(x, X) = Tn(x, X) = 1.

The definition of a discrete homotopy follows from the concept of simple point.

Definition 2.8 Homotopic deformation We define a homotopic deformation of an ob-
ject X as a sequence of deletions or additions of simple points.
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Finally, two objects X and Y share the same homotopy type if there exists a sequence
of transformations X0...Xk and a sequence of points x1...xk, such that X0 = X and
Xi−1 = Xi

⋃
{xi} or Xi−1 = Xi\{xi} and the point xi is simple relative to Xi for i = 1, ..., k.

Figure 2-4: Examples of topological numbers for different digital configurations. The red points
correspond to the foreground object X. a) A simple point: Tn = Tn = 1. b) A non-simple point,
Tn = 1, Tn = 2. c) In this complex configuration, the point x will be simple or not depending on the
chosen connectivity. The point x is simple only when the chosen connectivity is n = 6+ (implying
that n = 18); in this case, we obviously have: Tn = 1, Tn = 1. For all other choices of connectivity,
the point is non-simple, but the reasons differ. For n = 6 (and n = 26), we have Tn = 4, Tn = 1. In
the other two cases (n = 18 and n = 26), we have Tn = 1 but Tn = 2.

One final important comment needs to be made. Arbitrary digital homotopic deforma-
tions might not be able to deform any initial object into another one that shares the same
homotopy type. To explicate this point, let’s consider two spherical objects, X1 and X2

with χ(X1) = χ(X2) = 2, the first one being strictly included in the second one (X1 ⊂ X2

and X1 6= X2). We then consider the set SX1→X2
of homotopic dilatations from X1 into

X2 (i.e. successive additions of simple points x ∈ X2). Our comment implies that not all
deformations of SX1→X2

will be able to deform the object X1 into the object X2. Some
deformations d ∈ SX1→X2

might generate some digital objects Xd = d(X1) with Xd ⊂ X2

and Xd 6= X2, such that every point x ∈ X2 \Xd is non-simple.

This limitation is little known and has been, overtly or covertly, ignored in most (if not
all) of the literature. Most often, this limitation can be disregarded as only highly random
homotopic deformations will exhibit such behaviors. However, images that contain a lot of
noise might seriously limit the applicability of digital homotopic deformations.

2.3.2 Surfaces in Discrete Imaging

We now turn to the transposition of continuous topological concepts to discrete surface rep-
resentations. There are essentially two ways of representing a surface in discrete imaging.
Surfaces can be either represented explicitly, by using parameterized models, or implicitly
as the level set of some function defined in the 3D embedding space. Both types of represen-
tations have advantages and disadvantages, and have been extensively used for the purpose
of medical image segmentation [104, 61, 18, 16, 39]. Particularly, the theory of active con-
tours (or deformable models) constitutes a general technique of matching a “deformable”
surface onto an image by means of energy minimization. This popular and powerful image
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segmentation method is presented in the next section.

A - Explicit Representations

An explicit representation models a surface by a set of vertices, edges, and faces, associated
with a chosen parameterization of each face. The set of vertices, edges, and faces composes
the polyhedral representation of the surface. The parameterization of the faces determines
the exact geometry of the surface. For instance, tessellations correspond to linear parame-
terizations of each face, while splines use higher-order approximations. Triangulations are
a special kind of tessellation, in which each face is a triangle.

The topological invariance of the Euler-characteristic in Thm. 2.3 implies that explicit
models unambiguously encode the intrinsic topology of the surfaces. Given a specific poly-
hedral decomposition, the Euler-characteristic of the surface is easily computed using the
formula χ = v−e+f . For instance, a connected surface with an Euler-characteristic χ = 0 is
homeomorphic to a torus, and possesses a single handle. However, the Euler-characteristic
does not provide any information on the location of the handle.

While the intrinsic topology of the surface is directly encoded in the polyhedral de-
composition, there is no guarantee that the surface representation is not self-intersecting.
As previously mentioned, the topological equivalence defining the intrinsic topology of a
geometric entity ignores the embedding space. Consequently, additional precaution must
be taken in order to ensure that the discretization of a surface does not generate self-
intersections. Figure 2-5 illustrates this point with a simple 2D closed curve. Depending on
the resolution of the discretization of the continuous curve, self-intersections may appear in
the embedding space, even though the Euler-characteristic of the polyhedral decomposition
does not change (χ = v − e = 0). The self-intersection problem is important when the
surfaces are iteratively deformed in order to match a targeted structure. We will discuss
this point when we present the theory of active contours in the next section.

Figure 2-5: a) a simple closed curve with the topology of a circle. b) One example of a polyhedral
decomposition of the curve using 25 vertices and edges. The corresponding Euler-characteristic
χ = v − e = 0 is the one of a circle. c) Another discretization of the same curve using 14 edges
and vertices. Note that the Euler-characteristic is still the one of a circle χ = 0, even though the
discrete representation of the curve self-intersects in the 2D embedding space. d) A close-up of the
self-intersecting representation.

Finally, we note that explicit representations can approximate surfaces at any level of
precision, by using more refined meshes. Contrary to the theory of digital topology that
constitutes a discrete approximation of the continuous space, and is therefore limited by
the resolution of the 3D digital images, explicit representations can approximate accurately
any surface by using high-resolution meshes.
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B - Implicit Representations

Implicit models encode the surface of interest Γ as the level set of a higher-dimensional
function φ defined in the embedding space. The function φ, defined on a 3D voxel grid, is
usually the signed distance function of the surface with the contour being the zero level set
of φ: Γ = φ−1(0).

This type of representation has several advantages. First, no explicit representation
and no parameterization are required. In the theory of active contours, this will prove
to be a huge advantage as implicit representations can naturally change topology during
the deformation of the model. Self-intersections, which are costly to prevent in parametric
deformable models, are avoided and topological changes are automated. Also, many funda-
mental properties of the surface Γ, such as its normal or its curvature, are easily computed
from the level set function φ.

However, these models can only represent manifolds of codimension one without borders,
such as closed curve in R2 or closed surfaces in R3. For the purpose of segmenting anatomical
structures, the use of such representations is not a limitation. Another - more subtle
- drawback of implicit representations is that, even though level sets achieve sub-voxel
accuracy, the exact location of the contour depends on the image resolution. For instance,
in the case of two self-touching banks of a sulcus, the finite image resolution and the
topological constraint necessitate some voxels to be labeled as outside voxels (ideally, these
voxels should be the ones belonging to CSF), therefore imposing a constraint on the location
of the surface. Other limitations of the implicit representations are presented in the next
section.

So far, one has not specified how implicit representations can ensure that the topology
of the encoded surface is the correct one. Since implicit representations make use of the
underlying 3D voxel grid (through a signed distance function) to encode the contour of
interest, digital topology can be used to specify the topology of the contour. The foreground
object X is simply defined as the set of negative grid points (i.e. X = {x ∈ R3 | φ(x) ≤ 0}),
and the background object X as the set of strictly positive grid points (i.e. X = {x ∈
R3 | φ(x) > 0}). Then, given a choice of compatible connectivities, the topology of the
contour is determined unambiguously.

Finally, we need to explain how we can generate an explicit representation from an
implicit surface model. This leads us to the theory of isocontour extraction.

2.3.3 From Images to Surfaces: Isocontour Extraction

In the previous section, we described the manner in which topology can be adapted to the
two most common data structures used in medical imaging. The ability to go from one
representation to the next arises as a difficulty. As described in the following sections, it
is possible to generate triangulations from 3D binary digital segmentations, such that the
resulting topology of the surfaces is consistent with the choice of digital topology. However,
we note that it is not always possible to produce a digital binary volume, whose topology is
similar to that of a given triangulation: digital topology constitutes a discrete approximation
of the continuous space at a finite resolution, while triangulations approximate continuous
surfaces at any level of precision.
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A - The Original Marching Cubes Algorithm

The marching cubes (MC) algorithm was first introduced by Lorensen and Cline in 1987 [59]
as a way to generate a polygonal decomposition from a scalar field sampled on a rectilinear
grid. Given an isovalue, the MC algorithm extracts quickly a representation of the isosurface
of the scalar field. Formally, an isosurface is defined as a surface that connects all the points
of a 3D space that have the same associated function value; this function value is called the
isovalue.

Figure 2-6: The 15 representative cases of the marching cubes algorithm. This figure was taken
from [46].

The MC algorithm first partitions the data into a set of cubic (or rectilinear) cells, the
cell vertices being the grid points. Based on the relative polarity of their scalar value (above
or below the isovalue), each vertex is assigned a binary label, which indicates whether the
grid point is inside or outside the isosurface. Then each cubic cell is processed sequentially.
Patches that approximate the isosurface are produced within each cube, and the polygon
patches are naturally joined together to form the final isosurface representation.

The tiling generated for each cubic cell is based on the assumption that there is exactly
one surface intersection at a cube edge that connects oppositely labeled vertices, and there
is no intersection if an edge connects two vertices of the same polarity. Also, no isolated
components can be fully contained inside a cubical cell. Basically, these assumptions state
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that the resolution of the isosurface is that of the rectangular grid. Each vertex in a cubic
cell has one of two possible labels, resulting in only 28 = 256 ways an isosurface can intersect
a cube. Using rotational and complementarity invariance properties, the 256 cases can be
reduced to 15 major cases shown in Fig. 2-6. The MC algorithm extracts a triangulated
surface whose vertices lie on the edges of the cubic lattice, generating 0 to 4 triangles per
cell. The exact location of each vertex is determined by linear interpolation from the values
of the cubic lattice.

Figure 2-7: Left: An incorrect tiling occurring on an ambiguous face in between case 12 and case
3 with the 256-lookup table. Right: a) An ambiguous face. b) One possible tiling for the 6- or
6+-connectivity. c) One possible tiling for the 18- or 26-connectivity. d) An ambiguous cube. e)
One possible tiling for the 6-, 6+ or 18-connectivity. f) One possible tiling for the 26-connectivity.
The original MC algorithm, introduced by Lorensen and Cline, generate tilings corresponding to b)
and e).

This method is quite fast (one pass on the cubic grid is necessary to generate a triangula-
tion), but the resulting triangulation might not reflect the topology of the underlying digital
grid and may produce tiling inconsistencies. The left figure in Fig. 2-7 shows an ambiguous
configuration that produces an inconsistent tiling. These inconsistent tilings are related to
the so-called ambiguous face and ambiguous cube configuration (Fig. 2-7-right-a,d). The
major differences between different MC algorithm implementations lie in how they choose
between the two possible tilings for the ambiguous face and cube cases. Extensive discussion
of isocontour extraction algorithms can be found in the thesis of Han [47].

B - Connectivity-Consistent Marching Cubes Algorithm

The original marching cubes formulation is not able to generate topologically-correct iso-
surfaces, since the resulting tessellations may contain tiling and topological inconsistencies.
In [46], the authors proposed a connectivity-consistent marching cubes algorithm by build-
ing a specialized case table for each type of digital topology. In this MC algorithm, the tiling
for the ambiguous cases is determined by the choice of connectivity used for the underly-
ing 3-dimensional cubic lattice. The coordinates of surface intersections are still computed
using linear interpolation, but the resolution of ambiguous faces and cubes depends on the
pre-defined digital connectivity rule. In particular, Fig. 2-7c,e correspond to the chosen
tilings when the black points are assumed to be 18-connected, and Fig. 2-7c,f illustrate the
selected tilings when the black points are assumed to be 26-connected. Figure 2-8 illustrates
that the mesh generated by this algorithm depends on the chosen connectivity pair. In this
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example, four different meshes are obtained from the same level set function.

Figure 2-8: Mesh extracted from the same level set function by the topology-consistent marching
cubes algorithm, when using different connectivity pairs. The voxel representations on the right
correspond to two front views, one front left view and one front right view, of the binarized level set
function (relative to the same isovalue used in the topologically-consistent marching cubes).

2.4 State of the Art in Segmentation under Topological Con-

straints

The segmentation of anatomical structures under topological constraints has been an in-
tensive area of research over the past years. Many segmentation algorithms are able to
identify and locate precisely these structures, although without constraining the topology.
Those include active contours [64, 65, 18, 104, 106, 103] and digital techniques [74, 79, 100,
29, 100, 107]. The resulting segmentations often contain several topological defects, such as
disconnected components, cavities or handles, which do not correspond to the true anatomy
of the structures of interest.

Methods for producing topologically-correct segmentations can be broadly divided into
two categories. A first set of approaches directly incorporates topological constraints into
the segmentation process. These methods deform iteratively a model carrying the desired
topology onto the desired anatomical structure while preserving the model topology. These
“intuitive” methods have been intensively used for the purpose of medical imaging seg-
mentations. Yet, the model evolution is often difficult to control and the accuracy and
correctness of the final segmentation difficult to guarantee.

Recently, new approaches have been developed to correct retrospectively the topology
of an already segmented image. These techniques, which do not impose any topological
constraints during the segmentation process, can focus on obtaining more accurate mod-
els. However, while these methods guarantee that the final segmentations have a spherical
topology, the accuracy of the topological corrections might not be one which that a trained
operator would achieve. In particular, these methods fail to integrate statistical and geo-
metrical information into the topology correction process, and the automatic extraction of
accurate and topologically-correct segmentations is still a challenging problem.

2.4.1 Topologically-Constrained Segmentations

The topology-enforcing techniques proceed by deforming iteratively a model of known topol-
ogy onto a targeted structure, while preserving its topology. Several techniques have been
used for the segmentation of anatomical structures, with the topological constraint taking
different forms depending on the chosen method.
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A - Active Contours

Active contours, also known in the literature as snakes, active surfaces, deformable mod-
els/contours/surfaces, represent a class of popular and powerful medical image segmentation
methods due to their ability to combine low-level image information with high-level prior
knowledge about object shapes [64, 103]. They constitute a general technique of matching a
deformable model onto an image by means of energy minimization. A deformable model is
a curve, a surface, or a higher-dimensional geometric object, that deforms within an input
image subject to both internal and external forces and external constraints. Since their
introduction by Kass et al. in [54], active contours have been applied in many computer
vision research areas (image segmentation [12, 104, 61, 18, 16, 39], region tracking [68, 73],
shape from stereo [25, 51, 24, 40], shape from shading [35, 105], and shape from point
clouds [5, 93, 108], etc.). Comprehensive studies can be found in [64, 103, 65].

This methodology has several remarkable features. Due to its high versatility in terms
of the choice of a shape representation and the design of the evolution equation, active
contours can be applied to various types of input data (n-dimensional images, unstructured
point sets, . . . ) and to a large range of problems. Also, the use of a continuous geometric
formulation has many benefits. It leads to a neat mathematical framework; it provides sub-
pixel accuracy; it correctly models the continuity of shape, and allows one to incorporate
some regularity assumptions or some complex prior information about the target shape,
thereby yielding a good robustness to noisy and incomplete data.

In this dissertation, we focus on 2D surfaces evolving in 3D images. In 3D, an active sur-
face is represented by a family of closed surfaces Γ : t ∈ R+ → Γ(t), where ∀t ∈ R+, Γ(t) is a
surface in R3 that can be parameterized Γ(t) : p ∈ R2 → Γ(p, t) = [x(p, t), y(p, t), z(p, t)] ∈
R3. The variable t ∈ R+ parameterizes the family of surfaces Γ and p ∈ R2 parameterizes
each surface Γ(t) at a given time t. The geometric shape of the evolving contour is fully
determined by the normal component of the driving force, while the tangential compo-
nent only affects the parameterization. Consequently, the evolution equation can be always
written as:

∀t ∈ R+ ∀p ∈ R2 ∂Γ(p, t)

∂t
= F (Γ(p, t), t)n(Γ(p, t), t),

where F (Γ(p, t), t) is a scalar function evaluated at location Γ(p, t) and n(Γ(p, t), t) rep-
resents the outward normal to the closed contour Γ(t) at location Γ(p, t). The vector field
v(x, t) = F (x, t)n(x, t) is called the velocity field, and is designed to drive the evolving
contour towards the desired boundary.

As we have already seen in Sect. 2.3.2, surfaces can either be represented explicitly, by
using parameterized models, or implicitly as the level set of a 3D function defined on the
embedding space. In the theory of active contours, this leads to two different implementa-
tions. The former encodes the manifold of interest with an explicit representation using a
Lagrangian formulation, while the latter represents implicitly the contour as the level set
of a function defined on higher-dimensional manifold in an Eulerian formulation [72]. We
refer to the dissertation of Pons for an in-depth discussion of these concepts [77].

A.1 - Explicit representations

Explicit representations correspond to the type of parameterized representations proposed
in the original snake model of Kass, Witkin and Terzopoulos [54]. Other types of param-
eterized representations are found in the literature: finite elements [14, 66], B-spline [82],
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Fourier harmonics [90], superquadrics [94, 4, 5], . . .

Parameterized models maintain an explicit representation of the contour and preserve
the intrinsic topology of the initial contour. However, the preservation of the whole topol-
ogy requires also the prevention of self-intersections, which proves to be computationally
intensive and requires elaborate methods to detect and prevent surface intersection during
the evolution. To illustrate this point, let’s consider an active contour modeled by a tessel-
lation. A straight-forward implementation of surface self-intersections has a computational
complexity of f2, where f is the number of faces in the tessellation. Although the use of
a coarsely discretized spatial lookup table will reduce the number of faces to be tested,
resulting in a linear time complexity, this process is time-consuming and drastically slows
down the active surface evolution [16, 61].

In addition, the preservation of the initial topology is often a strong limitation to most
explicit models, since explicit representations cannot change their topology during the evo-
lution in order to fit the data topology. This is one important reason why the level set
representation has received much interest in the deformable models literature. Several at-
tempts have been made to overcome this problem. McInerney and Terzopoulos [65, 67] have
introduced the concept of T-snakes and T-surfaces, which are some topology adaptative
deformable curves and triangulations. However, their approach is limited to a specific type
of motion, where the model inflates or deflates only. Lachaud and Montanvert [57] propose
a method based on the concept of δ-triangulation. Their approach is computationally inten-
sive. A length parameter δ is used to control the sampling of the triangulation and to detect
self-intersections, by monitoring the distance between pairs of neighbor and non-neighbor
vertices. Delingette and Montagnat [20, 21] propose to modify the topology of an evolving
simplex mesh with some elementary topological operators, but their approach needs manual
interaction in 3D. Thus, a fully automatic and efficient handling of topology changes using
explicit models remains an open issue.

A.2 - Implicit representations

Geometric active contours (i.e. level sets), which have been introduced by Caselles et
al. [12], offer many advantages over explicit representations. In addition to their ease of
implementation, level sets do not require any parameterization of the evolving contour.
Self-intersections, which are costly to prevent in explicit deformable models, are naturally
avoided and topological changes are automated. Also, many fundamental properties of the
active contours, such as its normal or its curvature, are easily computed from the level set
function. Last but not least, the theory of viscosity solutions [15] provides robust numerical
schemes and strong mathematical results to deal with the evolution of the contour.

However, the level set formulation has several disadvantages that limit its applicability.
First, the level set formulation can only represent manifolds of codimension one without
borders, such as closed curve in R2 or closed surfaces in R3. Also, the representation
of the contour of interest using the level set of a function defined on higher-dimensional
manifolds leads to implementations that are much more computationally expensive than
explicit approaches. Some methods have been proposed to alleviate this problem, such as
the narrow band method [1]. In this methodology, the function encoding the active contour
is updated only in a small neighborhood (i.e. a narrow band) of the active contour, and the
neighborhood is updated iteratively throughout the level set evolution.

Another shortcoming of the level set formulation is the point-wise correspondence prob-
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lem. The implicit formulation and the absence of parameterization result in the loss of
the point-wise correspondence during the evolution. Some recent work proposed a method,
based on a system of coupled Eulerian partial differential equations, to overcome this limi-
tation [76, 77].

The ability to automatically change the topology of the active contour is often pre-
sented as an advantage of level set methods over explicit deformable models. However,
this behavior is not desirable in some applications. This is typically the case in biomedical
image segmentation, where the topology of the target shape is prescribed by anatomical
knowledge. In order to overcome this problem, a topology-preserving variant of the level
set method has been proposed [46]. Their method is based on the theory of digital topol-
ogy and uses the underlying embedding space to constraint the topology of the interior of
the level set. However, the strict topology preservation necessitates an initialization of the
active contour that is close to its final configuration in order to avoid topological barriers
that can easily generate large geometrical errors. In the case of complex structures, like the
cortical surface, such initialization proves to be extremely difficult. For this purpose, Han
et al. have designed a complex algorithm to correct retrospectively the topology of a binary
segmentation, thereby providing retrospectively an accurate initialization of the geometric
active contours [44].

In the next two paragraphs, we present in more details the level set method. The
standard level set formulation is presented first, followed by the topology-preserving method
of [46].

A.2.a - The Standard Level Set Formulation

The level set method models the evolution of an active contour Γ : t ∈ R+ → Γ(t),
where Γ(t) is a closed and embedded hypersurface in Rn, by the level set of a function
defined on Rn. Although many functions could be chosen to represent the active contour
Γ, the signed distance function is preferred for its stability in numerical computations.

In more details, the moving contour Γ is represented by a level set function φ : Rn×R+ →
R such that:







φ(x, t) < 0 if x is inside Γ(t)
φ(x, t) = 0 if x ∈ Γ(t)
φ(x, t) > 0 if x is outside Γ(t)

A deformation of Γ under the velocity field v:

∂Γ(x, t)

∂t
= v(x, t)

corresponds to the level set formulation:

∂φ(x, t)

∂t
+ v(x, t).∇φ(x, t) = 0.

One possible implementation of the level set evolution using an explicit time step is described
in Alg. 1.

A number of points need to be explicated. The above procedure updates all grid points
in the image, when only the points close to the current active contour need to be updated.
Some methods have been proposed to alleviate this problem, such as the narrow band
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method [1]. The grid points are updated only in a small neighborhood of the active contour.
Also, in the level set formulation, the stability of the numerical evolution depends cru-

cially on the chosen numerical schemes. The gradients and other derivatives require adapted
numerical schemes, which depend on the type of velocity field or the type of partial differ-
ential equation to be updated.

