
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

Proposal for Thesis Research in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

Title: Natural Language Assistant for Routine Web Tasks

Submitted by: Gabriel Zaccak
(Signature of author)

Expected Date of Completion: May 31, 2015

Laboratory where thesis will be done: CSAIL

Brief Statement of the Problem:

The Web is an integral part of our lives more than ever, not only for accessing information

but for performing many of our real-life tasks. We book flights, rent films, pay our bills,

manage our bank accounts, access our calendars and order groceries using Web applications

that utilize an enormous, constantly growing collection of Web services. Google, Yahoo,

and other search engine providers are extensively researching new ways to enhance user

experience by managing and utilizing these services to offer new services beyond search to

the future searcher. For example, Hipmunk1 offers a sophisticated and uniform searching

interface for flights by utilizing different Web services from different airlines websites. As

another example, Google Ride Finder2 allows users to find a taxi, limousine, or shuttle using

real time position of vehicles. To do that, Google Ride Finder uses Google Maps Web services

for the location functionality and taxi reservation Web services.

So far, users interact manually with these services through a Web browser. While such

manual interactions often enable us to complete our tasks successfully, the process is very

repetitive and is tiresome. Users are forced to repeatedly perform the same sequence of

1http://fwww.hipmunk.com
2http://labs.google.com/ridefinder

1



operations: going to the same Web pages, scrolling to the same positions, filling in the same

forms fields, and following the same hyperlinks. Moreover, users are often unaware of the

wealth of web services that exist on the Web and are unable to combine several web services

into a new task.

To reach better user interaction and sophisticated utilization of web services to perform

our daily tasks, a shift in user paradigm is necessary. We believe that a language-based

interface is an ideal candidate for this shift. Natural language is well suited for humans

and is expressive, concise and easy to use. To access Web applications through natural

language we need tools that automatically process and “understand” Web applications and

reason about their underlying data and services. In addition, the natural language interface

needs to interpret user requests concerning any topic, allow unrestricted user interactions,

and handle complex requests involving multiple services. Current efforts in natural language

interfaces to Web application provide information seeking solutions but require adaptations

to handle new domains. Their Web application processing tools only deal with small fractions

of the application site and do not represent relationships among the different fractions or

between other applications. In this thesis, we propose to design and develop an end-to-

end personal assistant dialogue system that helps casual users perform their real life Web

tasks. We will build on past research efforts and solve their shortcomings to process and

“understand” whole Web applications, model relationships between them to support complex

tasks involving multiple services, and design a general framework to support execution of

tasks. In addition, to make the interaction more intuitive and fluent, our system will learn

users’ habits and preferences by observing their browsing actions.

2



1 Introduction

The World Wide Web is an integral part of our daily lives and it is hard to imagine our

world without it. The World Wide Web, originally invented as a tool for communication and

information management, is changing the way we seek information, do business, exchange

ideas, communicate and socialize with one another, and entertain ourselves. Every day new

services become available on the Web involving real life tasks; some are very popular such as

renting a car, booking a flight, buying tickets for a show, and ordering food, and some are

less common services such as monitoring pets activities3, buying customized shoes, ordering

catering service, or designing a logo for an event.

Currently, the user paradigm is to manually interact with these services through a graphical

interface, typically a browser, or through personalized client programs implementing the

service’s API. Having a task in mind, we go to the service’s site either directly entering

the URL in the browser or using a search engine to find the service’s URL. Usually the

process starts by visiting a search engine since the number of services available is already

too large for anyone to remember or know of their existence. The interaction with the

service is performed using the keyboard to fill in form fields and the mouse to follow links

until we have successfully executed the task. While such manual interactions often enable

us to complete our tasks successfully, the process is very repetitive and is tiresome. Users

are forced to repeatedly perform the same sequence of operations: going to the same Web

pages, scrolling to the same positions, filling the same forms fields, and following the same

hyperlinks.

In the future, users will interact with services and construct real life tasks through natural

language. Natural language is well suited for humans and is expressive, concise and easy

to use. Much research is carried out towards natural language interfaces and information

access on the Web and more systems are becoming publicly available; however none address

general task execution involving manipulation of data and services. Current solutions provide

domain specific dialogue systems such as Gruenstein et al.’s multimodal restaurant guide,

City Browser [3], or information seeking dialogue systems such as Allen et al.’s PLOW [5].

To better illustrate the problem, let’s examine the following complex task where a user would

like to arrange his travel plans to New York and make a dinner reservation. Let’s assume

3http://www.sniftag.com/

3



that sub-tasks involved are: (1) booking a round-trip flight from Boston to New York for

tomorrow, (2) renting a car for one day, and (3) making a reservation at a French restaurant

for two. Today, in order to complete the task the user is required to interact with multiple

Web applications.