Algorithm 1 Standard level sets

for all iterations do
for all grid points x do

Compute the new value of the level set function at (t + ∆t)
φ(x, t + ∆t) = φ(x, t) + ∆t v(x, t).∇φ(x, t)
if necessary then

Reinitialize the distance function φ.

Finally, we note that the distance function φ needs to be regularly reinitialized during
the evolution of the active contour. Some methods have been proposed to avoid this costly
reinitialization step [41]. We refer the reader to the dissertation of Pons for more details [77]
on the theory of level set.

A.2.b - Topology-Preserving Level Sets

The ability to automatically handle topology changes is a long-acknowledged advantage
of the level set method over explicit deformable models, but may not be desirable in some
applications where some prior knowledge of the target topology is available. This is typi-
cally the case in biomedical image segmentation, where the topology of the organs and their
mutual topological relations is prescribed by anatomical knowledge.

In order to overcome this problem, a topology-preserving variant of the level set method
has been proposed [46]. The level set function is iteratively updated with a modified pro-
cedure based on the concept of simple point, borrowed from digital topology (see Sect. 2.3.1);
the final mesh is obtained by a topology-consistent marching cubes algorithm (see Sect. 2.3.3).
This method ensures that the resulting mesh has the same topology as the user-defined ini-
tial level set.

Algorithm 2 Topology-preserving level sets. Han et al. [46]

for all iterations do
for all grid points do

Compute the new value of the level set function
if the sign does not change then

Accept the new value
else {sign change}

Compute the topological numbers
if the point is simple then

Accept the new value
else

Discard the new value
Set instead a small value of the adequate sign

Han et al. [46] have used the concept of simple point to design a topology-preserving
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variant of the level set framework. The binary object of interest is the interior of the contour,
i.e. the domain where the level set function is strictly negative: X = {x | Φ(x) < 0}. The
digital topology of X is preserved during the evolution by means of a modified update
procedure detailed in Algorithm 2. This approach prevents digital non-simple grid points
from changing sign, thereby retaining the initial digital topology throughout the level set
evolution.

For this method to be useful, it must be complemented with a topology-consistent iso-
contour extraction algorithm. Standard marching squares or marching cubes algorithm [60]
do not generate topologically-consistent tessellations. In order to alleviate this problem,
Han et al. have designed a modified connectivity-consistent marching contour algorithm,
by building a specialized case table for each type of digital topology (see Sect. 2.3.3). Using
the topology-preserving level set algorithm and the topology-consistent marching contour
algorithm in conjunction, with the same digital topology (n, n) throughout the process,
guarantees that the output mesh is topologically equivalent to the user-defined initial level
set.

A.3 - Limitations of active contour methods

All these methods have the advantage of allowing the user to specify the proper topology
and not allowing it to change. Unfortunately, the energy functionals driving the defor-
mation are highly non-convex and the attainment of the desired final surface most often
requires an initialization of the model that is close to its final configuration. Furthermore,
these methods often fail to represent accurately deep folds in the surface. In addition, local
topological constraints can easily lead to large geometric inaccuracies in the final cortical
representation that are difficult to correct retrospectively. In the case of cortical segmen-
tation, this can occur, for instance, when an erroneous segmentation results in a bridge
connecting two banks of a sulcus. In order to maintain the correct topology, the surface
must “drape” over the incorrectly classified region. Finally, one more subtle drawback of
implicit representations is that even though level sets achieve sub-voxel accuracy, the exact
location of the contour depends on the image resolution. For instance, in the case of two
self-touching banks of a sulcus, the finite image resolution and the topological constraint
necessitate some voxels to be labeled as outside voxels, therefore imposing a constraint on
the location of the surface. To solve this problem, Han et al. [45] have implemented a mov-
ing grid algorithm, which aims at optimally deforming the underlying 3D grid for accurate
implicit representations.

B - Digital Homotopic Deformation

Similarly to active contour models, digital approaches [62, 78, 10, 6] deform an initial re-
gion with a known given topology (typically a single voxel carrying a spherical topology),
by addition/deletion of points, minimizing a global energy functional while preserving the
correct digital topology. Regions are grown or shrunk by adding points that will not change
the region topology. Most of these methods are based on the theory of digital topology and
the notion of simple point that we have reviewed in Sect. 2.3.1.

The limitations of these methods are the same as those of active contours. The final
segmentation is strongly influenced by the order in which the region is deformed, and also by
local topological constraints which potentially lead to large geometrical errors. Particularly,
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the locations of the final cuts (i.e. the locations of the non-simple points) strongly depend
on the order in which the points are added to the topologically constrained region. Also,
these methods are limited by the resolution of the image and might not be able to represent
deep folds in the structure. Finally, we note that the theory of digital topology does not
provide a consistent framework for multi-labeled images and is therefore limited to binary
images. Some approaches [78, 6] ignore this issue by assigning the same connectivity rule to
all structures of interest - in which case, the connectivity has to be chosen equal to (6,26).
However, in this inconsistent framework, it is not possible to guarantee all voxels to be
assigned to a specific structure. Also, the detection of topological changes, i.e. the location
of non-simple points, is more challenging, since topological numbers cannot be computed
in a consistent manner.

C - Segmentation by Registration

Finally, some approaches have been proposed to match a template with a given topology
onto a specified MRI image [13, 53, 6]. These methods have the strong advantage of being
able to enforce complex topology in the segmentation process, and to encode the spatial
relationships that exist in between structures [6]. Yet, the design of elaborate templates
that include several structures with the correct topology is challenging.

Similarly to other topologically-constrained methods, the topological preservation might
lead to large geometrical errors in the final segmentation. Moreover, the projection of the
template topology onto a given image is a non-trivial task [53].

D - Summary of the Limitations of Topologically-Constrained Segmentations

Approaches that directly integrate the topological constraint into the segmentation process
have the advantage of allowing the user to explicitly specify the topology of the final seg-
mentation. In the case of segmentation by registration, full brain models containing several
structures can be matched onto a targeted image.

However, these methods are highly sensitive with regard to their initialization, and
accurate final configurations most often require an initialization of the models that is close
to its final configuration. One of the main reasons is that the energy functionals driving
the deformation are most often highly non-convex and the evolution easily trapped in local
minima. The design of more elaborate energy functionals generally offers a solution to this
problem. Another reason is that topologically constrained evolution often leads to large
geometric errors, due to the topological constraint and the presence of topological barriers.
This is the case for methods that aim at segmenting the cortex starting from one single
object located deep inside the cortical surface. Large topological barriers are often generated
during the template deformation leading to inaccurate final segmentations. This is mostly
a result of the presence of noise in the image and of the fact that topologically constrained
segmentation prevents the formation of cavities (easy to detect and suppress) as well as the
formation of handles.

Finally, we note that digital methods, as well as implicit representations that use the 3D
embedding space to encode the surface of interest, are constrained by the finite resolution
of the 3D grid. This might be problematic for the segmentation of the pial surface (the
surface separating gray matter from cerebrospinal fluid), as opposite banks of a sulcus are
often in tangential contact.
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Topologically constrained segmentation methods and their limitations is the focus of
Chapters 3 and 4. In Chapter 3, using the theory of digital topology, we introduce a new
concept that extends and generalizes the restrictive notion of simple point. Simple points
preserve the topology of a digital object during a deformation. However, the generation of
cavities or disconnected components as well as the formation of handles is prevented. The
extension of the concept of simple point to multi-label images, which we call multisimple
point, ensures that no topological defects are generated while splitting or merging th e
components of the object.Based on this concept, in Chapter 4, we then introduce a new
active contour framework that is more flexible than topology-preserving level sets. This
algorithm introduces a fine degree of control over topological changes in level-set-based
image segmentation.

2.4.2 Retrospective Topology Correction

Recently, new approaches have been developed to correct retrospectively the topology of
an already-segmented image. These techniques, which do not impose any topological con-
straints on the segmentation process, can focus on attaining more accurate models. Many
segmentation techniques, using local intensity, prior probabilities, and/or geometric infor-
mation regardless of topology, will be able to generate accurate cortical surfaces, with few
topological inconsistencies.

These methods can be divided into two main classes: volume-based methods that work
directly on the volume lattice and correct the topology by addition/deletion of voxels [89,
56, 44], and surface-based methods that aim at modifying the tessellation by locating and
cutting handles [28, 43].

A - Volume-based Approaches

Most volume-based approaches have been specifically designed to correct the topology of
the cortical surface.

In pioneering work, Shattuck and Leahy proposed a method to remove all the handles
from a binary white matter segmentation of the brain [89]. They examine the connectivity
of the segmentation to detect topological defects and minimally correct them by changing
as few voxels as possible. One drawback of their approach is that the “cuts”, which are
necessary to correct the topological defects, can only be oriented along the Cartesian axes
and give rise to “unnatural” topological corrections. Their method is based on the theory
of digital topology but is limited to the 6-connectivity and has not been generalized for any
other connectivity rule.

Inspired by their work, Han et al. developed an algorithm to correct the topology of a
binary object under any digital connectivity [44]. They detect handles by graph analysis,
using successive foreground and background morphological openings to iteratively break the
potential topological defects at the smallest scales. Contrary to the approach of Shattuck
and Leahy, “cuts” are not forced to be oriented along cardinal axes. However, topological
corrections at a specific scale depend on the choice of filter, either foreground or background
morphological filter, which fails to evaluate simultaneously the effect of two complementary
solutions (i.e. cutting the handle or filling the corresponding hole) on the corrected seg-
mentation.
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Kriegeskorte and Goeble use a region growing method prioritized by the distance-to-
surface of the voxels in order to force the cuts to be located at the thinnest part of each
topological defect [56]. The same process is applied to the inverse object, offering an al-
ternative solution to each cut. An empirical cost is then assigned to each solution and
the final decision is the one minimizing the global cost function. It is important to note
the limitations of methods that rely on distance ordering maps. For instance, in 2D, the
distance from the object boundary can always help find the thinnest part of a non-uniform,
ring-shaped object. Unfortunately, this same effect does not hold in 3D if the ring-shaped
object is actually a flat 3D object. Yet, in the case of cortical segmentations with “few”
flat regions, the distance ordering provides a good solution for the location of topological
defects at the thinnest parts of the volume.

B - Surface-based Approaches

Approaches of the other type operate directly on the triangulated surface mesh.

Guskov and Wood [43] locate the topological defects present in the tessellation by sim-
ulating wavefront propagation on the tessellation. A selected vertex is used to initialize a
region growing algorithm, which detects loops (i.e. topological defects) in the triangulation
where wavefronts meet. Topological corrections are obtained through the use of opening
operators on the triangle mesh, resulting in a fast method that depends on the initially
selected vertex.

In a similar work, Jaume [50] identifies minimal loops in the volume by wavefront prop-
agation. This method assumes that the initial triangulation was generated through the use
of a topologically-consistent algorithm (see sect 2.3.3). The minimal loops are then used
to identify non-simple voxels in the volume, which are consequently deleted. Again, this
approach orients the “cuts” along the Cartesian axes and generates “unnatural” topological
corrections.

Fischl et al. [28] proposed an automated procedure to locate topological defects by
homeomorphically mapping the initial triangulation onto a sphere. Topological defects are
identified as regions in which the homeomorphic mapping is broken and a greedy algorithm
is used to retessellate incorrect patches, constraining the topology on the sphere S while
preserving geometric accuracy by a maximum likelihood optimization. In this approach, all
possible edges in a defective region are ordered using some measure; each edge is sequentially
added to the existing tessellation if and only if it does not intersect any of the existing or
previously added edges.

Although this approach can attain reasonable surfaces in many cases, it is worth noting
that the information necessary to evaluate the “goodness” of an edge does not exist in
isolation, but only as a function of the tessellation of which the edge is a part. This is a
critical point, as it implies that a greedy algorithm cannot in general achieve geometrically
accurate surfaces, as the necessary information does not exist at the time the edge ordering
is constructed. Another considerable subtlety needs to be noted. Every vertex in the
original defect, even those present due to segmentation inaccuracies, will be present in
the final retessellation, resulting in extremely jagged patches that only a strong smoothing
would correct. As a consequence, the final configuration will approximately correspond to
an average of all vertex positions in the original configuration. Finally, we note that, even
though the final intrinsic topology will be the correct one (the one of a sphere, corresponding
to an Euler number X = 2), the proposed method does not guarantee that the final surface
will not self-intersect.
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C - Summary of the Limitations of Retrospective Topology Correction Algo-
rithms

Most of these methods assume that the topological defects in the segmentation are located
at the thinnest parts of the volume and aim at correcting the topology by minimally mod-
ifying the volume or tessellation [89, 44, 43, 50]. Although they will often lead to accurate
results, due to the accuracy of initial segmentations, topological corrections may not be
optimal: additional information, such as the expected local curvature or the local inten-
sity distribution, may lead to different corrections (i.e. hopefully comparable to the ones a
trained operator would make).

While these methods can be effective, they cannot be used to correct the topology of
arbitrary segmentations, as they make assumptions on the topology of the initial input
image. Most frequently, fully-connected volumes are assumed and cavities are supposed to
be removed as a preprocessing step. In the case of cortical segmentations, the largest con-
nected component will most often approximate accurately the final cortical surface, since
the topological errors present in cortical segmentations are essentially handles. While T1-
weighted MRI images3 have relatively good contrast in the gray/white matter areas, the
highly folded nature of the cortical surface associated with the finite resolution of medical
images often generates incorrect handles in segmentations produced by methods that do
not constrain the topology. Therefore, the topology correction amounts to locating and
correcting the handles present in the segmentation. On the other hand, the situation is
different for subcortical segmentations. Subcortical segmentations are difficult to locate if
solely based on intensity information. The modification of a small number of voxels is usu-
ally sufficient to correct their topology, but one should not assume that handles are the only
topological defects. Due to the presence of imaging artifact, anatomical variability, varying
contrast properties, and poor registration, no assumptions can be made on the topology
of the initial segmentation. Especially, the selection of the largest connected component
might exclude some large structures that will not be recovered by any (existing) topology
correction methods.

We focus on the retrospective topology correction of already-segmented structures in
Chapters 5 and 6. We propose two methods for both types of data structures commonly used
in medical image segmentation, 3-dimensional volumes or surfaces. Each approach integrate
additional (e.g. geometric, statistical) information to accurately locate and correct potential
topological defects. A fully automated volume-based method to correct the topology of
any binary volume volumetric segmentation under any digital connectivity is introduced in
Chapter 5, while Chapter 6 focuses on the cortical reconstruction problem.

3T1-weighted MRI imaging is the most common image modality used for cortical segmentation
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2.5 Conclusion

In this chapter, we covered the notions of topology that are of central importance to this
dissertation.

The essential notions of homeomorphism and homotopy, which are necessary to char-
acterize the topology type of a geometric object, have been presented. We have clearly
distinguished the intrinsic topology of an object from its homotopy type. Also, we have
emphasized the connections linking topology and differential geometry that gave to defini-
tion of the crucial notion of Euler-characteristic of a surface. The Euler-characteristic of a
surface is a topological invariant that characterizes the intrinsic topology of an object.

The adaptation of the continuous concepts of topology onto a discrete framework that
is practical to the segmentation of medical images proves to be challenging. However, we
have shown that topologically-consistent frameworks can be constructed by replacing the
notion of continuity by the weaker notion of connectivity. The theory of digital topology is
of central importance. In particular, we have introduced the important notions of simple
point and topological numbers, and defined the discrete equivalent of homotopic deforma-
tions based on the notion of simple point. Finally, we have presented isocontour extraction
techniques and topology-preserving level sets.

The essential notions presented in this chapter were:

• Intrinsic topology.
The intrinsic topology is defined by homeomorphic deformations.

• Topology and homotopy type.
The topology of an object is characterized by homotopic transformations.

• Euler-characteristic and genus.
The Euler-characteristic of a compact connected surface C is the number χ(C) defined
by:

χ = v − e + f ,

where v, e and f denote respectively the number of vertices, edges and faces of any
polyhedral decomposition D of the surface C. The Euler-characteristic of a surface
is a topological invariant, defining the intrinsic topology of a surface. The Euler-
characteristic is related to another topologically invariant quantity, the genus g. We
have the relation χ = 2(K − g), where K is the number of connected components of
the surface C.

• Simple point, topological numbers, and homotopic deformation.
A simple point is a digital point that can be added or deleted from a binary ob-
ject without changing the topology type of the object. Simple points are efficiently
characterized by two topological numbers that can be computed locally from the 3D
neighborhood of the point. Digital homotopic deformations are characterized as se-
quences of addition or deletion of simple points.
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Chapter 3

Multisimple Points

In this chapter, we introduce the digital concept of multisimple point. While simple points constrain

the topology of a digital binary object to remain the same, multisimple points preserve only the number

of handles in a digital volume. We introduce two extended topological numbers and derive necessary

and sufficient conditions for a point to be multisimple. Using this criterion, digital deformations

that preserve the number of handles are designed.

3.1 The Need for a New Digital Concept

In this chapter and the following one, we focus on the limitations of segmentation tech-
niques that directly integrate some topological constraints into the segmentation process.
As mentioned in Sect. 1.4 and Sect. 2.4.1.D, the strict topology preservation is too restric-
tive for most applications. We propose to tackle these problems using the theory of digital
topology. This chapter consists of our theoretical contributions in digital topology while
the next one describes a new segmentation methodology.

Digital topology provides an elegant theory in which 3-dimensional images are assigned
a precise topological meaning. In this framework, homotopic deformations of binary objects
consist of iterative deletions or additions of simple points, i.e. points that do not change
the digital topology of the initial objects. This set of homotopic deformations defines the
classes of topological equivalence over the space of digital images. For instance, any object
that can be homotopically deformed into a sphere is said to have the topology of a sphere.
Homotopic deformations have been used extensively in image segmentation for the purpose
of projecting the topology of a given template onto a structure.

While being able to control the topology of a digital object is an attractive feature,
forcing it to remain identical through an homotopic evolution imposes a strong constraint.
In particular, homotopic deformations prevent the generation of cavities and disconnected
components as well as the formation of handles. On the one hand, preventing the creation
of handles that are difficult to correct retrospectively [89, 56, 44, 28, 43] is advantageous.
On the other hand, changes of the number of connected components are less problematic,
because the different components can be easily identified at post-processing time using
standard region growing algorithms [36]. This is also the case for cavities, which can be
interpreted as background n-connected components.

In this chapter, we introduce the concept of multisimple point that generalizes the
notion of simple point. We introduce two new topological numbers, the extended topological
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numbers, which, used in conjunction to the topological numbers [7], allow us to distinguish
different levels of topological changes. Furthermore, the multisimple point concept defines
new sets of transformations that generalize the restrictive homotopic transformations. For
clarity, the proofs are reported in Appendix A.

3.2 Limitations of the Concept of Simple Points and of Topo-

logical Numbers

3.2.1 Simple Point and Topological Numbers

A simple point can be added or deleted from a binary object without changing its topol-
ogy type. In [7], Bertrand proposed an elegant way to characterize the topology type of
a given voxel by introducing two topological numbers Tn(x, X) and Tn(x, X) computed
from the adapted topological neighborhood N .

n(x, X) and N .
n(x, X) respectively. Simple

points are characterized by the necessary and sufficient condition Tn(x, X) = Tn(x, X) = 1.
Section 2.3.1 describes the main notions of digital topology.

Deletion or addition of non-simple points change the topology of a binary object. Non-
simple points have many different topological types. These types correspond to interior or
isolated points, and to different kinds of junctions. The values taken by the topological
numbers Tn(x, X) and Tn(x, X) can help characterize different topological types. For in-
stance, an isolated point is characterized unambiguously by Tn(x, X) = 0, and an interior
point by Tn(x, X) = 0. Other values of the topological numbers characterize different types
of junctions, as listed in the table 2.1 and illustrated in Fig. 2-4 in Sect. 2.3.1.

3.2.2 Limitations

While it could be tempting to use the topological numbers to help characterize the different
topological types of non-simple points, this approach is bound to fail. Topological numbers
are locally computed from geodesic neighborhoods and do not carry any information on the
global connectivity of the neighboring objects. Figure 3-1 illustrates this limitation with a
simple example. The two circled voxels are characterized by the same pair of topological
numbers, Tn(x, X) = 2 and Tn(x, X) = 1, even though the deletion of one would disconnect
the binary object in two components, while the deletion of the other would destroy one
handle.

Being able to disconnect and merge components without changing the number of han-
dles is our objective. This would result in more flexible deformations, less sensitive to
initialization and unexpected artifacts in the images to be segmented. Yet, the concept of
topological numbers is too restrictive and necessitate the introduction of more elaborate
topological criteria.

3.3 Towards a First Characterization of Multisimple Points

Our main objective is to provide a method to merge and split connected components,
without generating handles. As we noted, the topological numbers of a point x are locally
computed and do not carry any information on the global connectivity of the neighboring
connected components of x (they measure the number of connected components in the sets
N .

n(x, X) and N .
n(x, X)). In order to integrate information on the global connectivity, we

consider the set Cn(x, X) of n-connected components of X \ {x} that are n-adjacent to x.
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Figure 3-1: The two circled voxels are non-simple. Even though they possess different topology
type, they are characterized by the same topological numbers, Tn(x, X) = 2, Tn(x, X) = 1. The
removal of the right voxel would remove a handle in the volume, while the removal of the left voxel
would disconnect the object into two disconnected components.

3.3.1 Merging and Splitting Connected Components

We say that a point is multisimple relative to an object X if and only if it can be added or
removed without changing the number of handles and cavities of the object. Contrary to
the case of simple points, the addition of a multisimple point may merge several connected
components, and its removal may split a component into several parts.

We consider the set Cn(x, X). If |Cn(x, X)| = 1, the addition or the removal of x might
respectively create or remove a handle and this would be the case if and only if the point
x is non-simple. On the other hand, if the cardinality of the set Cn(x, X) is strictly greater
than one, the addition or the removal of x involves a merge or a split respectively. For each
component C ∈ Cn(x, X), taken separately, no handle is generated or removed if and only
if the point x is simple relative to the single component C.

Therefore, we define a point to be multisimple relative to X if and only if it is simple
relative to each component in Cn(x, X) taken separately, resulting in an elementary criterion
using topological numbers.

Definition 3.1 Multisimple point x relative to X
A point x ∈ X is said to be multisimple relative to X if and only if

{
Tn(x, X) = 1

∀ C ∈ Cn(x, X), Tn(x, C) = Tn(x, C) = 1
(3.1)

When merging or splitting connected components by adding or removing a multisimple
point, the total genus (i.e. the total number of handles) of the different components is
preserved. For example, a torus and a sphere merge into a torus. A double torus split into
two tori or into a double torus and a sphere. We note that, under this condition, an isolated
point is a multisimple point: components can appear or disappear. The proof is provided
in Appendix A.
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3.3.2 Generation of Cavities

The concept of multisimple point evaluates if the addition or removal of a point changes
the number of handles or cavities of an object. In particular, components may split into
several connected components without introducing any handles or cavities. Using the fore-
ground/background duality (Sect.2.2.4), we interpret the split of a foreground component
as the generation of one or several background cavities.

By duality, we propose a criterion for the generation of cavities, that prevents the gener-
ation of handles and of disconnected components. We introduce the concept of multisimple
point relative to X.

Definition 3.2 Multisimple point x relative to X
A point x is said to be multisimple relative to X if and only if:

{
Tn(x, X) = 1

∀ C ∈ Cn(x, X), Tn(x, C) = Tn(x, C) = 1
(3.2)

Similarly, we note that, under this condition, an interior point is a multisimple point,
which allows cavities to be created or to disappear.

3.3.3 A Sufficient Condition for Multisimple Points

Based on the previous definitions, Def. 3.1 and Def. 3.2, we extend the concept of multisimple
point to both foreground and background components.

Definition 3.3 Multisimple simple point x relative to X or X
A point x is said to be multisimple relative to X or X if and only if:

{
Tn(x, X) = 1

∀ C ∈ Cn(x, X), Tn(x, C) = Tn(x, C) = 1
or

{
Tn(x, X) = 1

∀ C ∈ Cn(x, X), Tn(x, C) = Tn(x, C) = 1

The addition or removal of a multisimple point x for X and X does not create or remove
any handles in the volume, but allow for components to merge, split, appear or disappear.

3.4 Characterization of Multisimple Points

3.4.1 Extended Topological Numbers

Definition 3.3 provides a characterization of multisimple points that is sufficient. Any
point x that verifies the criterion of Def. 3.3 can be removed or added to a digital object
without generating or closing any handles in the volume. Yet, this characterization is not
a necessary condition. Some voxels can be deleted or added to a digital object without
introducing or destroying any handles in the volume, even though they would not verify the
characterization of Def. 3.3. For instance, consider an empty cube C and a line segment
L, such that the intersection L ∩ C is exactly one single voxel x that is an extremity of L
(Fig. 3-2). We focus on the object X = L ∪ C. We note that x is not a multisimple point
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in the sense of Def. 3.3, since we have Tn(x, X) = 2 and Tn(x, X) = 2 under the topology
n = 6 or n = 6+ (assuming that the sampling of these objects was well done as in Fig. 3-2).
Yet, x can be removed from X and the number of handles preserved.

Figure 3-2: a-b) Under the 6 or 6+-connectivity, the circled voxel does not verify the condition
of Def. 3.3, since Tn(x, X) = 2. c) However, this voxel can be deleted from the digital object
without introducing any handle in the volume. Therefore, definition 3.3 does not provide a necessary
condition.

As we mentioned in Sect. 3.3, if the cardinality of the set Cn(x, X) is strictly greater than
one, the addition or removal of a point x involves a merge or a split respectively. In order to
capture these connectivity changes, we define two numbers, T +

n (x, X) and T+
n (x, X), which

we call extended topological numbers:

Definition 3.4 Extended Topological Number T +
n

The extended topological number of a point x relative to an object X is:

T+
n (x, X) = |Cn(x, X)|.

The condition T+
n (x, X) > 1 implies that the deletion of the point x involves a split in

the digital object X. However, this condition does not guarantee that the genus of X (i.e.
the number of handles) does not change. Before providing necessary and sufficient condi-
tions of multisimple points, we introduce some useful properties of the extended topological
numbers.

3.4.2 Properties of the Extended Topological Numbers

In this section, we derive a few properties of the extended topological numbers T +
n and

illustrate their relation to the topological numbers Tn.

We first note that the extended topological numbers are always less than or equal to the
topological numbers. Extended topological numbers characterize potential merges or splits
only, while topological numbers control any kind of topological changes.

Property 3.1

T+
n (x, X) ≤ Tn(x, X)

In addition to splits and merges, the topological numbers characterize the potential
formations of handles. For a given connected component C ∈ Cn(x, X), the condition
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Tn(x, C) > 1 implies that the addition of the point x to X generates, at least, one handle
in the connected component C. Therefore, the following property holds:

Property 3.2

T+
n (x, X) < Tn(x, X) ⇔ ∃C ∈ Cn(x, X) such that Tn(x, C) > 1

or

T+
n (x, X) = Tn(x, X) ⇔ ∀C ∈ Cn(x, X) Tn(x, C) = 1

Finally, we note that we have the following equivalence:

Property 3.3

Tn(x, X) = 1⇔ ∀C ∈ Cn(x, X) Tn(x, C) = 1

Properties 3.2 and 3.3 illustrate the link between extended topological numbers and mul-
tisimple points as defined in Def. 3.1. Using these properties, the definition of multisimple
point can be reformulated as:

Definition 3.5 Multisimple point x relative to X
A point x ∈ X is said to be multisimple relative to X if and only if:

{
Tn(x, X) = 1
T+

n (x, X) = Tn(x, X)
(3.3)

3.4.3 Necessary and Sufficient Conditions

To better understand the meaning of the extended topological numbers, we assume that
the digital object X is composed of one single connected component. We focus on a point
x ∈ X such that the set Cn(x, X) is composed of one single component C. This is equivalent
to choosing a point x ∈ X such that X = C

⋃
{x} and T+

n (x, X) = 1. We first note that
the removal of x does not disconnect the volume X, but might introduce an n-handle or
remove an n-handle in the volume. The removal of an n-handle occurs if and only if we
have Tn(C) > 1, which, using Pro. 3.2, is equivalent to the relation T +

n (x, X) < Tn(x, X).
Similarly, an n-handle is generated if and only if we have Tn(C) > 1, i.e T+

n (x, X) <
Tn(x, X). Therefore, we see that the preservation of the number of handles is guaranteed
by the two relations: T+

n (x, X) = Tn(x, X) and T+
n (x, X) = Tn(x, X).

Since all components in Cn(, X) are disconnected components, we see that a point is
multisimple if and only if T+

n (x, X) = Tn(x, X) and T+
n (x, X) = Tn(x, X). Consequently,

we define a point to be multisimple for (X,X) by:

Definition 3.6 Multisimple point x for (X,X)
A point x is a multisimple for (X,X) if and only if:

{
T+

n (x, X) = Tn(x, X)
T+

n (x, X) = Tn(x, X)

This condition ensures that no handles are generated in the background or foreground
objects. This condition is also necessary, since the generation or the deletion of a han-
dle implies that one of the topological numbers is larger than its corresponding extended
topological number.
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3.5 Implementation Issues

Given a digital image I, constituted of a binary object X composed of set of n-connected
components Ci

n (i.e. X =
⋃

i C
i
n), and of the corresponding object X constituted of n-

components Ci
n (i.e. X =

⋃

i C
i
n), we show how to efficiently implement the concept of

multisimple point. We describe a method to adequately modify the different connected
components of X and X under topological control (i.e. using the concept of multisimple
point), so that the topology of each component is known at all time. The only requirement
is that the initial topology of the different connected components of X and X, C i

n and Ci
n,

must be known.
In this process, we create and maintain a map L of labels over the 3D image I = X

⋃
X

encoding for the different connected components of X and X. Each n- and n-connected
component is assigned a different label that is saved into the map L. Some care must be
taken in order to ensure that the map of labels is correctly updated, so that every label in
the map L corresponds to one specific component with a known topology. In this section,
we refer to the object X as the foreground object and to X as the background object.

3.5.1 Update of the Encoding Map of Connected Components

In order to provide a consistent update scheme for the encoding map L, we consider the
deletion and the addition of a multisimple point x ∈ X

⋃
X.

The deletion of a point x from an object X under the digital topology (n,n) might involve
the split of several n-components or the merge of several n-components. Information on
how to update the label map is extracted from the topological numbers Tn, T+

n , Tn, and
T+

n . The deletion of a multisimple point generates a merge of n-components if and only
if T+

n > 1, and a split of n-components if and only if T +
n > 1. Algorithm 3 describes

how to consistently update the labels of the different connected components. Similarly, the
addition of a point x in X should be interpreted as the deletion of a background point.
Algorithm 4 describes the corresponding update scheme.

3.5.2 Computational Complexity

The map L of labels encodes the different connected components of X and X. Algorithms 3
and 4 describe how to consistently update the labels of the different connected components.
When a point is deleted or added to an object X, the simple point condition, more restric-
tive, is checked first, because it is computationally cheaper. If the point is non-simple, then
Cn(x, X) and Cn(x, X) are computed in order to check the multisimple criterion.

Interestingly, if x is part of the background object and is a candidate for addition,
Cn(x, X) can be deduced directly from the map L. Cn(x, X) is indexed by the set of
n-adjacent labels of x.

If x is a candidate for removal, the complete set Cn(x, X) must be computed. The
removal of the point x could disconnect the object X or remove a handle, therefore changing
the global connectivity of X. Information on the resulting connectivity is not present yet in
the set of neighbors N ∗

n(x), and the set Cn(x, X) must be computed using standard region
growing algorithms [36]. Figure 3-1 illustrates this situation. The left circled voxel has one
single neighboring component while the right circled voxel is adjacent to two components.
This information can not be deduced from the set N ∗

n(x).
However, when dealing with components that do not possess any handles, the most com-

mon situation in practice, the computation of Cn(x, X) involves local computations only.
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Algorithm 3 Deletion of a point x ∈ X under the topology (n,n)

Compute Tn(x, X) and Tn(x, X)
if isolated point {Tn(x, X) = 0} then

Deletion of a n-component
Delete the point x
L(x)← the only label n-adjacent to x
continue

if interior point {Tn(x, X) = 0} then
Generation of a n-cavity
Delete the point x
L(x)← new label
continue

if the point is simple {Tn = Tn = 1} then
Delete the point x
L(x)← the only label n-adjacent to x

else {non-simple}
Compute the extended topological numbers T +

n (x, X) and T+
n (x, X)

if the point is multisimple {T+
n = Tn and T+

n = Tn} then
if Tn > 1 then

Merge of n-components
Merge the n-components of Cn(x, X)

if Tn > 1 then
Split of n-components
Split the n-component that x belongs to

Delete the point x
L(x)← the only label n-adjacent to x

else {non-multisimple}
Prevent the deletion

Since no handles are present in the initial volume, the geodesic neighborhood N .
n(x, X) con-

tains the necessary information on the connectivity of the adjacent components of Cn(x, X).
The set of adjacent neighboring connected components Cn(x, X) can be replaced by the set
Cn(x, N .

n(x, X)).

Merging

The merging of connected components into one single component can be done easily using
the label map L. If a point x is part of the background object and is a candidate for
addition, Cn(x, X) can be deduced directly from the map L. The merging step assigns the
same label to each neighboring connected components.

Splitting

One must be more careful when splitting components (i.e. split of a foreground component
into several components or generation of cavities). This step requires the assignment of
some unused labels to the new connected components that must be previously identified.
This can be done in linear time using standard region growing algorithms.
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Algorithm 4 Addition of a point x ∈ X under the topology (n,n)

Compute Tn(x, X) and Tn(x, X)
if isolated point {Tn(x, X) = 0} then

Creation of a n-component
Add the point x
L(x)← new label
continue

if interior point {Tn(x, X) = 0} then
Deletion of a n-cavity
Add the point x
L(x)← the only label n-adjacent to x
continue

if the point is simple {Tn = Tn = 1} then
Delete the point x
L(x)← the only label n-adjacent to x

else {non-simple}
Compute the extended topological numbers T +

n (x, X) and T+
n (x, X)

if the point is multisimple {T+
n = Tn and T+

n = Tn} then
if Tn > 1 then

Split of n-components
Split the n-components of Cn(x, X)

if Tn > 1 then
Merge of n-components
Merge the n-component that x belongs to

Add the point x
L(x)← the only label n-adjacent to x

else {non-multisimple}
Prevent the deletion

3.6 Beyond Homotopic Deformations

A homotopic deformation of a digital object X is a digital transformation that strictly
preserves the digital topology of X. Homotopic deformations are realized as sequences of
additions and deletions of simple points. The concepts introduced in this chapter allow us
to define new sets of transformations, which extend the restrictive notions of homotopic
deformations. Depending on the criterion, we define 3 new sets of transformations.

• Based on Def. 3.1, we define a set of transformations that preserve the number of
cavities and handles in an object, but allow the different components of the digital
object to merge, split, appear or disappear.

• Definition 3.2 ensures that the number of foreground components does not vary, and
that handles are not generated, resulting in a set of transformations that allow the
number of cavities to vary only.

• The concept of multisimple point for (X,X), Def. 3.6, prevents handles from disap-
pearing or being created. The resulting deformations allow components to merge and
split, appear or disappear, without generating handles during the deformation. We
call this set of transformations the set of genus-preserving deformations.
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We note that the concepts introduced in this chapter can be used to characterize unam-
biguously the topological type of any voxel. Consequently, more elaborate transformations
can be designed that behave exactly as desired by the user.

3.7 Contributions of this Chapter

Digital deformations involving simple points (i.e. homotopic deformations) preserve strictly
the topology of a digital object. During the deformation, no handles, cavities, or discon-
nected components are generated nor deleted. This concept leads to a large class of powerful
segmentation algorithms under strict topology preservation. However, the strict preserva-
tion is a strong restriction that limits the applicability of these methods. In this chapter,
we introduced the concept of multisimple point, which extends and generalizes the concept
of simple point. Under this new criterion, deformations that preserve the number of han-
dles but allow the number of components to vary can be designed. This will lead to new
segmentation algorithms that are much more flexible than previous methods. This is the
subject of the next chapter.

The content of this chapter is a joint work with Gilles Bertrand, from the laboratory
A2SI (Laboratoire Algorithmique et Architecture des Systèmes Informatique) at the ESIEE
(Ecole Supérieure d’Ingénieur en Electronique et Electrotechnique). Part of this work has
previously appeared in a technical report from the CSAIL [87].
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Chapter 4

Genus-Preserving Level Sets

In this chapter, we present a method to exert a topological control over a level set evolution. Level set

methods offer several advantages over parametric active contours, in particular automated topological

changes. In some applications, where some a priori knowledge of the target topology is available,

topological changes may not be desirable. This is typically the case in biomedical image segmentation,

where the topology of the target shape is prescribed by anatomical knowledge. However, topologically

constrained evolutions often generate topological barriers that create large geometric inconsistencies.

We introduce a topologically-controlled level set framework that greatly alleviates this problem. Unlike

existing work, our method allows connected components to merge, split or vanish under some specific

conditions that ensure no topological defects are generated. We demonstrate the strength of our

method in a wide range of numerical experiments and illustrate its performance on the segmentation

of cortical surfaces and blood vessels.

4.1 Beyond Digital Deformations

In the previous chapter, we introduced the concept of multisimple point. The introduc-
tion of this digital concept was motivated by the limitations of topologically constrained
segmentation techniques, particularly their sensitivity to different initializations and to the
presence of noise or unexpected structures in the images. Multisimple points extend and
generalize the restrictive concept of simple point. Based on this concept, we defined new
digital transformations that are more flexible than homotopic deformations.

Digital deformations are rarely used in medical image segmentation - much less fre-
quently than active contour methods. The main reason is the difficulty to integrate cur-
vature or shape information into the segmentation process using solely digital methods.
Consequently, digital deformations are more sensitive to noise than active contour meth-
ods.

Nevertheless, the concepts introduced in the previous chapter can be used to design
a flexible active contour framework. Similar to the approach described in [46], which im-
ported the concept of simple point into the level set framework to design a topologically-
preserving level set framework, we integrate the concept of multisimple point into the level
set framework. Therefore, we combine the advantages of level set methods - particularly,
the integration of curvature information into the segmentation process - with the subtle
topological control offered by multisimple points.
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4.2 Active Contour Segmentation

Active contours constitute a general technique of matching a deformable model onto an
image by means of energy minimization (Sect. 2.4.1). Since their introduction by Kass
et al. in [54], deformable models have benefited many computer vision research areas.
Particularly, numerous algorithms based on the theory of deformable models have been
proposed for the purpose of medical image segmentation [61, 18, 104, 46, 106].

Depending on the implementation, there are essentially two ways of representing an
active contour. Parametric approaches encode the manifold of interest with an explicit rep-
resentation using a Lagrangian formulation, while geometric active contours are represented
implicitly as level sets of functions defined on higher-dimensional manifolds in an Eulerian
formulation [72]. Geometric active contours, which have been introduced by Caselles et
al. [12], offer many advantages over parametric approaches. In addition to their ease of
implementation, level sets do not require any parameterization of the evolving contour.
Self-intersections, which are costly to prevent in parametric deformable models, are natu-
rally avoided and topological changes are automated. Also, many fundamental properties
of the active contours, such as the normal or the curvature, are easily computed from the
level set function.

The ability to automatically change topology is often presented as an advantage of the
level set method over explicit deformable models. However, this behavior is not desirable in
some applications. This is typically the case in biomedical image segmentation, where the
topology of the target shape is prescribed by anatomical knowledge. In order to overcome
this problem, a topology-preserving variant of the level set method has been proposed [46].
The level set function is iteratively updated with a modified procedure based on the concept
of simple point from digital topology [7]; the final mesh is obtained with a modified topology-
consistent marching cubes algorithm. This method ensures that the resulting mesh has the
same topology as the user-defined initial level set. We refer to Sect. 2.4.1 for a more detailed
description.

While such topological preservation is desired in some applications, it is often too re-
strictive. Because the different components of the contour are not allowed to merge or to
split up, the number of connected components remains constant throughout the evolution.
This number must be known by the user a priori and the initial contour must be designed
accordingly. Also, the sensitivity to initial conditions, which already limits the applicability
and efficiency of active contour methods, is considerably increased. The initial contour must
both have the same topology as the target shape and be close enough to the final config-
uration, otherwise the evolution is likely to be trapped in topological dead-ends including
large geometric inconsistencies (Fig. 4-1-b and Fig. 4-2-b).

Although being able to control the topology of an active contour is an attractive feature,
forcing it to remain identical through an evolution constitutes a strong constraint. In
this chapter, we propose a method to exert a more subtle topological control on a level
set evolution. Some a priori knowledge of the target topology can be integrated without
requiring that the topology be known exactly. Our method greatly alleviates the sensitivity
to initial conditions by allowing connected components to merge, split or vanish without
introducing any topological defects (such as handles). For example, an initial contour with
a spherical topology may split into several pieces, go through one or several mergings, and
finally produce a certain number of contours, all of which are topologically equivalent to
a sphere. A subset of these components may then be selected by the user as the desired
output (typically the largest component if one spherical contour is needed, the others being
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caused by noise).

Our approach is based on the concept of multisimple point that we have introduced in
the previous chapter (see Chapter 3). This criterion ensures that no topological defects are
generated while splitting or merging the components of the object. The resulting algorithm
fills the gap between the original level set framework and topology-preserving level set
methods. Some experiments presented at the end of this chapter illustrate some potential
applications that could greatly benefit from our approach.

4.3 Genus-Preserving Level Sets

The simple point condition is an efficient way to detect topological changes during a level
set evolution. However, in many applications, the topology-preserving level set method of
Han et al. is too restrictive.

The primary concern is topological defects such as handles, which are difficult to retro-
spectively correct [89, 56, 44, 28, 43]. On the other hand, changes in the number of connected
components during the evolution are less problematic. Different connected components are
easily identified using standard region growing algorithms. A subset of them may be se-
lected by the user as the final output, typically the largest one if a single component is
needed, the others being imputable to noise in the input data.

The concept of multisimple point that we previously defined allows distinct connected
components to merge and split while ensuring that no additional handle is generated in the
object. For example, an initial contour with spherical topology may split into several pieces,
go through one or several mergings, and finally produce a specific number of surfaces, all of
which are topologically equivalent to a sphere.

4.3.1 Multisimple points

The different values of Tn and Tn characterize the topology type of a given point x, providing
important information with regard to its local connectivity to the object X. In particular,
isolated points are characterized by Tn = 0 and Tn = 1, while different junctions by
Tn > 1 and Tn = 1.

This additional information was exploited in Chapter 3 to carefully design a multi-label
digital framework, which allows different connected components to split, merge or vanish
under topology control. We defined a point to be multisimple if and only if it can be added
or removed without changing the number of handles of the object. Contrary to the case of
simple points, the addition of a multisimple point may merge several connected components,
and its removal may split a component into several parts.

We introduced two extended topological numbers, noted T +
n (x, X) and T+

n (x, X), which
used in conjunction to the topological numbers provide a characterization of multisimple
point. A point is said to be multisimple if and only if we have:

{
T+

n (x, X) = Tn(x, X)
T+

n (x, X) = Tn(x, X)

When merging or splitting connected components by adding or removing a multisimple
point, the total genus (i.e. the total number of handles) of the different components is
preserved. For example, a torus and a sphere merge into a torus. A double torus may split
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into two tori or into a double torus and a sphere. We note that, under this condition, an
isolated and interior points are multisimple points, which allows components to disappear1.

4.3.2 Genus-Preserving Level Sets

With the concept of multisimple point in hand, we are now ready to describe our new
level set framework. Similarly to the approach of Han et al. [46], we exploit the binary
nature of the level set function φ that partitions the underlying digital image into strictly
negative inside points and positive outside points. During the evolution, we maintain a map
L of labels coding for the different connected components of X and X. Each connected
component of X is represented by a set of connected negative points, and is assigned a
specific label in the label map L. Similarly, connected components of X constitute sets of
connected positive points, and are assigned distinct labels in L. The label map L is updated
concurrently with the level set function φ.

The update procedure for each grid point at each iteration is concisely described in
Alg. 5. The update scheme for the label map is the same as the one described in Chapter 3.
For clarity, we explain the main concepts. During the evolution, the simple point condition,
more restrictive, is checked first, because it is computationally cheaper. If the point is
non-simple, then Cn(x, X) and Cn(x, X) are computed in order to check the multisimple
criterion.

Algorithm 5 Level Sets Under Topology Control With Handle Preservation

Compute the new value of the level set function
if the sign does not change then

Accept the new value
else {sign change}

Compute the topological numbers
if the point is simple then

Accept the new value
Update L(x)

else {non-simple point}
if the point is multisimple then

Accept the new value
Update L(x)

else
Discard the new value
Set instead a small value of the adequate sign

If x is part of the background (resp. foreground) object and is a candidate for addition,
Cn(x, X) (resp. Cn(x, X)) can be deduced directly from the map L. If x is a candidate for
removal in X (resp. in X), the complete set Cn(x, X) (resp. Cn(x, X)) must be computed.
However, when dealing with components that do not possess any handles, the most com-
mon situation in practice, the computation of Cn(x, X) and Cn(x, X) only involves local
computations.

As noted in Chapter 3, the map of labels L needs to be carefully updated. The more
complex case is the removal of a multisimple point involving a split. In this case, some
unused labels must be assigned to the new connected components. Algorithm 6 describes in

1No components can be spontaneously created in a level set evolution.
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detail the update procedure for the label map. Note that components can only be generated
through the splitting of an already existing component, as level set evolutions do not allow
for the spontaneous generation of new disconnected fronts.

Algorithm 6 Update Scheme for the Evolution of Level Sets Under Topology Control

Compute the new value of the level set function
if the sign does not change then

Accept the new value
else {sign change}

Compute the topological numbers
if the point is simple then

Accept the new value
if negative new value then

L(x)← the only foreground label n-adjacent to x
else

L(x)← the only background label n-adjacent to x
else {non-simple point}

Compute the extended topological numbers T +
n (x, X) and T+

n (x, X)
if the point is multisimple {T+

n = Tn and T+
n = Tn} then

if negative new value then
if Tn > 1 then

Splitting of n-component
Split the n-component of Cn(x, X)

if Tn > 1 then
Merging of n-components
Merge the n-component that x belongs to

Add the point x
L(x)← the only label n-adjacent to x

else {positive new value}
if Tn > 1 then

Merging of n-components
Merge the n-components of Cn(x, X)

if Tn > 1 then
Splitting of n-component
Split the n-component that x belongs to

Delete the point x
L(x)← the only label n-adjacent to x

else {non-multisimple point}
Discard the new value
Set instead a small value of the adequate sign

The resulting procedure is an efficient level set method that prevents handles from being
created during the evolution, allowing the number of connected components (including
cavities) to vary. We insist on the fact that digital topology does not provide a consistent
framework for multi-label images. However, by ensuring that no components of the same
object X or X are adjacent, topological inconsistencies are avoided.
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4.3.3 Implementation Issues

We consider the evolution of an active contour Γ under the velocity field v. The level set
formulation is the following:

∂φ(x, t)

∂t
+ v(x, t).∇φ(x, t) = 0,

where the isocontour φ−1(0) represents the evolving contour. As described in Chapter 2
(see Sect. 2.4.1), the implementation of the level set method is computationally expensive.
In order to increase the computational speed of geometric deformable models, a narrow
band method is usually adopted [1]. Only the grid points that are in a small neighborhood
of the active contour are updated during the level set evolution.

During a level set evolution, most points of the narrow-band do not change sign and do
not imply a potential change of topology. The simple point condition, which only involves
local calculations, is computationally cheap and leads to an efficient algorithm (see [8]
and [46]).

Similarly, when the initial level set components do not possess any handles, multisimple
points, which constitute a direct extension of the concept of simple points, only require
local computations. This situation is the most common in practice, since one is most often
interested in segmenting structures that have a spherical topology.

The merging of connected components into one single component can easily be done
using the label map L. If a point x is part of the background object and is a candidate for
addition, Cn(x, X) can be deduced directly from the label map and the geodesic neighbor-
hood L

⋂
N .

n(x, X). The merging step simply amounts to assigning the same label to each
neighboring connected components.

One must be more careful when splitting components (i.e. split of a foreground com-
ponent into several components or generation of cavities). During the evolution, some
components may need to be split into several components, which requires the assignment
of some unused labels to the new connected components that must be previously identified.
This can be done using standard region growing algorithms.

Also, an update of the narrow band might generate a series of useless and computa-
tionally expensive splits depending on the ordering of the points in the narrow band. This
would be the case, for instance, when a one-voxel wide region is iteratively broken into sev-
eral pieces. In order to avoid the useless generation of connected components, we prevent
components from splitting during the first pass in the narrow band by refusing sign changes
of candidate voxels for a split. They are assigned a small value of the appropriate sign and
an indicative flag is used to signal a potential component split. After the first pass, the
multisimple condition is re-evaluated for each candidate voxels and the components are ret-
rospectively updated. Finally, we note that, in order to avoid useless multiple splits of the
same component into several pieces, every candidate voxel that is adjacent to an updated
voxel has its flag deleted once a split has happened.
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4.3.4 Variations on Topologically-Controlled Level Sets

The proposed framework can be modified to allow more specific topological control during
the level set evolution. The multisimple condition introduced in Chapter 3 can be used to
distinguish different topological changes. The splitting of a component or the merging of
several components correspond to the condition:

{
T+

n (x, X) = Tn(x, X)
Tn(x, X) = 1

, (4.1)

while the generation of a cavity of the merging of several background components are
characterized by:

{
Tn(x, X) = 1
T+

n (x, X) = Tn(x, X)
. (4.2)

We note that the condition Tn = 1 implies T+
n = 1, which proves that the previous criteria

characterize multisimple point.
Using these specific criteria, one can design more elaborate level set frameworks that

allow some specific topological changes only. For instance, using the criterion 4.1, one can
design a level set evolution that allow foreground components to split or merge only. On
the other hand, cavities can be controlled using the criterion 4.2.
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4.4 Experiments and Applications

In this section, we show the interest of using the genus-preserving level set method for
image segmentation. We present some experiments illustrating the performance of our
approach and introduce some potential applications. We first apply our level set framework
to two synthetic examples to demonstrate its ability to handle disconnected components and
cavities. Next, two real data segmentation tasks are presented: the generation of cortical
surfaces from MRI images and the extraction of blood vessels from MRA images.

In the following, we have used a simplistic velocity field, which is a combination of an
intensity-based term, (I − Ithres), and a mean curvature term, H:

v(x, t) = [α(I(x)− Ithres)−H(x, t)]n(x, t),

where I denotes the scalar image to be segmented, Ithres is a suitable intensity thresh-
old, which separates the object from the background, n(x, t)) is the outward normal to
the isosurface of the actice contour at location x, and α is a weighting parameter. The

Figure 4-1: Segmentation of a ‘C’ shape using a spherical initialization. The top row shows cuts
of the 3D shape locating the initial contour. a) Traditional level sets. b) Topology-preserving level
sets. c) Genus-preserving level sets. Differences of behavior are circled in the images. In this case,
our method behaves exactly like the standard level set method. Topology-preserving level sets are
trapped in a deadlock.
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corresponding level set evolution equation is:

∂φ(x, t)

∂t
= [−α(I − Ithres) +

1

n− 1
div(

∇φ

|∇φ|
)] |∇φ|.

More complex images would require more elaborate evolution laws. However, the choice
of a particular segmentation method is not the issue here. We rather focus on the improve-
ments brought by our approach, as regards to the management of the topology, relative to
the standard level set method and to the topology-preserving method of [46].

4.4.1 Synthetic data

Experiment 1: Segmentation of a ‘C’ shape

First, we consider the segmentation of a simple ‘C’ shape under two different initial-
izations (Fig. 4-1 and Fig. 4-2). Our method, columns c, is compared to the original level
set formulation, columns a, and the topology-preserving model introduced by Han et al. [46],
columns b. The differences of behavior are circled in the images. Two different initializa-

Figure 4-2: Segmentation of a ‘C’ shape using a rectangular initialization. The top row shows cuts
of the 3D shape locating the initial component. a) Traditional level sets. b) Topology-preserving
level sets. c) Genus-preserving level sets. Differences of behavior are circled in the images. Our
method is able to achieve a correct segmentation without generating a toröıdal topology during the
evolution.
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tions (a little sphere in Fig. 4-1 and a larger box in Fig. 4-2) were used to test the sensitivity
of each method to initial conditions.

In these simple examples, both standard level sets and genus-preserving level sets yield
the expected result. With the first initialization (Fig. 4-1-a,c) the two methods behave in
exactly the same way, because no handle is generated during the evolution. During the
evolution, three distinct components are generated, one of which vanishes, while the two
other components merge, closing the ‘C’ shape. With the second initialization (Fig. 4-2-a,c)
they behave differently. Standard level sets temporarily generate a toröıdal topology (row
3, column a), whereas our method prevents the formation of the handle (row 3, column c)
by delaying a merging until a split in another part of the object occurs.

In contrast, topology-preserving level sets yield poor results. For the two different ini-
tializations, they get trapped in a topological deadlock. Although the final surface has the
correct topology, it has large geometric errors (row 4, column b): a filament linking the
two ends of the ‘C’ and a separating membrane at the middle of the ‘C’. These topological
barriers, generated during the evolution, are difficult to correct retrospectively.

The behavior of our approach corresponds to a trade-off between standard level sets
and topology-preserving level sets. Compared to the former, the formation or closing of
handles is prevented. Compared to the latter, the ability to change topology under certain
condition greatly alleviates the sensitivity to initial conditions.

Experiment 2: Formation of cavities

The second experiment, shown in Fig.4-3, illustrates the ability of our approach to gener-
ate cavities during the evolution. The object to be segmented is a synthetic cube, containing

Figure 4-3: Segmentation of a cube containing 3 cavities. 10 initial seed points were randomly
selected. Note how components split, merge and disappear during the evolution, and how the active
contour encloses cavities.
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3 large cavities. 10 seed points, randomly selected inside and outside the volume, were used
to initialize the level set evolution reported in Fig.4-3. During the evolution, components
merge, vanish and produce cavities, generating a final accurate representation constituted
of 3 spherical cavities and the main object. We note that all the components are easily
extracted, since they carry distinct labels that are iteratively updated during the evolution.

4.4.2 Real data

Two segmentation tasks are presented that illustrate the potential benefits of our novel level
set framework : the segmentation of cortical surfaces from MRI and the extraction of blood
vessels from MRA data sets.

Experiment 3: Cortical segmentation

Excluding pathological cases, the cortex, which corresponds to a highly-folded thin sheet
of gray matter, has the topology of a sphere. The extraction of accurate and topologically-
correct cortical representations is still an active research area. In this example, the cortical
surface is initialized with 55 spherical components, automatically selected in a greedy man-
ner, such that every selected point is located at a minimal distance of 10mm from the
previous ones (Fig.5-3). Topology-preserving level sets could not handle such an initializa-
tion, since the number of components would remain constant throughout the evolution. As
a consequence, only one initial seed could be used, leading to a slower segmentation process
and potentially to topological deadlocks. Standard level sets yield a final cortical surface
with 18 handles. On the other hand, using our method, the components progressively
merge together and enclose cavities, resulting in a final surface composed of 6 spherical
components: the cortical surface and 5 small cavities.

Figure 4-4: Segmentation of the cortex from an anatomical MRI. The initial level set was constituted
of 55 connected components. The final surface has a spherical topology, corresponding to an Euler
number of 2. The same level set evolution without topological control results in a final surface with
18 topological defects (Euler number of χ = −34)

.
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Experiment 4: Segmentation of blood vessels

Finally, we show how our method could be applied to the segmentation of blood ves-
sels from Magnetic Resonance Angiography. Because these vessels do not split and merge,
their topology is the one of several distinct components with no handles (i.e. each compo-
nent has the topology of a sphere). While traditional level sets produce segmentations that
could include topological defects, topologically constrained level sets would result in a slow
and laborious segmentation. Since the simultaneous evolution of several components, which
cannot be merged together, can easily be trapped in topological dead-ends, each component
would need to be iteratively initialized, when the evolution of the previous one has termi-
nated. Moreover, when using an initialization with a bounding box, topology-preserving
level sets yield a final surface with many geometrical inconsistencies due to topological bar-
riers, displayed in Fig. 4-6.

Figure 4-5: Segmentations of blood vessels in a 3D angiography under two different initializations.
Top row: 20 seed points were selected to initialize the active contour, which generates 3 components.
Bottom row: An enclosing contour is used to initialize the level set. After 9 merges and 99 splits,
the final segmentation is constituted of 91 components, 53 of which were due to random noise.

On the other hand, our method offers the possibility to concurrently evolve multiple
components that can merge, split and vanish. The initial contour can be initialized by a
set of seed points, manually or automatically selected, or by a single enclosing component,
without affecting much the final representation.

Figure 4-5 shows the segmentation of an angiography under two different initializations.
In a first experiment (top row), 20 seed points were automatically selected at the brightest
locations in the MRA. The level set evolution iteratively merged most of the components,
generating a final segmentation with 3 spherical components. In the second experiment
(bottom row), one single global component, enclosing most of the object of interest, was
used to initialize the active contour. During the evolution, 9 components merged and 99
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Figure 4-6: Segmentations of blood vessels from MRA produced by a) a topologically constrained
evolution [46], starting from a bounding box b) our genus-preserving level set framework. The image
contains several artifacts, which are mostly due to noise. As a consequence, several disconnected
components are present in the final segmentation produced by our method. Topologically con-
strained segmentation fails to segment out these disconnected components and produce an incorrect
segmentation.

split producing a final segmentation composed of 91 components, 53 of which were single
voxel components due to random noise in the imaging process.
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4.5 Contributions of this Chapter

In this chapter, we introduced a new level set framework that offers control over the topol-
ogy of the level set components during the evolution. Contrary to previous approaches that
either do not constrain the topology or enforce a hard topological constraint, our method
exerts a subtle control over the topology of each component to prevent the formation of
topological defects, such as handles (or cavities depending on the application and the choice
of active contour model). Distinct components can merge, split or disappear during the evo-
lution, but no handles (or cavities) are generated. In particular, a contour composed solely
of spherical components will only produce spherical components throughout the evolution.
In this case, the most common situation in practice, all computations are local and the mul-
tisimple point checking can be done efficiently. The only computational complexity comes
from the generation of new components, as new labels need to be assigned to each.

While the original level set model does not provide any topological control, topology-
preserving level sets impose too restrictive of a constraint. Our framework establishes a
trade-off in between the two models. Compared to the former, the formation of new han-
dles and the closing of existing handles are prevented. Compared to the latter, the ability
to change topology under certain conditions greatly alleviates the sensitivity to initial con-
ditions. Our framework offers a subtle topological control that alleviates most problems of
topologically-constrained methods (i.e. sensitivity to initialization and noise, simultaneous
evolution of multiple components and speed of convergence). The experiments presented
in this chapter illustrate some applications that could potentially benefit from our approach.

Finally, we also note that the proposed framework can be adapted to allow different
levels of topological control during the level set evolution. Particularly, the two criteria 4.1
and 4.2 can be used to distinguish different types of voxels, such as the ones leading to
a split or a merge of components from the ones generating or destroying cavities, among
others.

The content of this chapter is a joint work with Jean-Philippe Pons, from the Odyssée
Project at the I.N.R.I.A. (Institut National de Recherche en Informatique et en Automa-
tique) in Sophia-Antipolis, France. Part of this work has previously appeared in technical
report from the CSAIL [87], a special issue of NeuroImage [26], and was presented at a
workshop of the International Conference on Computer Vision [88].

80



Section III

Retrospective Topology

Correction

Topology Correction of 3D Digital Images

Topology Correction of Surfaces

81



82



Chapter 5

A general digital framework for the

topology correction of binary

images

We propose a method for automatically correcting the spherical topology of any binary segmenta-

tion under any digital connectivity. A multiple region growing process, concurrently acting on the

foreground and the background, divides the segmentation into connected components and successive

maximum a posteriori decisions guarantee convergence to the correct spherical topology. In contrast

to existing procedures that assume specific initial segmentation (e.g. full connectivity, no cavities,

etc) and are designed for a particular task (e.g. cortical representation), no assumption is made

of the initial image. Our method, applied to subcortical segmentations allows us to accurately cor-

rect the topology of fourteen deep nuclei in a few minutes; the topology correction of each separate

hemisphere white matter is achieved in approximately 30 minutes.

5.1 Introduction

In this chapter, we focus on the retrospective correction of the topology of 3-dimensional
digital segmentations. Many segmentation algorithms produce 3-dimensional segmentations
without constraining the topology. Only a few approaches, reviewed in Chapter 2, have been
proposed to correct the topology of binary segmentations.

While these methods can be effective, they cannot be used to correct the topology of
arbitrary segmentations. They make assumptions on the topology of the initial input image
and assume fully-connected volumes without cavities. However, for most segmentations,
because of the presence of imaging artifacts, anatomical variability, varying contrast prop-
erties, and poor registration, no assumption can be made on the initial segmentation.

Also, most of these methods don’t use any geometric or statistical information; they aim
at correcting the topology by minimally modifying the volume or tessellation, i.e. with the
smallest amount of voxel changes. Although such an approach will often lead to accurate
results, due to the accuracy of initial segmentations, topological corrections might not be
optimal.

In this chapter, we introduce a fully automated volume-based method to correct the
topology of any binary volumetric segmentation under any digital connectivity. The novelty
of our approach comes from the fact that any initial segmentation, containing disconnected
regions, handles, and cavities, will be corrected. A multiple region growing process allows
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us to simultaneously work on different parts of the volume and to incorporate statistical
information. At each step of our iterative topological correction, minimum cost decisions
are taken and convergence is guaranteed. In the following sections, we discuss the main
assumptions of the algorithm and present some results on subcortical and cortical data. An
application of the proposed method for multiple subcortical segmentations concludes this
chapter.

5.2 Methods

Our method is phrased within the theory of digital topology which establishes an elegant
and efficient topological framework over the set of digital images. We correct the topology
of any binary segmented volume So under a set of compatible digital connectivities (n,n).
Compatible connectivities (n,n), which are necessary to avoid topological paradoxes, repre-
sent the connectivities used for the foreground object F and the background object B = F
respectively. We refer to Sect. 2.3.1 for more details on digital topology.

5.2.1 Notations

In the next sections, we will need the following definitions and notations:
Connected Components: we denote by Cn(X) the set of n-connected components in the
digital object X. The set of n-adjacent n-connected components to a point x in a digital
object X is still denoted Cn(x, X).
Residual and body labels: during the algorithm, different connected components are gener-
ated, and voxels are assigned different labels. Body labels characterize voxels belonging to
a body component with a known topology, and residual labels characterize voxels belonging
to a component with an unknown topology.
Seed point: a residual point of X that is simple or isolated relative to the body label points
of X. Under this definition, changing the residual label of a seed point to body will not
introduce any topological defects into the body component segmentation of X.
Multisimple point: a residual point x ∈ X that can be added to any of its adjacent body
components (∈ Cn(x, X)) without introducing any topological defects. This concept was
introduced in Chapter 3. The merging of a multisimple point into one of the adjacent body
components, associated with the merging of the other adjacent body components into the
first one, will not change the topology of the new component. We will make important use
of this concept, as it allows us to work concurrently on different parts of the object, but
still be able to control the whole topology of the resulting segmentation.

5.2.2 Overview of the Approach: Bayesian Interpretation

Our topology correction proceeds in two consecutive steps. First, the topological defects
are accurately located using a multiple region growing process integrating statistical and
geometrical information. Then, each defect is iteratively corrected by maximizing a fitness
function that assesses the goodness of each topological correction.

Our topology correction can be phrased within the framework of Bayesian parameter
estimation theory: we search for the topologically-correct maximum a posteriori (MAP)
estimate of the segmentation S given an observed (potentially multi-spectral) image I.

According to this approach, one can relate p(S|I), the probability of a segmentation S
given the observed image I, to p(I|S), the probability of the image occurring given a certain
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segmentation, together with p(S), the prior probability of the segmentation:

p(S|I) ∝ p(I|S)p(S). (5.1)

In our Bayesian interpretation, the fitness function, assessing the goodness of each topo-
logical correction, is the posterior probability P (S|I). Different models for P (S|I) are pos-
sible. In the following, we introduce one model that captures the volumetric information
present in digital segmentation. More elaborate models (e.g. models integrating curvature
information) are possible, and will be presented in Sect. 5.6.

S(x) denotes the label of the voxel x, i.e. foreground or background. Assuming that
the noise at each voxel is independent from all other voxels in the image, we can rewrite
p(I|S) as the product of the distribution at each voxel v over the voxel grid V :

p(I|S) =
∏

x∈V

p(I(x)|S(x)). (5.2)

Finally, we assume that the labels S(x), for all x ∈ V , are independently distributed, which
allow us to rewrite p(S) as the product of the distribution at each voxel over V :

p(S) =
∏

x∈V

p(S(x)). (5.3)

The last hypothesis might appear overly simplistic, as voxels are certainly not topologically
independent. However, we note that the topological independence of neighboring voxels is
intrinsically related to the image resolution. One voxel that would generate a handle in
a binary segmentation at a specific resolution would not produce a topological defect at
a higher resolution. Therefore, the latter assumption on the independence of each voxel
should simply be interpreted as a way to integrate prior information into the segmentation
process. Some voxels, due to their location relative to the overall image, are more likely to
be labeled as foreground than others.

Using Eq. 5.2 and 5.3, the probability distribution of the segmentation given the ob-
served image can be rewritten

p(S|I) ∝
∏

x∈V

p(I(x)|S(x))p(S(x)). (5.4)

We assume that we can compute the probability p(I(x)|S(x))p(S(x)) = p(I(x), S(x)) for
each voxel x: we use ps(x, S(x)), ps(x) or ps to denote this joint probability. Consequently,
we assign to each voxel a cost: c(x) = ln(ps(x, S(x))/px(x, S(x)), which represents the
variation in the probability of the MAP estimate, when changing the voxel label from S(x)
to S(x) (Fig. 5-3-b).1

Directly computing the MAP estimate of S in Eq. 5.1 under the spherical topological
constraint is computationally intractable. Instead, we employ an iterative method on the
initial segmentation So, which makes minimal decisions at each step. A block diagram of
the algorithm is shown in Fig. 5-1. The algorithm proceeds as follow: first, a multiple
homotopic region growing process segments each object (foreground and background) into

1Most segmentation procedures incorporate statistical information to accurately locate specific structures
and the probabilities ps can be computed a priori. However, this external information might not be available,
and a different cost must be assigned to each voxel: we will discuss alternative cost options in Sect. 5.3.2.
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Figure 5-1: Diagram of the digital topology correction algorithm

a set of connected components. This set is composed of body components and of residual
components, the latter corresponding to “links” connecting body components (Sect. 5.2.3).
Schematically, the topology correction amounts to finding the components that should be
removed (i.e. should be added to the inverse object), and the ones that should be kept.
The whole process is iterative: a cost is assigned to each component and the algorithm
modifies the segmentation into connected components (Sect. 5.2.4). At each step, the set
of connected components is updated, and convergence is guaranteed by monotone increase
of a threshold Tthres (Sect. 5.2.4). Figure 5-2 illustrates the simple concepts behind the
algorithm and we will often refer to this figure to exemplify the explanations. For clarity,
discussion of the main assumptions of the algorithm will be elucidated in the next section.

5.2.3 Location of Topological Defects: Connectivity Graph Generation

In order to correct the topology of a given binary image, one must first locate the set
of topological defects present in the segmentation. Existing techniques for correcting the
topology of binary segmentations assume that the topological defects are located at the
thinnest parts of the volume and attempt to correct them by modifying a minimal number
of voxels. Due to the accuracy of the initial segmentation, this assumption often leads
to adequate corrections. However, additional information, such as statistical (i.e. local
intensity distributions) and/or geometrical information (i.e. curvature), might improve the
location of the topological defects and their correction.

Additional information is directly integrated in a multiple homotopic region growing
process. Similarly to existing methods, we assume that topological defects are more likely to
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Figure 5-2: Illustration of the algorithm principles. An initial binary digital image (a) is seg-
mented into a set of connected components (e) by applying a multiple region growing process on
the foreground object (b,c) and the background object (d,e). These two sets of connected compo-
nents (foreground and background) constitute two connectivity graphs (f). The topology correction
iteratively modifies the graphs until final convergence (g-l). A final homotopic deformation leads
to the final binary segmentation (m). Detailed steps: g) Addition of the foreground component
f-M1 associated with the merging of f-B2 into f-B1. h) addition of f-M2. Note that f-M3 and f-M4
becomes residual component f-R3 and f-R2 respectively. i) Deletion of f-B6. b-R1 and b-R2 are
merged together into b-R1. j) Deletion of b-R1, which leads to the merging of f-B4 into f-B4. k)
Deletion of f-R3 and merging of b-B3 into b-B2. Deletion of b-B4 which causes f-R1 to vanish. l)
Deletion of b-R3 of f-R2, and final convergence.
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be located at the thinnest parts of the volume; however, we observe that topology corrections
often involve voxels with low probability. Therefore, the prioritization driving the expansion
process is based on the following empirical function fp:

fp(x, S) = λps(x, S) + (1− λ)fd(x, S), (5.5)

which combines information from the posterior probability ps and from the distance-to-
surface map. The distance-to-surface map of the object X represents the distance d(x, X)
from one point x ∈ X to its surface, i.e. its distance to the closest point(s) of X. The

function fd is simply linearly built as fd(x) = d(x,X)
dmax

with dmax = max
x∈X

d(x, X). Away

from the boundary of the object, the homotopic expansion process is mostly driven by
the distance-to-surface map, whereas statistical information becomes prominent in regions
close to the borders. This function will locate residual components at thin parts of the
volume, which have low probability (Fig. 5-3-c). We will discuss this prioritization in detail
in Sect. 5.3.1. For each voxel x, the value fp(x, S(x)) can be interpreted as a confidence
value, which reflects our confidence in the segmentation S(x) of the voxel x.

Our multiple region growing process segments each object (foreground and background)
into a set of connected components. This set is composed of body2 components, which carry
a known spherical topology, and of residual components of unknown topology. Residual
components correspond to “links” connecting body components and can be interpreted as
topological defects. In order to generate this segmentation, every point is initially assigned
a residual label and body components are slowly expanded outward to incorporate new
simple points.

The multiple region growing process makes use of two threshold, Ts and Te with Ts > Te.
Ts is used to locate the seed points and generate body components. A new body component
will be created from a seed point x only if its confidence value fp(x) is above Ts, avoiding
over-segmentation. Te pauses the homotopic expansion of a body component when the
values fp of the adjacent simple points fall below Te.

As we will discuss further in Sect. 5.3.1, homotopic deformations that are driven by
probability maps are highly sensitive to noise: inaccurate probability maps can introduce
some incorrect topological constraints in the homotopic expansion, eventually leading to
large geometric errors. The introduction of Ts and Te, associated with the empirical proba-
bility fp, minimizes the “noise” effects on the segmentation and prevents over-segmentation
into connected components. It also reduces the influence of topological errors caused by
incorrect segmentations. Incorrect segmentations are often the results of a few misclassified
voxels that appear brighter or darker than expected relative to their tissue classes. The use
of two thresholds tends to single out these misclassified regions, which often generates small
disconnected body components.

A - Foreground Object

We remind the reader that a seed point will not introduce any topological defect into any
of the body components, allowing us to start growing a new body component without
introducing any topological artifact such as handles or holes.

The region growing process proceeds as follow. Every voxel of the foreground object is
first assigned a residual label, except the one with the largest confidence value fp(x, F ) that

2For consistency with previous work, we use the same notations as the ones proposed by Han et al. in
[44]
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is assigned a body label. This seed point creates the first body component, which is then
iteratively expanded by adding adjacent simple points y, prioritized by their confidence
value: adjacent voxels are checked in decreasing order (the ones with the largest values
first) and added if they are simple. This homotopic expansion pauses when the adjacent
voxel confidence values fall below Te or stops when no residual voxel can be added to this
body component without changing its topology. Then, the algorithm tries to grow another
component by searching for the next seed point with the highest confidence value above
Ts. We keep generating and growing new body components until no new seed point, with
fp > Ts, is found. Then, the constraint fp > Te is relaxed and the multiple region growing
process resumes. All the previously created components are homotopically expanded until
no new simple point is found. Figure 5-2-b shows an example of the resuming of the multiple
region process.

Figure 5-3: a) An horizontal view of a white matter binary segmentation. b) The corresponding

cost map c(x) = log ps(x,S(x))

px(x,S(x))
. Bright voxels have large costs. c) The segmentation into connected

components : the single black component is the first body background component and has the
topology of a hollow sphere. The pink components are foreground body components and the green
and blue components are background and foreground residual components respectively. Notice that
residual components tend to be located at low probability locations, i.e. low cost regions (dark
regions in b), and at the thinnest parts of the volume.

Eventually, the second constraint fp > Ts, is relaxed and a final region growing process
segments the remaining residual voxels into body components (in Fig. 5-2-c, this leads to
the creation of components B5 and B6).

Finally, the remaining residual voxels are segmented into residual connected components
(Sect. 5.2.3).

B - Background Object

The same multiple region growing process is applied to the inverse object. However, since
we are working on the background object, which is supposed to surround completely the
foreground object, the first body component contains the set of voxels located at the border
of the image (Fig 5-2-b). Therefore, the topology of the first background component will
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be the one of a hollow sphere. Then the algorithm proceeds as previously described (Fig. 5-
2-d,e).

C - Residual Segmentation

The last step of the segmentation into connected components is the segmentation of the
remaining residual voxels, into residual connected components. A residual voxel can be
adjacent to one single body component or to several body components. Residual voxels
that are adjacent to one single component are non-simple: if they were simple they would
have been merged into the adjacent body component during the previous multiple region
growing process. Components constituted of these voxels are called residual components,
and components with residual voxels adjacent to several body components are called multi-
residual components. Residual components represent “pure” topological defects, as they
cannot be merged into the body label segmentation without introducing topological defects.
On the other hand, multi-residual components can either be constituted of multisimple
points or non-multisimple points. Their introduction allows us to consider more possibilities
when correcting the topology. Finally, we note that the topology of the residual components
is not known.

The whole segmentation of the foreground object and the background object constitutes
two non-fully connected graphs, which interact with each other (Fig. 5-2-f). Finally, a cost
is assigned to each component: the cost of each component C is simply defined as sum of
the cost of each voxel constituting the component:

cost(C) =
∑

x∈C

c(x) =
∑

x∈C

log
ps(x, S(x))

ps(x, S(x))
. (5.6)

The cost of one component reflects the variation in log[p(S|I)] (under our set of assump-
tions), the logarithm of the probability of the segmentation S given the observed image I,
if this component were deleted from X by adding its voxels to the inverse object X. More
complex models, incorporating curvature information, could be considered. These more
elaborate models would result in more complex fitness function. We will briefly discuss in
Sect. 5.6 the potential integration of curvature information into our framework.

5.2.4 Correction of Topology Defects: Graph Analysis

Once all topological defects have been located (as a set of residual components), we exploit
the topological foreground/background duality to iteratively correct them. Under the digital
topology framework, every foreground topological defect has a corresponding background
topological defect and vise-versa. For example, to a foreground disconnected component
corresponds a background cavity and reciprocally. This implies that the correction of a
topological defect can be realized by applying a transformation either to the foreground
object or the background object (this is one of the main reasons why a pair of compatible
connectivities is required in digital topology). This approach has already been used by
several authors [44, 56], but in a less general framework than the one we develop here.
The goal is to successively decrease the number of residual and body components, until
one single body component per object remains: a foreground component with a spherical
topology and a background component with the topology of a hollow sphere.

The algorithm works on the background and the foreground simultaneously and proceeds
iteratively: multi-residual components are considered first and merged into neighboring
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components if their constituting points are multisimple. Then, the lowest cost component
C ∈ Cn(X) is identified and deleted from the object X it belongs to. At each iteration,
the algorithm updates the segmentation into connected components (i.e. the connectivity
graphs) by resuming the region growing process. We now explain, in detail, the few steps
of the topology correction.

A - Addition of Multi-Residual Components:

We have introduced the concept of multi-residual components to enlarge the panel of po-
tential solutions and ensure that residual components are located at meaningful locations
(Fig. 5-3-c). Multisimple points allow us to locally modify the component segmentation:
body connected components might be fused together, but the topology is preserved. Given
a connectivity graph, multi-residual components constitute connections between body com-
ponents.

A multi-residual component is said to be multisimple if at least one of its constituting
voxels are multisimple. At each iteration, multisimple components are merged into body
components. The multi-residual component with the largest cost is first chosen and added
to the body component segmentation if it is multisimple: the component and its neighboring
body components are merged into one single body component and the graph is updated.

Algorithm 7 Addition of a Multi-Residual Component M ∈ Cn(X)

Search among multisimple points in M , the search is prioritized by the confidence values
given by fp.
if no multisimple point then

Stop.
else {multisimple point}

Merge this point into the largest adjacent body component B, and merge the other
adjacent body components into this component.
Try to add the remaining points of M to the newly formed body component B, the
points that cannot be merged into B form new residual connected components.
Update the cost of the modified components and the status of multi-residual compo-
nents.

Then, the next largest cost multi-residual component is considered for merging. For each
merging, the status of the remaining multi-residual components is checked. The algorithm
stops when all components have been added or the remaining ones are not multisimple.
Figure 5-2 illustrates, with a simple example, this concept: the multi-residual components
M2, M3 and M4 of Fig. 5-2-g corresponds to three potential connections between B1 and
B2. The merging of M1 into B1, associated with the merging of B2 into B1 change the
multi-residual status of the components M3 and M4 to residual R3 and R2 respectively in
Fig. 5-2-h.

B - Deletion of the Lowest Cost Component

After the analysis of multi-residual components, we check if the algorithm has converged:
if one single component per object remains, the algorithm has corrected the topology of
the initial segmentation. If not, spherical topology is not achieved yet and consecutive
decisions have to be taken. Assuming a decomposition into connected components, the
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algorithm identifies the lowest cost component among body, residual and non-multisimple
multi-residual components. This component is deleted from Cn(X), meaning that each
voxel of this component C ∈ Cn(X) has its label changed to residual of the inverse object
X, and the connectivity graphs are updated:

Algorithm 8 Deletion of the Lowest Cost Component C ∈ Cn(X)

1. Deletion of C: C → C. Voxel labels are changed voxel to residual of X.
2. Search among seed points in C.
if no seed point then

Go to 6.
else {seed point x}

if x is isolated then
3. Generate a new body component

else {x is simple}
4. Merge this point into its neighboring body component

5. Update the cost of the modified components. Go to 2.
6. Segment the remaining residual voxels into residual and multi-residual components.

We note fact that local decisions do not imply large geometrical errors. For instance, in
Fig. 5-2-h,i, the deletion of the foreground body component B6 does not lead to the removal
of any large component.

C - Convergence

Stated as previously, the algorithm is not guaranteed to converge: the deletion of a com-
ponent might lead to the creation of even lower cost components in the inverse object.
Therefore, we use a threshold Tthres that is monotonically increased at each iteration.

Algorithm 9 Convergence

0. Set Tthres = −∞.
1. Update the multi-residual graphs by iteratively applying Alg. 7 to each multi-residual
components.
if Check convergence: X or X has one single component then

Stop.
3. Find the set of lowest cost components {Ci} ∈ Cn(X) such that: ∃Cj ∈
{Ci} s.t. cost(Cj) > Tthres; set Tthres ← cost(Cj).
4. Delete the components: ∀x ∈ ∪Ci, set x→ X
if X has one single component then

Stop.
5. Apply Alg. 8 to the inverse object X and go to 1.

Similarly to the approach of Han et al. in [44], this algorithm can be modified to force
corrections to be made on one single object exclusively (foreground or background): it
suffices to constrain the search for lowest cost components to the inverse object.

5.2.5 Post-processing

Finally, once the correct topology has been achieved, the algorithm homotopically maxi-
mizes the posterior probability p(S|I), by looking for simple points that should be deleted
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(with a negative cost). Every simple point x of the segmentation S with a negative cost is
added to its inverse object S(x).

Finally, a topologically-consistent tessellation of the topologically-correct digital volume
is generated using a connectivity-consistent marching cubes algorithm (Sect. 2.3.3).

5.3 Discussion of the Algorithm

Before presenting some results, we discuss the main concepts and assumptions of the algo-
rithm.

5.3.1 Multiple Region Growing Process

The multiple region growing process, segmenting the initial objects (F and B) into con-
nected components, is driven by a prioritization map fp, which aims at locating the defects
at significant locations. This is a key point of the algorithm and a difficult task. We have
decided to use a prioritization map which combines some statistical information about the
segmentation and distance-to-surface information through a mixing parameter λ. As pre-
viously stated, our assumption is that most of the topological defects are more likely to be
located at at the thinnest parts of the volume and that topology correction often involves
few voxels.

Similarly to the approach of Kriegeskorte and Goeble [56], a value of λ = 0 will locate
the topological defects at the thinnest parts of the volume. The approach proposed by Han
et al. in [44] is based on the same assumption: a structuring element that is progressively
dilated locates topological defects at thin parts of the volume.

On the other hand, using only statistical information (λ = 1) should locate the defects
at locations with low posterior probabilities. However, we note that homotopic deforma-
tion are highly sensitive to noise and inaccurate probability maps easily lead to topological
defects being incorrectly located. Some incorrectly segmented voxels might have a large
joint probability ps (e.g. image artifacts, partial voluming effect, intensity inhomogeneities,
etc). This could lead an expanding region to pass through these voxels and locate resid-
ual components at incorrect locations. For this reason, we combine the two informations
through the use of the mixing parameter λ = 0.5. This method tends to decrease the noise
issues and will still locate the defects at low probability location. More elaborate prioriti-
zation maps, introducing local anisotropy into the growing process, are possible. Another
approach, based on level-sets, is discussed in Sect. 5.6.

Also, the multiple region growing process necessitates the definition of two thresholds
Te and Ts. The use of thresholds, to concurrently grow multiple components and pause the
expansion process, minimizes the effects of noise on the segmentation. The first threshold
Ts will prevent the creation of a new component from an isolated seed point, when its
confidence value fp is not large enough: only seed points with a large confidence value
lead to the creation of a new body component, avoiding over-segmentation. The second
threshold pauses the expansion of a body component, when the values fp(x) of adjacent
simple points x become too low. The introduction of the threshold Te prevents a region
from expanding over and passing through “unlikely” voxels to reach regions with higher
confidence values, which would certainly locates some of the topological defects at incorrect
locations. Ts and Te are defined per object. Ts corresponds to the value for which 25% of
the voxels have a higher confidence value. Te corresponds to the value for which 25% have
a lower confidence value.
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Finally, we note that the initial seed points, generating the body components, could be
interpreted as landmarks and initialized with the help an atlas at significant locations.

5.3.2 Cost Function

During the topology correction, each voxel is assumed to carry a cost of being modified. We
have taken a Bayesian approach, modeling each voxel label as independent of its neighbors
and assigning a cost c(x) = ln(ps(x, X)/px(x, X) to each voxel. This cost represents the
variation in the logarithm of the posterior probability p(S|I) of the segmentation S given
the observed image I and constitutes an efficient way to make iterative minimal decisions.

However, the joint probability ps might not be available to the user. Alternative cost
options are possible. Without any more information than an initial digital binary seg-
mentation, the user might minimize the number of modified voxels at each step, therefore
assigning a constant positive cost to each voxel. At each iteration, the algorithm will
delete the smallest components, i.e. the ones with the least number of voxels. Or, using
a monotonously increasing function of the distance-to-surface map, such as the previously
defined function fd, one could weigh deep voxels more than others, making them less likely
to be deleted. Finally, a sophisticated approach that we briefly discuss in Sect. 5.6 could
incorporate curvature information.
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5.4 Results

Our goal, when implementing this algorithm, was to develop a fully automated method that
is able to correct the topology of digital binary segmentations, without any assumptions on
the initial segmentations. In order to validate the proposed algorithm, we have applied our
method to 26 brain segmentations, manually and automatically labeled. The Whole Brain
Segmentation algorithm proposed by Fischl et al. in [29] was used to generate automatic
brain segmentations and to compute the joint probabilities ps(x) = p(I(x), S(x)) for all
voxels x. The pair of compatible digital connectivities that we use for all the experiments
reported in this chapter is (6,18). In our experience, the choice of connectivity does not
significantly affect the results. We present some experiments on subcortical segmentations
and white matter segmentations.

5.4.1 Description of the Data Set

The data set used in this study was acquired using a Siemens Vision system in 1994/1995
with the following parameters: TR: 9.70 ms; TE: 4.00 ms; TI: 621.00 ms; flip angle: 10.00j;
1.25 sections (resampled to 1-mm isotropic). Data comes from studies reported in Buckner
et al. [11] and Logan et al. [58] and also later subjects imaged using the same anatomic
protocol3. This data set consists of 6 Young Normal Control, 14 non-demented and 6
demented adults.

5.4.2 Subcortical Segmentations

Each of the 26 subcortical segmentations is composed of k = 14 nuclei: left and right ventri-
cle, putamen, pallidum, amygdala, hippocampus, thalamus, and caudate nucleus (Fig. 5-4).
We apply our algorithm independently on each subcortical nucleus. Topology correction of
an individual structure takes a few seconds on a current machine.

Most subcortical segmentations have few topological defects. Results show that addition
and deletion of very few voxels is necessary to correct the topology of each structure. Manual
segmentations are corrected by changing the labels of approximately 0.05% of the total
number of voxels. Automatic segmentations require of the order of 0.1% of labels to be
changed. A typical example is given in Fig. 5-4, which shows the segmentation of the right
pallidum before topology correction (Fig.5-4-a) and after topology correction (Fig.5-4-b).

3We thank Randy Buckner and the Washington University Alzheimer’s Disease Research Center for
providing the data set.

Figure 5-4: Results of the topology correction subcortical structures. a) Initial segmentation of the
right Pallidum (χ = −4, g = 3). b) Topologically corrected right Pallidum. c) The same structure
after the homotopic deformation with 14 nucleus.
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In this example, the initial segmentation contains 3 handles (Euler characteristic of the
tessellation χ = −4, genus g = 1 − χ/2 = 3); the final surface has the correct spherical
topology (χ = 2 and g = 0).

Applying the topology correction independently on each nucleus, some voxels are as-
signed more than one label. Results show that this problem concerns less than 0.01% of
the voxels. In our experiments, every multi-labeled voxel had, at most, one label that
corresponded to a non-simple configuration. Consequently, a final modification of these
multi-labeled voxels by deleting the “simple” labels generates valid subcortical segmenta-
tions (i.e. with one label per voxel at most), which carries the correct topology. When
these conditions hold, more sophisticated methods can be applied, as the one proposed in
Sect. 5.5. Nevertheless, we are aware of the limitations of this approach, as we cannot
guarantee (in theory) that no voxel has more than one non-simple labels.

5.4.3 Cortical Segmentation

The correction of the topology of the cortical surface is a much more challenging task. Its
highly convoluted nature often produces numerous topological defects that interact with
each other, and that are difficult to precisely locate and correct. We have applied our
method to 26 brains in order to generate white matter segmentations with a correct spherical
topology. Before applying the algorithm, we merge the ventricles into the white matter
segmentation in order to avoid topological defects to be introduced in this area. We note
that the medical structures caudate, putamen, and pallidum nucleus are considered to
be part of the white matter segmentation. We apply the algorithm on each hemisphere
separately.

A - Convergence

We first look at the convergence of our algorithm. A binary segmentation So of a hemi-
sphere of white matter contains on the order of 105 voxels (100× 100× 100 image domain).
The multiple region growing process typically segments the binary volume So in approx-
imately 50 body components and a few hundred residual components. During the first
iteration of the algorithm most of the multi-residual components are merged into the body

Figure 5-5: a) The threshold increase and the evolution of the probability p(S|I). After a number
of iterations, the threshold becomes positive, because there is no obvious decision anymore. Con-
sequently, the probability p(S|I) decreases. b) Number of body components as a function of the
iteration number. Note the strong decrease of body components after one iteration, mostly due
to the merging of multisimple components. c) Number of residual components in function of the
iteration number.
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segmentation, leading to a sharp decrease of the number of body components. After the
first iteration, residual components are iteratively deleted, which corresponds to a quasi-
constant decrease in the number of body and residual components. Figure 5-5 illustrates
this decrease on a typical example, whose initial surface is shown in Fig. 5-6. After the
first step, approximately 500 residual components remain; the algorithm also converges in
approximately 500 iterations (Fig. 5-5-c).

The threshold Tthres, which is necessary to guarantee convergence, monotonously in-
creases, reaching a positive value, after which the posterior probability p(S|I) tends to
decrease (Fig. 5-5-a). During the iterative topology correction, the algorithm often reaches
a point, after which there is no obvious decision anymore. This reflects the fact that medical
images often contain artifacts that perturb the topology of the segmentations. Incorrectly
classified voxels represent ambiguous voxels with low confidence values. Modification of
these voxels often correspond to a decrease in the probability p(S|I). In the final steps
of the algorithm, the algorithm enforces topology correction by choosing for the “best”
decisions (i.e. the ones that decrease the least the posterior probability p(S|I)).

B - Results on Cortical Segmentations

Similarly to subcortical segmentation results, approximately 0.1% of the total number of
white matter voxels (this approximately corresponds to 100 voxels) need to have their label
changed to achieve topology correction. Most of the computation time is taken by the mul-
tiple region growing process and a white matter segmentation is corrected in approximately
30 minutes. Most of the modified voxels are located at the periphery of the white matter
volume, since cortical segmentations contain few cavities or disconnected components.

However, in some cases, the algorithm generated a few incorrect topological corrections,
mostly in the regions of the temporal pole. Due to the partial volume effect, the temporal
region contain numerous ambiguous voxels. Digital approaches, which fail to include addi-
tional information, such as curvature information, into the topology correction process, are
sensitive to the presence of image artifacts. One potential solution to alleviate this problem
is proposed in Sect. 5.6.

Figure 5-6: Initial Surface and Final Surface. The initial surface, generated under (n, n) = (6, 18),
has an Euler characteristic of χ = −236. Some topological defects are circled in red.
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5.5 Extension: Homotopic Markov Random Field

In the previous section, we have presented some results about the topology correction of
subcortical structures. In this section, we describe a method to integrate curvature informa-
tion into the segmentation process based on a variant of Markov Random Fields. We take
an approach similar to the one presented in [29] and we refer to this work for a complete
description of the Bayesian framework. We only present the main concepts of our approach.

Once the topology of each structure has been independently corrected, additional infor-
mation can be incorporated into the segmentation process of the image, such as curvature or
prior information about the spatial distribution of the labels. The segmentation of an image
is modeled by a Markov Random Field [29]. Briefly, segmentation W represents a complete
segmentation into k different labels: each structure s is assigned a different label Ws, such
that ∀x ∈ s, W (x) = Ws, and we search for the MAP estimate of p(W |I). We still assume
that the noise at each voxel is independent from noise at all other voxels in the image, but
the voxel labels are not supposed to be independently distributed anymore. We assume that
the spatial distribution of labels can be well approximated by an anisotropic non-stationary
Markov random field, which allows us to encode prior information about the relationship
between labels as a function of location within the brain (i.e. non-stationary), as well as
with local direction (i.e. anisotropic). Under this assumption, the prior probability of the
full segmentation can be expressed as:

p(W ) ∝
∏

x inV

p(W (x))
6∏

i=1

p(W (xi)|W (x),xi), (5.7)

where the 6 xi represent the 6 voxels in the positive and negative cardinal directions at each
voxel location x. Finally, we incorporate curvature information into the Bayesian frame-
work, as simple points are border points, for which the curvature can be easily computed
curv(x). A 3-by-3-by-3 neighborhood is sufficient to compute the curvature of the label
W (x) at voxel location x. We use a topologically-consistent marching cube algorithm to
tessellate each cube (Sect. 2.3.3).

The MAP estimate is the one maximizing the posterior probability:

p(W |I) ∝
∏

x∈V

p(I(x)|W (x))p(W (x)
6∏

i=1

p(W (xi)|W (x),xi)
∏

border x

pc(curv(x)) (5.8)

In order to apply this framework to the topologically correct subcortical segmentations,
topology changes are avoided by working with homotopic deformations: only simple points
are considered in a modified version of the iterated conditional modes (ICM) algorithm
proposed by Besag (1986). At each iteration, only simple points are updated in a random
order. We note that a point must be checked for being simple if one of its neighbors has
been updated.

Figure 5-7 shows the results of the topologically constrained subcortical segmentations
applied to 14 structures. Most curvature artifacts, due to noise in the observed image, are
removed from the initial segmentations, leading to more faithful surfaces. Each final surface
carries the correct spherical topology, contrary to the initial ones, which had a total of 9
topological defects (χ = 10).

The agreement between the automated and manual labelings is comparable to that
obtained by comparing the labelings of different experts, although further testing on a
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Figure 5-7: Results of the topology correction subcortical structures. The whole subcortical seg-
mentations with 14 nucleus (left and right ventricle, putamen, pallidum, amygdala, hippocampus,
thalamus, caudate nucleus) before topology correction (left) and after topology correction followed by
an homotopic deformation (right). The initial surfaces had a total of 9 topological defects (χ = 10).

broader database is required.

5.6 Future Work

We have presented a new algorithm, correcting the topology of digital binary segmentation.
Our topology correction was phrased within the Bayesian theory under a set of simplistic
assumptions. More elaborate approaches can easily be integrated into our general frame-
work.

We note that probability maps are often corrupted by noise and homotopic deformations
are known to be highly noise sensitive. In future work, we propose to overcome this lim-
itation by integrating level-set active contours into the region growing process. Level-sets
constitute an efficient way to implicitly encode a surface using the embedding space (i.e. the
3-dimensional grid). It is therefore possible to constrain the topology of a level-set active
contour by using the digital topology of the underlying grid. We propose to generalize our
region growing process using level set deformation under topological control (Chapter 4),
in which each digital component is represented by a level-set component. For each object S
(foreground and background), we propose to deform its level-set representation φS subject
to the following velocity field:

v(x, t) = [fp(x, S)− εH(x, t)]n(x, t), (5.9)

where H denotes the mean curvature of the contour at location x. The corresponding level
set evolution is:

∂φS(x, t)

∂t
= [−fp(x, S) +

ε

n− 1
div(

∇φS

|∇φS |
)] |∇φS | (5.10)

The second term of this equation corresponds to a mean curvature motion, which enforces
a smoothness constraint into the deformation process. Therefore, curvature information is
naturally integrated into the segmentation process, establishing an efficient way to alleviate
noise sensitivity. Using this framework, the fitness function, measuring the goodness of
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topological correction, could be written as:

f(S) =

∫

R3

log
ps(x, S(x))

ps(x, S(x))
d3x + α

∫

surface
H(s) d2s, (5.11)

where α is an empirical coefficient, and H(s) represents the mean curvature of the sur-
face (i.e. the boundary of the segmentation) at location s on the surface. This fitness
function would favor configurations with relatively few misclassified voxels and with a re-
sulting smooth surface. The empirical constant α establish a tradeoff between geometric
information (e.g. curvature) and statistical information (e.g. misclassified voxels).

Applied to the topology correction of white matter segmentations, this approach would
certainly limit the effect of early wrong decisions during the graph analysis. The graphs
are constituted of approximately 50 body components and several hundred residual com-
ponents.When obvious decisions no longer exist, the algorithm enforces topology correction
by using the monotonously increasing threshold to select the next “best” component. An
early wrong decision may lead to large geometric inaccuracies that are difficult to correct
retrospectively. However, we describe in the next chapter another surface-based approach
that is more adapted to the topology correction of cortical representations.

5.7 Contributions of this Chapter

In this chapter, we have presented a new algorithm that corrects the topology of digital bi-
nary segmentation. No assumption is made on the topology of the initial segmentation, and
spherical topology is achieved under any choice of digital topology. A Bayesian framework
allows us to integrate statistical information into the topology correction. Our algorithm
can enforce exclusively background or foreground corrections. Applied to subcortical seg-
mentations, the topology of fourteen deep nuclei is corrected in a few minutes, and white
matter topology correction is achieved in about 30 minutes.

To our knowledge, this approach is the first one that has been proposed to integrate
statistical information into the topology correction. Our method, nested in the theory of
Bayesian parameter estimation, selects maximum a posteriori topological solutions based
on the available information present in the image (i.e. intensity).

In addition, we have suggested two ways of integrating geometric information into our
Bayesian framework. We have introduced a homotopic Markov Random Field segmenta-
tion that incorporates curvature information using the border points of the segmentation.
Finally, we have proposed to generalize our framework using genus-preserving level sets,
thereby integrating curvature information directly into the segmentation process.

Part of this work has been presented at the conference Medical Image Computing and
Computer-Assisted Intervention [85].
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Chapter 6

A Genetic Algorithm for the

Topology Correction of Cortical

Surfaces

In this chapter, we focus on the retrospective topology correction of surfaces. We propose a technique

to accurately correct the spherical topology of cortical surfaces. We construct a mapping from the

original surface onto the sphere to detect topological defects as minimal non-homeomorphic regions.

A genetic algorithm corrects each defect by finding the maximum-a-posteriori retessellation in a

Bayesian framework. During the genetic search, incorrect vertices are iteratively identified and

eliminated, while the optimal retessellation is constructed. We address the mapping dependency

problem by generating several configurations corresponding to different spatial optimal retessellations.

Applied to synthetic and real data, our method generates optimal topological corrections with only a

few iterations.

6.1 The Cortical Reconstruction Problem

In this chapter, we focus on the generation of accurate representations of the cortical surface
under the spherical topological constraints. Although we constrain the final topology of the
cortical sheet to be that of a sphere, the proposed approach extends to any local planar
topology.

6.1.1 Cortical Anatomy

The human cerebral cortex is a highly folded ribbon of gray matter that lies inside the cere-
brospinal fluid and outside the white matter of the brain. Locally, its intrinsic “unfolded”
structure is that of a two-dimensional (2-D) sheet, which is several millimeters thick. The
analysis of cortical data is greatly facilitated by the use of accurate 2-D models of the
cortical sheet [17, 99], which alleviates most drawbacks of the three-dimensional embed-
ding space (such as the underestimation of true cortical distances or the overestimation of
cortical thicknesses).

In the absence of pathology, each cortical hemisphere is a simply-connected 2-D sheet
of neurons that carries the simple topology of a sphere. There has been extensive research
dedicated to the extraction of accurate and topologically-correct models of the brain surface
that allows for the establishment of a global 2-D coordinate system onto the cortical brain
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surface. However, because of its highly convoluted nature that results in most of its surface
being buried within folds, noise, imaging artifacts, partial voluming effects and intensity
inhomogeneities, the automatic extraction of accurate and topologically correct cortical
surfaces is still a challenging problem.

6.1.2 Limitations of Previous Approaches

Methods for producing accurate cortical segmentations under topological constraint have
been reviewed in Chapter 2.

Most methods that have been proposed [43, 89, 44, 50] assume that the topological
defects in the segmentation are located at the thinnest parts of the volume and aim at
correcting the topology by minimally modifying the volume or tessellation. These meth-
ods, which rely on the accuracy of the initial segmentations, often produce valid cortical
representations, even though the topological corrections may not be optimal: additional
information, such as the expected local curvature or the local intensity distribution, may
lead to different corrections, i.e. hopefully comparable to the ones a trained operator would
make.

Only a few techniques have been proposed to integrate additional information into the
topology correction process [56, 28]. However, for each topological defect, these methods
fail to produce more than two potential solutions. In the specific case of a handle, the two
potential solutions usually correspond to either cutting the handle or filling the correspond-
ing hole. However, the exact location of these potential solutions is most often determined
based on some criteria that ignore the underlying MRI intensity profile and/or local curva-
ture and the resulting corrections can never be optimized relative to these parameters.

6.1.3 Approach

For a given topological defect, the MRI intensity profile contains important information
regarding the location and position of the potential topological correction. The resulting
corrected surface should be located at the border of the white and gray matter, with white
matter tissue being inside the surface and gray matter outside. Also, the smoothness of
the corrected defect should match the smoothness of the rest of the cortical surface. This
information should be used to guide the generation of optimal topological corrections.

In order to make full use of the available information, we propose a technique that di-
rectly extends the approach taken by Fischl et al. in [28], addressing most of its limitations.
In their previous work, Fischl et al. proposed an automated procedure to locate topological
defects by homeomorphically mapping the initial triangulation onto a sphere. Topological
defects are identified as regions in which the homeomorphic mapping is broken and a greedy
algorithm is then used to retessellate incorrect patches. The main limitations of their ap-
proach are the following:

1) Even though the final intrinsic topology will be the correct one (i.e. that of a sphere)
the method does not guarantee that the final surface will not self-intersect.

2) Every vertex present in the original topologically incorrect surface will be present in
the final retessellation, resulting in extremely jagged patches.

3) The information necessary to evaluate the “goodness” of an edge does not exist in
isolation, but only as a function of the tessellation of which the edge is a part. This implies
that a greedy algorithm cannot in general achieve geometrically accurate surfaces, as the
necessary information does not exist at the time that the edge ordering is constructed.
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In order to extend the greedy retessellation developed in [28], we propose to take a
somewhat different approach, and evaluate the goodness of fit of the entire retessellation,
not of individual edges. We introduce a genetic algorithm to explore the space of possible
surface retessellations and to select an optimal configuration. During the search, incorrect
vertices are iteratively identified and eliminated from the tessellation. Our method proceeds
as follow:

1) Generate a mapping from the original cortical surface onto the sphere that is maxi-
mally homeomorphic. Each topological defect is identified as a set of overlapping triangles.

2) Discard the tessellation in each defect and generate an optimal retessellation using a
genetic algorithm to search the space of potential retessellations.

In addition, we note that the space of potential retessellations is dependent on the initial
mapping. We address this problem by generating a set of well-chosen distinct mappings.
The resulting method is a completely self-contained topology correction algorithm, which
determines optimal topologically correct solution based on the MRI intensity profile and
the expected local curvature.

6.2 Identification of Topological Defects

We identify the presence of topological defects in the surface by computing its Euler-
characteristic. In the presence of topological defects1, we generate a mapping from the
cortical surface C onto the sphere S that is maximally homeomorphic and identify each de-
fect as a set of overlapping faces. This step is identical to the approach developed by Fischl
et al. in [28]. Briefly, the identification of topological defects begins with the inflation and
projection of the cortical surface C onto a sphere S. Next, we generate a maximally home-
omorphic mapping M : C → S by minimizing an energy functional that directly penalizes
regions in which the determinant of the Jacobian matrix of M becomes zero or negative;
these regions are non-homeomorphic regions (Sect. 2.2.2). Finally, the topological defects
are identified by regions, where the homeomorphism is broken (i.e. regions with negative
determinant or, equivalently, regions with overlapping faces). The following detailed steps
were taken from [28].

6.2.1 Initialization of the Mapping: Spherical Inflation

The initial mapping of the cortical surface to that of a sphere could be accomplished by
simply projecting each point of the cortical surface to the closest point on the sphere. Doing
so would result in large regions of the initial mapping being non-homeomorphic.

Instead, we use a simple procedure to unfold and smooth the folded cortical surface so
that it approaches that of a sphere whose origin is the centroid of the initial surface. The
algorithm consists in iteratively updating the position of each vertex based on a smoothness
force FS , and a radial spherical force FR:

xk(t + 1) = xk(t) + FS(t) + λRFR(t) (6.1)

1The Euler number of a surface is a topological invariant (Sect. 2.2.3). For a tessellation, it can be easily
computed as: χ = #vertices − #edges + #faces
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where xk is the position of the kth vertex at iteration number t and the smoothness force
FS is given by:

FS =
1

Nk

∑

j∈Nk

(xj − xk)−
1

V

V∑

i

∑

j∈Nj

(ninj).(xj − xi) (6.2)

where:
Nk is the set of vertices neighboring the kth vertex;
V is the number of vertices in the tessellation;
nk and nk are the surface normals at location k and its transpose, respectively.

The smoothness term FS moves each vertex in the direction of the centroid of its neighbors,
while projecting out the average inwards movement this creates over the entire surface. The
radial term simply drives each vertex toward the surface of a sphere with the desired radius
R:

FR = (Rk − xk) (6.3)

where Rk is the radial projection of xk onto the sphere with radius R.
We use an R on the order of 100mm as this results in a sphere with about the same

total surface area as an average cortex, and a λR of 0.25 to allow sufficient smoothing to
take place during the spherical inflation. Once the inflation has converged, the surface is
projected so that it lies precisely on the surface of a sphere of radius R.

6.2.2 Quasi-Homeomorphic Mapping

Once the initial spherical configuration M0 has been established, we generate a mapping
M that is maximally homeomorphic, which we term a quasi-homeomorphic mapping. In
generating the mapping M, we are only concerned with its topological properties, that is, we
wish M1 to be as close to a homeomorphism as possible. A mapping is a homeomorphism if
the determinant of its Jacobian matrix is non-singular, and the mapping itself is continuous.
This is of course the multidimensional analog of monoticity. To construct the mapping, we
minimize an energy functional that directly penalizes regions in which the determinant
becomes zero or negative, thus encouraging positive definiteness. Note that this is the only
term in the energy functional - no preservation of metric properties is needed.

The Energy Functional

More specifically, noting that the Jacobian yields a measure of the deformation of an oriented
area element under the mapping M, the energy functional EM limits the penalization of
compression primarily to negative semi-definite regions. If the initial area on the folded
surface of the ith face is A0

i , and the area on the spherical surface S at time t of the
numerical integration is At

i, then the energy functional is given by:

EM =

F∑

i=0

log(
1 + ekRi

k
)−Ri , Ri =

At
i

A0
i

,
∂EM

∂At
i

=
−e−kRi

A0
i (1 + e−kRi)

(6.4)

The logarithmic nonlinearity limits the penalization of compression primarily to negative
semi-definite regions, as can be seen in the plot in Fig. 6-1-a. Ri is an approximation of
the Jacobian of the transformation M (Sect. 2.2.2). The extent to which highly compressed
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Figure 6-1: a) Non-linearity of the energy functional EM b) Triangle properties

positive definite regions are penalized is determined by k. In practice, we used a value for
k of 100.

Numerical Implementation

In order to complete the definition of the topology term of the energy functional, we consider
the ith triangle in the surface tessellation, with edges ai and bi connecting the vertex xi

to two of its neighbors xl and xj respectively. In the spherical representation, the normal
vector field can be given a consistent orientation on the surface2 using the embedding space,
and Ai becomes an oriented area, which may take on negative values indicating folds in
the surface. The normal vector is chosen as pointing outward on the surface of the sphere
ni = xi

‖xi‖
(the sphere is centered at the origin).

Using the chain rule, the directional derivative of EM with respect to the position of
the kth vertex:

∂EM

∂xk
=

∂EM

∂At
i

∂At
i

∂xk
(6.5)

The first factor is given by Eq. 6.6. The second is the change in the area of the ith triangle
caused by moving the kth vertex, which can be computed from the prior description of the
metric properties of the tessellation using the chain rule as:

∂At
i

∂xk
=

∂At
i

∂ai

∂ai

∂xk
+

∂At
i

∂bi

∂bi

∂xk
(6.6)

with
∂At

i

∂xk
= bi ∧ ni ,

∂At
i

∂xk
= ni ∧ ai . (6.7)

The partials of the change in the legs with respect to a change in the vertex position are

2This is always possible except in pathological cases such as the Mobius strip that are said to be non-
orientable.
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dependent on what position the vertex in question occupies in a given triangle

∂ai

∂xk
=







[−1,−1,−1]T : k = i
[1, 1, 1]T : k = l
[0, 0, 0]T : otherwise

(6.8)

∂bi

∂xk
=







[−1,−1,−1]T : k = i
[1, 1, 1]T : k = j
[0, 0, 0]T : otherwise

(6.9)

6.2.3 Identification of Topological defects

The resulting mapping M - from the initial tessellation C to the sphere S - is maximally
homeomorphic. The surface is examined for regions of non invertibility, as these are areas
where the current tessellation must be discarded and a new one constructed in order to
ensure the proper topology. Multivalued regions, containing overlapping triangles, consti-
tute topological defects where the homeomorphic mapping is broken. M associates at each
vertex v of the initial cortical surface C a vertex vS = M(v) on the sphere S. Vertices with
spherical coordinates that intersect a set of overlapping triangles are marked as defective
and topological defects are identified as connected sets of defective vertices.

6.3 Optimal Topology Correction using a Genetic Algorithm

6.3.1 Definition of the Retessellation Problem

Once a topological defect has been identified, its tessellation is discarded. The retessellation
problem can then be stated as follows.

Given a set of defective vertices, each of which has been assigned a spherical
location by the quasi-homeomorphic mapping M, find the vertices that should
be kept in the defect and the set of edges connecting them, so that an energy
functional, measuring the goodness of the retessellation, is maximized.

Topological inconsistencies, which are resulting from mislabeled voxels in the segmenta-
tion process, generate tessellations that include incorrect vertices. These vertices should be
identified and discarded from the final solution. A potential topological correction of the
defect corresponds to the generation of a new tessellation such that no edge intersection
occurs in the spherical surface.

Many such tessellations exist, and one would like to select an optimal solution that
maximizes the goodness of fit of the retessellation. Before describing our method, we diverge
slightly from the main topic in order to evaluate the size of the considered space.

Evaluation of the size of the space of potential retessellations

In order to evaluate the size of the space of potential retessellations, we consider one
single defect, constituted of nb bordering vertices and nv inside vertices. For this defect,
the number of potential edges is N = (nv + nb)((nv + nb)− 1)/2. The Euler-characteristic
of the retessellated patch is equal to: χ = (nv − ne + nf ) = 1, where ne and nf are the

106



number of edges and faces inside the defect respectively. For a topologically correct spheri-
cal surface, every face has exactly 3 edges and every edge is bordering 2 faces exactly. This
implies that we have the following relation: 3(nf +nb) = 2(ne +2nb) or nf = 2/3ne +nb/3.
Therefore, the number of added edges in the final topologically correct retessellation exactly
is : ne = (nb − 3) + 3nv. Therefore, we can approximate the size of the space of potential

retessellation by Cne

N = C
(nb−3)+3nv

(nv+nb)((nv+nb)−1)/2. However, we note a set of added edges im-
poses constraints on the set of other potential added edges, and that this constraint actually
decreases the size of the space. Nevertheless, the edge ordering will be used to naturally
discard vertices in the retessellation. This implies that the space of potential retessellations
depends on the ordering of the edges, leading to a space of extremely large dimensionality.

We evaluate the fitness of a corrected region with the maximum-a-posteriori estimate of
the retessellation, given geometric information about the observed surface, and the under-
lying MRI values. The numerical technique we propose to explore in the maximization of
the fitness function is a genetic algorithm [3, 19, 34, 80, 102, 101] or GA (for a good intro-
duction see [69]). The GA is an appropriate choice for this type of problem as the space to
be searched is potentially quite large (the defects can contain upwards of 300,000 candidate
edges), and there is no easy way to compute gradient information. More importantly, we
define a set of genetic operations used to propagate information from one generation to the
next that correspond to “relevant” surface operations.

6.3.2 A Genetic Algorithm for the Surface Retessellation

Genetic Algorithms were developed by John Holland in the 1960s as a means of importing
the mechanisms of natural adaptation into computer algorithms and numerical optimiza-
tion [49], with much subsequent theoretical work [38]. In genetic algorithms, a candidate
solution to a problem is typically called a chromosome, and the evolutionary viability of
each chromosome is given by a fitness function. Typically, genetic algorithms are defined
by different operators: Selection, Crossover and Mutation.

• Selection: the selection of chromosomes from a population for reproduction, usually
based on their fitness.

• Crossover: the generation of a new chromosome by combining parts of two ”parent”
chromosomes, roughly patterned after the biological process of recombination of two
haploid, or single-chromosome, individuals.

• Mutation: the random change of parts of a chromosome (typically with relatively low
probability).

In the next paragraphs, we explain the role of these operators in detail and specify how
their definition is meaningfully tailored to the current problem.

A - Representation and Retessellation

Perhaps the most important decision in the construction of a GA is the choice of repre-
sentation for the underlying problem. Here we have a number of constraints that must be
satisfied that lead to the representation we use. These essentially amount to the requirement
that every potential edge be represented exactly once in an ordering for the retessellation.
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This guarantees that the retessellation will result in the proper topology [28]. Thus the
representation we choose is an edge ordering, represented by a permutation of N integers.
The retessellation procedure then simply involves adding edges in the order specified by the
permutation.

Such a procedure will generate retessellated patches that include all vertices present
in the defect, resulting in irregular jagged surfaces. In order to alleviate this problem,
we directly encode the vertex selection into the representation. Given an edge ordering,
we iteratively construct the corresponding tessellation and discard isolated vertices that
are located inside formed triangles. During the retessellation, every time an newly added
edge generates a triangle, inside vertices that are not connected are simply discarded. This
way, edges added first in the retessellation will force their bordering vertices to be included
in the final retessellation. The edges added last, which most often generate the surface
irregularities, will consequently be discarded.

Figure 6-2: a) Example of a topological defect containing 2 handles and constituted of 183 defective
vertices. b) Result of the clustering of the non-intersecting edges into 5 segments. c-e) These
candidate retessellations represent different configurations of the initial population generated using
the edge clustering. f) The optimal solution generated by our genetic approach in 15 generations
after 4 mutations and 8 crossovers.

B - Selection of the Initial Population

The selection of the initial population is particularly significant for the considered problem.
The space to be searched is potentially quite large and the selection of a “good” initial
population can drastically improve convergence of the algorithm. Topological defects are
constituted of sets of overlapping triangles. The intersecting edges on the sphere S corre-
spond to different topological paths in the original cortical surface C. In order to generate an
initial population with a large variance (i.e. composed of individuals with large shape differ-
ences) we first group the non-overlapping edges into different clusters. Using the spherical
quasi-homeomorphic mapping M , intersecting edges are iteratively segmented into different
clusters. Next, these clusters are used to select the initial population of chromosomes. We
say that a chromosome is generated from a cluster Ci, if the first edges (in the ordering)
constituting this chromosome comes from Ci. Consequently, chromosomes generated from
different clusters will have different shapes, hopefully leading to an initial population with
a large variance. Figure 6-2 provides a few examples of initially selected chromosomes in
the case of a simple topological defect.

C - Mutations and Crossovers

The two most important operations used in GAs are mutation and crossover. Mutation
involves the random modification of a part of the code of an “individual” in the population
and crossover the exchange of a part of the code of an “individual” with another one in the

108



population. We define these operations in order to accommodate the nature of the current
problem. Intersecting edges represent choice between different surface configurations. In the
following section, we note Ii the set of edges intersecting the edge ei: Ii = {ej |int(ei, ej) =
1}, where int(ei, ej) is the intersection operator, and returns 1 if edge ei intersects edge ej ,
and 0 otherwise.

C.1 - Mutations: the mutation operation, described in Alg. 10, corresponds to a random
swap operation of intersecting edges in the ordered representation. This procedure will allow
the selective exploration of the different retessellations represented by different members of
Ii, thus reducing the size of the effective search space.

Algorithm 10 Mutation Operator

for all edges in the ordering ei ∈ O do
Draw a random number r from UR(0, 1) the uniform distribution on the real numbers
between 0 and 1
if r ≤ pmut then

Draw a random number k from UN(1, |Ii|) the uniform distribution on the natural
numbers between 1 and |Ii|
Exchange the positions of ei and ej where ej is the kth entry in the set Ii.

C.2 - Crossovers: the crossover operator we define is the random combination of permu-
tations (see Alg. 11). Some care must be taken here to insure that every edge is represented
exactly one time. Towards that end, the crossover operator will add a random number of
edges from each parent retessellation, only if that edge has not been added. The crossover
operator will randomly select one of the permutations to draw from first, then copy a ran-
dom number of edges from it to the “offspring” retessellation. For each edge, we draw a
random number r from UR(0, 1), and stop copying edges if r < 1/2. Next, a random number
of edges will be copied from the second parent, if they are not already represented in the
offspring. This procedure will continue until every edge is represented.

Algorithm 11 Crossover Operator

Two parent orderings O1 and O2 indexed by two integers k1 = k2 = 0 ; α = 1
Draw a random number r from UR(0, 1)
if r ≤ pmut then

Set α = 2
repeat

Set e = ekα
∈ Oα and set kα = kα + 1

if e ∈ Odst then
add edge into offspring chromosome: 2→ Odst

Draw a random number r from UR(0, 1)
if r ≤ pmut then

Set α = (α + 1)mod[2]
until all edges are represented in Odst: |Odst| = |Oα|

It is important to note that the previously defined genetic operations carry meaningful
geometric operations. Mutation, which randomly swaps the ordering of intersecting edges,
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corresponds to local jumps from one configuration to another one. The crossover operation
naturally combines different parts of the code from the two candidate tessellations, gener-
ating a configuration that often expresses distinct local surface properties of both parents.
In addition, since the edge ordering naturally encodes which vertices are discarded (the
vertices included last being discarded), the crossover operation, which iteratively combines
two edge orderings, most often generates offspring chromosomes that preserve the best
geometric characteristics of the parents (most likely, the same vertices will be discarded).

D - Fitness and Likelihood Functions

We use some prior knowledge about the cortex to define the fitness function. A cortical
surface is a smooth manifold C that partitions the embedding space into an inside part,
composed of white matter, and an outside part, composed of gray matter. We characterize
the goodness of a retessellation by measuring two of its properties:

• the smoothness of the resulting surface,

• the MRI values I inside and outside the surface.

Formally, the posterior probability of the ith retessellation Ti is given by:

p(Ti|C, I) ∝ p(I|C, Ti)p(Ti|C). (6.10)

The likelihood term p(I|C, Ti) encodes information about the MRI intensities inside and
outside the surface. Each retessellated patch, being topologically correct, separates the
underlying MRI volume into two distinct components3, an inside part C− and an outside
part C+. An acceptable candidate solution should generate a space partition with most of
its inside and outside voxels corresponding to white and gray matter voxels respectively. In
order to estimate the likelihood p(I|C, Ti), we assume that the noise is spatially independent.
This probability can be rewritten:

p(I|C, Ti) =
∏

x∈C−

pw(I(x)|C, Ti)
∏

x∈C+

pg(I(x)|C, Ti)

︸ ︷︷ ︸

volume-based information

Vi∏

v=1

p(gi(v), wi(v)|C, Ti)

︸ ︷︷ ︸

surface-based information

, (6.11)

pw(I(x)|C, Ti) and pg(I(x)|C, Ti) are the likelihood of intensity values at location x in the
volume inside and outside the tessellation respectively, p(gi(v), wi(v)|C, Ti) is the joint like-
lihood of intensity values inside and outside the tessellation at vertex v in tessellation Ti.

Geometric information can be incorporated via p(Ti|C), which represents priors on the
possible retessellation. For example, p(Ti|C) could have the form:

p(Ti|C) =

Vi∏

v=1

p(κ1(v), κ2(v)|C), (6.12)

where κ1 and κ2 are the two principal curvatures of the surface, computed at vertex v.
Given that the vast majority of the surface is in general not defective, we fortunately

have ample amounts of data with which to estimate the correct forms of the distributions

3We use the angle weighted pseudo-normal algorithm to compute the signed distance of the tessellation [2].
The voxel grid is partitioned into inside negative values and outside positive values

110



p(Ti|C), pg(I(x)|C, Ti), pw(I(x)|C, Ti) and p(gi, wi|C, Ti). In particular, the single tissue
distributions pg(I(x)|C, Ti) and pw(I(x)|C, Ti) are locally estimated around each topological
defect in a region that excludes the defect itself (we exclude all voxels that intersect one
of the N potential edges). This makes the resulting procedure completely adaptive and
self-contained, in the sense that no assumptions need to be made about the contrast of
the underlying MRI image(s), and no training or parametric forms are required for p(Ti|C).
An example of the estimation of p(gi, wi|C, Ti) and p(Ti|C) is given in Fig. 6-3. Image b)
shows the joint distribution of gray and white matter given the surface computed using
the non-defective portion of the gray/white boundary representation of a single subject.
Note the diagonal character of the distribution, indicating that the intensities are mutually
dependent - brighter white matter typically means brighter gray matter due to factors such
as bias fields induced by RF inhomogeneities and coil sensitivity profiles, as well as intrinsic
tissue variability. One possible form of the priors on the tessellation is given in Fig. 6-3-c,
which shows the joint distribution of the two principal curvatures κ1 (green) and κ2 (red)
computed over the non defective portion of a single surface. It is important to note in
this context that all these distributions can only be applied after a candidate retessellation
has been completed, as the gray/white joint density requires surface normals, gray and
white intensity distributions necessitate the underlying MRI volume to be partitioned in
two separate components and the principal curvatures require the calculation of the second
fundamental form, all of which are properties of the surface, not of individual edges.

Figure 6-3: a) Example of the gray and white matter distributions estimated locally from a given a
topological defect. b) Joint distribution of gray and white matter given the surface computed using
the non-defective portion of the gray/white boundary representation of a single subject. The gray
and white matter intensity are two correlated variables, as indicated by the diagonal structure of
the joint distribution. c) Joint distribution of two principal curvatures of the surface.

E - Optimization Using Active Contour Patches

During the genetic search, candidate patches Ti are selected based on their fitness value
p(Ti|C, I). Due to the spherical topological constraint, each patch defines a valid manifold
that can be treated as an active contour with fixed boundaries. Each patch is locally de-
formed in order to maximize the posterior probability p(Ti|C, I). Instead of deriving the
exact Euler-Lagrange equation of the active contour Ti for the energy functional p(Ti|C, I)4,
we use an approximation procedure. We note that the fitness function of a chromosome
measures the smoothness of the resulting surface and the MRI intensity profile inside and

4The Euler-Lagrange equation is computationally unstable as it contains third-order derivatives.
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outside the surface. We simply update the position of each interior vertex xk of the candi-
date tessellation based on a smoothness force FS and an MRI intensity-based force FM :

xk(t + 1) = xk(t) + FS(t) + λMFM (t). (6.13)

The smoothness force is the same one as the one defined in Eq. 6.2. The intrinsic curvature-
based force enforces a smoothness constraint on the deformed active contours and tends to
minimize the prior term p(Ti|C). The MRI intensity-based force FM is designed to drive
the active contour towards the true boundary separating the gray from the white matter:

FM = [Tv − I(xk)]∇I(xk), (6.14)

where the targeted value Tv is computed from the gray and white matter distributions. The
mean intensity and variance of the gray and white matter intensities are estimated from the
respective distributions pg and pw, denoted by µg, σg, µw and σw, and the local threshold
Tv is computed based on the Mahalanobis distance:

Tv =
µwσg + µgσw

σw + σg
. (6.15)

At each iteration, we measure the exact fitness function p(Ti|C, I) of the active contour
and stop the deformation when the fitness function is maximized. The constant λM is
empirically set to 0.5.

F - Iterative Elimination of Vertices

During the genetic search, some vertices will be consistently discarded from the best patches.
These vertices, which are the ones that were erroneously kept in the initial cortical tessel-
lation, should be identified and eliminated from the final tessellation. To this end, we
introduce in our genetic search, an elimination operator, which selectively eliminates the
worst vertices from the defect. The elimination step operates as follows: after every few it-
erations, we eliminate the vertices that were consistently discarded from the best candidate
patches.

The proposed approach is implemented with the following parameters. The initial pop-
ulation size is chosen depending on the number of defective vertices. The retessellation
process is quadratic in the number of vertices contained within the convex hull of each
defect. Typical defect contains on the order of 100 vertices for a population size of 20
candidate retessellations. At each step of the genetic search, a new population is generated
from selected chromosomes based on their fitness. Given a population of individuals, the
top one third is selected to form the elite group. These chromosomes are kept for the next
generations. The worst individuals, corresponding to the bottom one third, are replaced
with mutated copies of the best. Finally, the remaining ones are generated from crossover
operations from parents iteratively chosen from the elite population. The mutation rate
pmut is experimentally chosen to be 10%. The algorithm stops when no new best candidate
has been found for the past 10 generations. For a large topological defect of size 100 ver-
tices, the algorithm usually converges in less than 50 generations, which corresponds to a
computational time of approximately 10 minutes on a 1-G-Hz Pentium IV. Typical topolog-
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ical defects contain less than 50 vertices, and are usually corrected in a couple of minutes.
An optimal configuration is usually the result of approximately 30 genetic operations, 80%
of which are crossovers and 20% mutations. The elimination operator is applied every 5
generations. The number of discarded vertices depends on the topological defect. In some
cases, more than 40% will be eliminated.
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6.4 The Mapping Dependency Problem

6.4.1 Definition of the Mapping Dependency Problem

Given a quasi-homeomorphic mapping from the initial cortical surface onto the sphere,
the genetic algorithm that we introduced generates optimal solutions. However, we note
that the space to be searched is dependent on the initial spherical location of the defec-
tive vertices. The spherical location of the defective vertices reduces the space of potential
retessellations by constraining the relative connectivity of some vertices. Particularly, some
tiling configurations might not be attainable, as these configurations might lead to overlap-
ping faces on the sphere. This implies that, in some cases, the genetic search might not be
able to produce desired solutions.

For most defects, “quasi-optimal” configurations are achieved during the genetic search.
This is essentially due to the small size of the defects, which often takes the form of one
single handle of size smaller than 5mm. We use the term “quasi-optimal” to indicate the fact
that the resulting solution might not be the best solution, but still provides an excellent
approximation that does not lead to any detectable errors (visually and in terms of the
fitness function). For such small defects, the initial spherical projection does not span the
entire space of potential configurations, but the initial mapping produces “quasi-optimal”
configurations that have similar fitness values to true optimal configurations. Also, we note
that the active contour model used for each generated patch greatly reduces the impact of
the spherical mapping onto the final solution.

Figure 6-4: a) Original defect: red and green vertices represent inside and border vertices respec-
tively. b) One sagital view of the defect c) Corresponding spherical projection. d) Original defect.
The vertices in the circled regions have the same location on the sphere. e) Incorrect solution gen-
erated by the genetic algorithm using the spherical mapping. This solution corresponds to the best
candidate within the space of potential retessellation constrained by the initial spherical mapping.

However, in rare cases (only with very large defects in our experience), the mapping de-
pendency problem is important. Figure 6-4 illustrates this problem on a real data example.
The defect consists of 343 vertices and an average size 20mm. The solution generated by
the genetic algorithm is presented in Fig 6-4-e . The circled vertices in Fig 6-4-d have the
same spherical location in the defect. Therefore, no candidate solutions could be generated
to include these vertices all at once. To address this problem, we propose to generate several
well-chosen mappings corresponding to different optimal retessellations, and to simply select
the best candidate retessellation as the final solution. We estimate the size of each defect
D by computing the geodesic distance (onto the cortical representation) of each interior
vertex to the border of the defect ∂D. The size sD of each defect is simply estimated by
sD = 2 max

v∈D

d(v, ∂D). If this size is greater than 10mm, we apply the procedure described

in the next sections to generate several mappings.
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Figure 6-5: a) Location of a single defect onto the sphere. b) The same defect projected onto the
2D plane using the 2D unit sphere. The border vertices are regularly mapped onto the unit circle
U(0, 1) and the interior vertices are positioned at the center of the circle. c) Positions of the inside
vertices in one possible mapping generated using the procedure described Sect. 6.4.3.

6.4.2 From the Sphere to the Plane

The initial quasi-homeomorphic mapping M could be used to generate several mappings Mi

leading to different configurations. While the border vertices of a defect are fixed on the
sphere and prevented from moving, we wish to update the position of the inside vertices,
therefore generating several different quasi-homeomorphic mappings. However, as shown in
the example provided in Fig. 6-5-a, the spherical location of the defects may take the form
of complex shape, which are rarely convex. For these complex shapes, the modification of
the position of the interior vertices proves to be difficult, as the topology of each defect
has to be preserved. Specifically, this means that interior vertices must be prevented from
crossing the closed contour formed by the border vertices5. Generating several mappings
(i.e. perturbing the positions of the inside vertices under the non-crossing constraint) within
complex non-convex shape is extremely difficult.

In addressing this problem, we use the fact that the border of each defect defines a closed
curve, which can be projected onto the 2D plane. The retessellation problem can then be
transposed from the sphere onto the 2D plane. Given a specific defect, we project its border
vertices regularly along a unit circle U(0, 1) in the 2D plane. The interior vertices are then
initially positioned at the center of the circle (Fig. 6-5-b). Using the 2D plane and the unit
circle U to generate several mappings give rise to several advantages. First, checking for
intersecting edges is easier on the plane than on the sphere. Next, the unit circle U has a
convex shape. Modifying the position of the interior vertices, while forcing them to stay
inside the convex shape U is much easier than using the original spherical mapping. The
convexity of the unit circle and Thm. 6.1 presented below motivate the relaxation procedure
that we have adopted to generate several quasi-homeomorphic configurations (described in
the next section).

6.4.3 Generating Different Mappings

In order to generate different mappings, we first cluster proximal interior vertices in the
original cortical surface into a set of p groups by using a modified k-means algorithm. First,
p vertices are randomly selected among the interior vertices. These vertices constitute the
initial means xi of each group Ci. The remaining vertices are then assigned to the closest

5This is a consequence of the Jordan curve theorem, which states that any simple closed curve partitions
the plan into an inside region and an outside region
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Figure 6-6: a) Original defect. b) Clustering of proximal vertices using a k-means algorithm with
10 clusters. c-e) Different Mappings generated using a relaxation procedure that ignores one cluster
at a time. Figure e) represents the resulting mapping when the blue cluster in figure b) is ignored.

(using geodesic distances) group. Then, the most “central” vertex of each cluster (i.e. the
one minimizing the geodesic average of each cluster

∑

v∈Ci
d(xi, v)) is chosen as the new

cluster representant, and we iterate the procedure until convergence. Figure 6-6-b shows
the result of the clustering process into 10 clusters. The number of clusters is based on the
size of the defect and empirically set to p = [ sD

2 ].
Next, we generate p mappings in the 2D plane, by applying p iterative relaxation pro-

cedures. Given a chosen cluster Ci, the positions of the interior vertices are iteratively
updated to be at the average of their neighboring vertex positions, excluding the vertices
that belong to the chosen cluster Ci. The motivation for this procedure is based on the
following theorem (Tutte [97], Floater [33], Richter-Gebert [81]):

Theorem 6.1 Topology of a planar graph
Given a planar 3-connected graph with a boundary fixed to a convex shape in R2, the positions
of the interior vertices form a planar triangulation (i.e. none of the triangles overlap) if
and only if each vertex position is some convex combination of its neighbor’s positions.

Theorem 6.1 implies that the method of barycentric coordinates generates all possible
valid embeddings of the graph in the plane, given the (convex) positions of the boundary.
This theorem has been vastly used for the purpose of parameterizing 3D meshes [42]. In
general, the method of barycentric coordinates can be formulated as the solution of a 2D
vector Laplace equation on the interior vertices, an equation which can be numerically solved
using a relaxation procedure. This implies that given a valid 2D manifold with a planar
topology, the relaxation procedure that we use will converge towards a planar triangulation,
therefore eliminating overlapping faces.

Once the p mappings have been generated, we simply apply the genetic algorithm to
each configuration and select the best solution (the one with the best fitness).

6.5 Implementation Issues

The approach proposed in this chapter requires the frequent evaluation of binary edge-edge
intersection operators. During the correction of a typical topological defect, containing
approximately 50 defective vertices, the proposed method evaluates more than 107 edge-
edge intersection tests. By the intrinsic nature of the quasi-homeomorphic mapping, which
aims at minimizing regions with negative areas (i.e. negative Jacobian), topological defects
correspond to extremely dense regions, with vertices potentially being as close as 10−5mm.
At this scale, floating rounding errors are frequent and lead to “catastrophic” results: a non-
detected intersection often leads to topologically inconsistent retessellations with incorrect
Euler-numbers (i.e. surfaces with the incorrect topology).
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In order to address this problem, we replace all float computations with exact calcu-
lations. To do so, we approximate the spherical location x of each vertex v with rational
numbers (px

qx
,

py

qy
, pz

qz
), where the accuracy of the approximation can be taken as high as de-

sired6. We note that we cannot ensure that each vertex lies exactly onto the sphere (i.e.

‖(px

qx
,

py

qy
, pz

qz
)‖ 6= R), but this point is unimportant, since only the direction of the vector

−→
0x

matters.
Once every spherical vertex is approximated by a set of rational coordinates, the edge-

edge intersection can be evaluated using only exact computations. Consequently, the result
of a test becomes a robust binary value that is no longer sensitive to rounding errors.

More specifically, the intersection test consists of the successive evaluation of simple
cross-product and dot-product operations. To illustrate this point, we consider four spher-
ical vertices vi, where i ∈ {1, 2, 3, 4}. Each vertex vi has some spherical coordinates

xi = (pi
x

qi
x
,

pi
y

qi
y
, pi

z

qi
z
) respectively. The edge

_

x1x2 is intersecting the edge7
_

x3x4 if and only

if:
1) the two points x3 and x4 are located on both sides of the virtual spherical geodesic going
through the two points x1 and x2,
2) reciprocally, if the two points x1 and x2 lies on both sides of the geodesics going through
the points x3 and x4.

In evaluating these conditions, we denote by tij the vector
−→

xixj , and by nij the vector
x

i+x
j

2 . We note that, since the sphere is assumed to be centered at location 0 = (0, 0, 0),

the vector nij is also the normal at location x
i+x

j

2 . We have:

tij
k = (xj

k − xi
k) and nij

k =
xj

k + xi
k

2
. (6.16)

The first condition is then equivalent to:

[(n12 ∧ t12)·
−→

n12x3]× [(n12 ∧ t12)·
−→

n12x4] < 0, (6.17)

and the second one to:

[(n12 ∧ t34)·
−→

n34x1]× [(n34 ∧ t34)·
−→

n12x2] < 0. (6.18)

The approximation of the original spherical coordinates with a set of rational coordinates
needs to be done only once at the end of the spherical mapping and before the detection
of the topological defects. Also, we note that the same approach can be used for planar
defects, where each vertex location in the 2D plane is approximated by a set of rational
coordinates.

6The set of the rational numbers Q is dense in the set of the real numbers R.
7Two vertices define a unique shortest geodesic onto the sphere. For clarity, we call this geodesic an edge.
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6.6 Results and Discussion

Before reporting results of the proposed approach on synthetic and real datasets, we measure
the goodness of our method relative to a random search algorithm. This is to verify that
our approach actually improves the speed of convergence and that the genetic operations
allow the generation of superior candidate retessellations.

6.6.1 Genetic versus Random Search

We compared our approach with a random search algorithm, in which random permutations
of the edge ordering were iteratively generated. The graphs in Fig. 6-7 illustrate the strength
of our approach on a real data example. The topological defect is shown in Fig. 6-2-a. For
each method, the first candidate tessellation corresponded to the solution generated by the
greedy approach proposed in [28] with its vertices added last being discarded (Sect. 6.3.2.A).
Compared to a random search, the genetic search converges much faster (at least, second
order magnitude). The genetic algorithm boosts the overall fitness of the population by
keeping the best representations at each generation and producing new candidates using
the elite population. In a few generations composed of a small number of chromosomes (20
chromosomes per generation in this example), the genetic search is able to produce new
optimal retessellations (Fig. 6-2-f).

Figure 6-7: a) Evolution of the log of the fitness function during the genetic search. b) Evolution
of the log fitness function during a random search. Note how the genetic search iteratively improves
the average fitness of each generated chromosome, which, as a consequence, will be able to generate
new optimal chromosomes. On the other hand, random retessellation rarely generates new optimal
patches. In this defect, which was constituted of 183 vertices, even after 50000 random draw, the
fitness function of the best randomly generated chromosome was still 5 order of magnitude below
the best GA chromosome (generated as the 300th offspring during the 15th generation).
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6.6.2 Application to Synthetic Data and Real Data

A - Synthetic Data

In order to validate the proposed method, we first generated surfaces containing simple
topological defects (handles, holes). These data were used to explore the performance of
the algorithm in terms of typical topological defects. The underlying MRI volumes were
generated by adding white noise to the expected tissue intensities : gray and white intensity
values were drawn from Gaussian distributions G(µg = 90, σg = 5.0) and G(µw = 110, σw =
5.0) respectively. Figure 6-8, top row, illustrates the behavior of the algorithm with regard
to different MRI volumes, when the same topological defect has to be corrected (left: a
simple handle). We note that traditional active contour models could not have generated
the same results due to the amount of noise in the images and the presence of large local
minima in the energy functional.

Figure 6-8: Results of our proposed approach on different phantom examples. The same topological
defect (left: a small handle constituted of about 100 vertices) is corrected using different underlying
MRI volumes. In each case, our approach generated an optimal configuration corresponding to the
expected solution.

B - Real Data

We have applied our proposed approach to 43 real images. The dataset is composed of MRI
volumes of different qualities, from different populations. Results were evaluated by experts
to assess the correctness of the final corrections.

B.1 - Description of the Data Set

Validation data came from several data sets. They were a mix of pulse sequence (SPGR,
MP-RAGE), scanner types (Siemens 1.5T, GE 1.5T) and pathology (normal control, schizophre-
nia and Alzeihmer’s).

Seventeen scans were acquired in 2000/2001 using a Siemens Sonata system with the
following parameters: TR: 7.25 ms; TE: 3.22 ms; TI: 600.00 ms; flip angle: 7.00j; 1.3-mm
sections (resampled to 1 mm isotropic). This data set consists of 8 young (YNC), 7 elderly
normal controls (ENC), and 2 Alzeihmer’s (AD).

The second data set was acquired using a Siemens Vision system in 1994/1995 with
the following parameters: TR: 9.70 ms; TE: 4.00 ms; TI: 621.00 ms; flip angle: 10.00j;
1.25 sections (resampled to 1-mm isotropic). Data comes from studies reported in Buckner
et al. [11] and Logan et al. [58] and also later subjects imaged using the same anatomic
protocol8. This data set consists of 6 Young Normal Control, 14 non-demented and 6
demented adults.

8We thank Randy Buckner and the Washington University Alzheimer’s Disease Research Center for

119



B.2 - Discussion of the Results

The algorithm was able to generate correct solutions that the initial greedy approach [28]
failed to produce. Methods that do not integrate statistical and geometric information will
often fail to produce solutions comparable to the ones a trained operator would make. This
is illustrated in Fig. 6-9, where valid solutions do not always correspond to minimal correc-
tions (i.e. cutting the handle in the two examples of Fig. 6-9). Only general approaches that
integrate additional information can lead to correct solutions. In addition, to our knowl-
edge, our approach is the only one that has been proposed to explore the space of potential
solutions in order to select the best correction to a topological defect.

To evaluate the quality of the corrections, we compute the average Hausdorff distance
for each defect between automatically corrected surfaces (using our method) and manually
corrected surfaces produced by a trained operator. The average Hausdorff distance is less
than 0.2mm.

An average cortical surface contains on the order of 50 topological defects, most of which
are relatively small: most defects contain less than 50 vertices, and are corrected in a couple
of minutes. Larger defects, with more than 100 vertices, correspond to a computation time
of approximately 10 minutes. We note that the retessellation process is quadratic in the
number of vertices contained within the convex hull of each defect. Consequently, a full brain
is corrected in approximately 2 hours on a 1-GHz Pentium IV machine. More importantly,
we note that the whole process could be parallelized, since each defect is independent of the
other. Consequently, a full brain could be corrected in approximately 10 minutes.

Figure 6-9: Topology correction of a cortical representation. The initial surface was constituted
of 30 defects (Euler number X = −58). Compared to the greedy approach of Fischl et al. [28],
which failed to find the correct solutions in many defects, our approach was able to generate valid
solutions. This is illustrated on two examples, in which valid topological solutions do not correspond
to minimal corrections.

Moreover, we note that the proposed method does not directly prevent the final surface
from self-intersecting. Self-intersecting configurations typically have low fitness values and
are naturally discarded during the genetic search. The self-intersecting constraint could
be directly integrated into the retessellation process, but would drastically slow down the
proposed approach. In our experience, final, corrected representations rarely intersect (less
than one in ten thousand faces, which corresponds to approximately 1 defect per brain).
To ensure that the solution generates a valid manifold, we check retrospectively that the
final retessellation does not self-intersect. In the case of self-intersection, we re-apply the

providing the data set.
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genetic algorithm with the additional constraint of generating only valid candidate patches.
Self-intersecting patches are identified and discarded from the population.

Our method has been applied to 43 real images, i.e. 86 brain hemispheres that each had
on average 50 defects. Only one single defect, the one used as an example throughout this
section, has been identified to be inaccurately corrected, and necessitated the generation of
several mappings. This seems to imply that, in most cases (i.e. in more than 99.9% of the
cases) the genetic algorithm used in conjunction to the original spherical mapping produces
correct topological corrections.

Figure 6-10: a) Original defect. b) Solution generated by the genetic algorithm from the initial
quasi-homeomorphic mapping. c) Best solution generated from the mapping in Fig. 6-6-e.

In the case of an incorrect topological correction, the method proposed in Sect. 6.4
provides a simple solution by generating a few optimal retessellations corresponding to
different mappings. Figure 6-10 illustrates the final solution that was generated using the
mapping shown in Fig. 6-6-e.

Finally, we note that Thm. 6.1 opens new research directions for the direct integration of
the mapping problem into the topology correction process. Applied to different (potentially
random) relaxation procedures, vertices, whose position is not some convex combination of
its neighbor’s positions, could be identified and eliminated from the retessellation process.
Future research would require the investigation of relaxation procedures that would limit
the number of “non-convex” vertices, and we note that this is deeply related to finding how
and where to “cut” handles in the defect.
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6.7 Contributions of this Chapter

We have proposed an automated method to accurately correct the topology of cortical rep-
resentations. Our approach integrates statistical and geometric information to select the
optimal correction for each defect. In particular, we have developed a genetic algorithm
that is specifically adapted to the retessellation problem. Iterative genetic operations gen-
erate candidate tessellations that are selected for reproduction based on their goodness of
fit. The fitness of a retessellation is measured by the smoothness of the resulting surface
and the local MRI intensity profile inside and outside the surface. The resulting procedure
is completely adaptative and self-contained. During the search, defective vertices are iden-
tified and discarded while the optimal retessellation is constructed.

Given a quasi-homeomorphic mapping from the initial cortical surface onto the sphere,
our method will be able to generate optimal solutions. For each defect, the space to be
searched (i.e. the edge ordering) is dependent on the spherical location of the defective ver-
tices. Some configurations of the quasi-homeomorphic mapping could lead to optimal but
incorrect retessellations. In order to address this limitation, we have proposed to generate
several quasi-homeomorphic mappings producing different spatial optimal retessellations.
The final chosen retessellation is the one achieving the best fitness function.

To our knowledge, this approach is the only one that has been proposed to explore the
space of potential solutions in order to optimally select the best correction to a topological
defect. Some care was taken in order to ensure that no floating rounding errors occurs
during the topology correction.

Finally, we note that the proposed approach is not restricted to spherical topologies,
and that it can be used to correct the planar topology of any set of vertices.

A preliminary version of this work was presented at the conference Information Pro-
cessing in Medical Imaging [86].
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Chapter 7

Conclusion

This dissertation concerns the accurate segmentation of medical images under topological
constraints. We have made a number of contribution to advance several aspects of the
field of medical image segmentation and offer new research perspectives. On the theoretical
level, we have introduced the digital concept of a multisimple point and derived necessary
and sufficient characterizations. On the methodological level, we have developed a novel
active contour framework for the evolution of level sets under topology control, the genus
preserving level sets. Also, we have phrased the topology correction of segmentations into
a Bayesian framework that naturally integrates statistical and geometrical information into
the topology correction process. On the application level, we have proposed two algorithms
for the retrospective topological correction of digital 3D images and 2D cortical surfaces.
To our knowledge, no techniques had been previously introduced to naturally integrate
additional information into the topology correction process, to explore the whole space of
potential topological corrections, and to produce optimal solutions with respect to the un-
derlying MRI intensity profile and the expected curvature in a rigorous manner.

The concept of multisimple point extends the notion of simple point that is often too
restrictive for most applications. Using this criterion, new sets of digital deformations have
been proposed to generalize the restrictive notion of homotopic deformation.

This concept has been used to design new segmentation algorithms that are much more
flexible than previous methods. First, we have improved the control of topology changes
with the level set method. We developed a new active contour framework for the evolution
of level sets with preservation of the genus: the genus-preserving level sets. Our method
offers a subtle topological control over the topology of the level sets, and constitutes a
trade-off between traditional level sets and topology-preserving level sets.

Also, the concept of multisimple point has been used to develop a method for automat-
ically correcting the spherical topology of any 3D binary segmentation under any digital
connectivity. In contrast to existing procedures that assume specific initial segmentation
(e.g. full connectivity, no cavities, etc) and are designed for a particular task (e.g. corti-
cal representation), no assumption is made on the initial image, and spherical topology is
achieved under any choice of digital connectivity. Also, our topology correction algorithm
is nested in the theory of Bayesian parameter estimation, which allows the integration of
statistical information into the topology correction.

Finally, we have introduced a genetic algorithm for the correction of the topology of cor-
tical surfaces. Unlike existing approaches, our method is able to generate several potential
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topological corrections and to select the maximum-a-posteriori retessellation in a Bayesian
framework. Our approach integrates statistical, geometrical and shape information into
the correction process, providing optimal solutions with regard to the MRI intensity profile
and the expected curvature. The resulting procedure is completely adaptative and self-
contained.

The methods developed in this dissertation have been validated using synthetic and real
data. Some experiments on synthetic images and real MR images have demonstrated the
advantages of the genus-preserving method and have illustrated some potential applications
that could greatly benefit from our approach. Our algorithm for the topology correction
of 3D binary images has been successfully applied to subcortical segmentations and white
matter segmentations. Applied to synthetic and real data, our genetic algorithm generated
optimal topological corrections with only a few iterations.

Finally, some potential directions for future research have been highlighted in each
chapter.

The concept of multisimple point can benefit several research areas that rely on digital
theory: image segmentation, computer graphics, digital image processing, and so on. For
instance, this concept could be used to design new thinning algorithms that would pre-
serve some specific characteristics of a digital object. Also, multisimple points could help
characterize some invariant properties of digital objects, such as the Betti numbers.

In Chapter 4, we introduce a genus-preserving level set framework, and we propose
some potential applications that could benefit from our approach. In addition, this level
set framework could be integrated into our digital topology correction method described
in Chapter 5. The use of curvature information in the segmentation process would greatly
reduce the sensitivity to noise and would improve the location and correction of the topo-
logical defects. This approach would certainly reduce the impact of early wrong decisions
during the graph analysis.

Also, it is in our interest to integrate the generation of several random mapping con-
figurations directly into the retessellation process, ensuring search over the whole space of
potential retessellation. Particularly, Thm. 6.1 opens new research directions for the di-
rect integration of the mapping problem into the topology correction process. Applied to
different (potentially random) relaxation procedures, vertices, whose position is not some
convex combination of its neighbor’s positions, could be identified and eliminated from the
retessellation process.

In conclusion, in this dissertation, we have improved the theoretical tools applicable to
the segmentation of images under topological constraints, proposed novel methodologies for
image segmentation, and developed well-founded algorithms to achieve accurate segmenta-
tion of medical images under topological constraints. Additionally, we have presented the
reliability and applicability of these methods as compared to existing techniques in the field.
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Appendix A

Proofs

Multisimple point x relative to X
A point x ∈ X is said to be multisimple relative to X if and only if

{
Tn(x, X) = 1

∀ C ∈ Cn(x, X), Tn(x, C) = Tn(x, C) = 1
(A.1)

Proof
In order to verify that the concept of multisimple point does not introduce any topological
defects in the volume, we need to show that the addition or deletion of a multisimple point x
does not introduce any holes or cavities in any of the connected components C ∈ Cn(x, X)
or X, where X = {x}

⋃

i Ci.
A simple point x ∈ X, characterized by Tn(x, X) = Tn(x, X) = 1, can be removed without
changing the topology of the image. This implies a one-to-one correspondence between the
connected components, the holes of X and X and the connected components, the holes of
X \ {x} and X

⋃
{x}, the n-connectivity being used for X and the n-connectivity being used

for X. Using this property, the proof can easily completed as follow.

• Holes
Since the connected components Ci ∈ Cn(x, X) are not adjacent, any simple closed
path in X = {x}

⋃

i Ci is strictly contained in Cj
⋃
{x} for one of the connected compo-

nents Cj. The multisimple criterion, which ensures that the point x is simple relative
to the component Cj, guarantees that the addition or deletion of x does not create any
n-holes in the process. Similarly, any simple closed n-path in the background compo-
nent X

⋃
{x} is contained in C for any of the components C ∈ Cn(x, X). Therefore,

Eq. A.1 ensures that no n-holes are created in X.

• Cavities
The point x is simple relative to each component C ∈ Cn(x, X). As a consequence,
its addition or deletion does not introduce any cavities in any of the components C or
its complement C. Finally, we note that no cavities other than the ones formed by the
n-connected components of Cn(x, X) are generated in X. If this were the case, since
the components of Cn(x, X) are not adjacent, this would mean that the cavity would
have been created in one of the components C ∈ Cn(x, X), which would contradict
what we have just proven.
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Multisimple point x relative to X
A point x is said to be multisimple relative to X if and only if:

{
Tn(x, X) = 1

∀ C ∈ Cn(x, X), Tn(x, C) = Tn(x, C) = 1
(A.2)

Proof
The proof is the same as the one of Eq. A.1, where every digital topological notion is replaced
by its dual notion: X → X, n→ n,. . .

T+
n (x, X) ≤ Tn(x, X) (A.3)

T+
n (x, X) = Tn(x, X) ⇔ ∀ C ∈ Cn(x, X) Tn(x, C) = 1 (A.4)

Proof
Topological numbers characterize potential merges or splits, while topological numbers con-
trol any kind of topological changes. In addition to splits and merges, the topological numbers
record the potential formations of handles. For a given connected component C ∈ Cn(x, X),
Tn(x, C) > 1 implies that the addition of the point x to X results in the generation of, at
least, one handle in the connected component C.

First, we have ∀Ci ∈ Cn(x, X), Tn(x, Ci) ≥ 1. We note that we cannot have Tn(x, Ci) =
0, because Ci is adjacent to x.
Also, we note that, since the components Ci ∈ Cn(x, X) are not adjacent (i.e. ∀(i, j) s.t. i 6=
j Ci

⋂
Cj = {0}), we have the following set equality:

N .
n(x, X) =

⋃

i

N .
n(x, Ci),

where the union is disjoint. Therefore, we have the following equality:

Tn(x, X) = |N .
n(x, X)| =

∑

i

|N .
n(x, Ci)|.

Finally, we can derive the above equations:

T+
n (x, X) = |Cn(x, X)| ≤

∑

i

|N .
n(x, Ci)| = |N

.
n(x, X)| = Tn(x, X),

since ∀i |N .
n(x, Ci)| ≥ 1. We have the equality T +

n (x, X) = Tn(x, X) if and only all the
components Ci of Cn(x, X) verify |N .

n(x, Ci)| = 1 (i.e. Tn(x, Ci) = 1). We note that we
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also have : T+
n (x, X) < Tn(x, X) ⇔ ∃C ∈ Cn(x, X) such that Tn(x, C) > 1.

Multisimple point x for (X,X)
A point x is a multisimple for (X,X) if and only if

{
T+

n (x, X) = Tn(x, X)
T+

n (x, X) = Tn(x, X)
(A.5)

Proof

Given a connected component Ci of Cn(x, X), the addition of the point x to the digital
object Ci will not generate an n-handle if and only if Tn(x, Ci) = 1. Since all components of
Cn(x, X) are non-adjacent, no n-handle is generated in X if and only if we have Tn(x, Ci) =
1 for all components Ci. Using Eq. A.4, this is equivalent to the condition T +

n (x, X) =
Tn(x, X). Similarly, we have that the deletion of x from X will not generate any n-handle
in X if and only if we have T +

n (x, X) = Tn(x, X). Consequently, the deletion or addition
of x will not generate or delete any handle in the volume (i.e. x is a multisimple point) if
and only if Eq. A.5 is verified.
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