To complete the first sub-task, unless the user is familiar with a specific Web application’s

site, he typically starts by visiting a search engine site and search for travel services using the

task related keywords such as “airline”, “book a flight”, or “cheap flights”. The search engine

provides the user with a list of candidates matching the entered keywords. The user can select

a Web application to use from the list or refine the keywords for a better search. Among the

search engine’s results for the “airline” keyword are United Airlines4, American Airlines5,

and Continental Airlines6. Once the user determines which Web application to use, he clicks

on the Web application link and gets redirected to the application’s site. For this example,

the user selects Continental Airlines. On the Continental site, the user identifies the relevant

form for the task and starts filing the fields with the appropriate information. He has to fill

the following options: (1) either round trip or one way (2) origin (3) destination (4) date

and time for departure and return date (in the case of round trip) (5) number of passengers

(6) economy, business or first class cabin (7) search option to prioritize price, schedule (8)

search for non-stop flights. After filling this information he clicks on the “Search” button to

submit the form. Then the Web application displays a list of available flights satisfying the

constraints of the user if possible or asks the user to constrain his search if the values are too

vague or unavailable. In this case, when the user fills in the destination field “New York”, the

application will present to the user a clarification dialogue to select which airport he prefers

to fly to and submits the form again. Then the user selects from the list of available flights

(Figure 1) by clicking on the “Select” button of the corresponding flight. The application

has a predefined plan to follow (Figure 2) to perform the user’s task and guides the user

through it. After selecting the departing and returning flights, it will ask the user to select

the preferred seats, his information, and payment method and show a summary or an invoice

of the flight for his records.

Having completed the first task, the user needs to find a rental service to rent a car. The time

and date of the rental depends on the departing flight arrival and returning flight departure.

He starts a similar process searching for a rental service and goes through similar steps to

4http://www.united.com
5http://www.aa.com/
6http://www.continental.com

4



Figure 1: Example of available flights on Continental Airlines site

Figure 2: Continental Airlines Web application workflow for flight booking

5



execute the car renting sub-task as for the flight booking task. The user can achieve the

first two sub-tasks using a vacation service application which combines multiple tasks into

one task and manages the time and date dependency between the tasks. Most online travel

companies offer such a service and the user can choose package types that include any subset

of: booking a flight, renting a car and booking a hotel. In our example, using such a service

reduces the user time spent completing the first two tasks by nearly half since most of the

information that is required to complete the tasks is the same (origin/destination city, time

and date, user information and payment method).

To complete the third sub-task, the user visits again the search engine site and searches for

keywords such as “reserve a table” or “restaurant reservation”. The search engine provides

the user with a list of candidates such as OpenTable7 and RestaurantReservations8. The

user chooses the application he prefers and goes through a similar process to the previous

tasks but with some different underlying data and constraints. He needs to choose the

location, cuisine type, number of people, time of dining, and price range. In addition, the

user might visit another site before making his reservation to read a review about a specific

restaurant in mind to satisfy other constraints such as ambience and service quality. The

additional information can be integrated into the application itself using Web mashup tools

such as Intel Mash Maker [16] or Huynh et al.’s Potluck [22]. Mashups let casual users

create an augmented Web application that combines data from additional sources. Both

user mashups and applications such as the vacation service combine multiple applications

to create a single integrated tool. They combine content from the different sources typically

through Web services. Web services are APIs for applications over the Web. Web services

allow computer programs to access and perform predefined actions on Web applications’

underlying data.

Ideally, we should be able to perform the complex three part task described above via natural

language. There are multiple ways to phrase such a task but the user can describe it in one

sentence, e.g., “Book a flight from Boston to New York tomorrow afternoon returning on

Sunday at night, rent a car during my stay, and reserve a table at a French restaurant for

party of two at 8pm”. To achieve this goal we need to answer the following questions:

• How to interpret and map a user request to a set of tasks?

7http://www.opentable.com
8http://www.restaurantreservations.com

6



• How to create a task bank?

• How to represent knowledge and relationships between tasks and sub-tasks?

• How to help users perform their task without disturbing their workflow?

These questions individually correspond to several existing fields of research that have been

explored by the academic community; the challenge to create a general solution remains

unaddressed. In the following paragraphs we will give a small overview and challenges for

each question.

Given the above user’s request, we need to interpret and decompose it into sub-goals, in-

teract with the user in case some information is missing, resolve dependencies between each

sub-goal, and generate a chronological list of actions with correct parameterization to be

executed (Chapter 2). Conversational human computer interaction is an established field of

research with the ultimate goal to design and build systems that achieve human conversa-

tional performance. In our case, the interaction between the system and the user is focused

on accomplishing concrete tasks. Such dialogues are called practical dialogues. Even though

practical dialogues cover much of the potential applications for human computer interaction,

they do not capture the extent of full human conversation. Therefore, sufficient understand-

ing of such dialogues while still complex, is feasible [1, 6]. In addition, Allen et al. [4] have

shown that for practical dialogues, language interpretation and dialogue management com-

ponents are independent of the domain of the task being performed. They designed and

build a generic dialogue framework that can be adapted to new applications by specifying

only the domain and task models. We believe that since our tasks are Web related we can

relax the domain independence hypothesis even further and design a generic framework that

doesn’t need to be adapted for each new domain and uses only one domain-independent

ontology.

Typically, a dialogue system deals with only one user request at any moment in time. To

handle the complex task as shown in the example above, the system needs to decompose the

task into smaller sub-tasks and resolve the various dependencies between those tasks. Katz

et al. [25] demonstrated syntactic and semantic strategies to handle such complex questions

in START, a high-precision question answering system. After breaking the request into

smaller goals, we need to map each sub-request to the relevant task to be performed. Some

question answering systems such as START map questions to actions via natural language

7



annotations, which are content-describing phrases and sentences. Dialogue systems use var-

ious parsers to construct a semantic interpretation of the user input. TRIPS [1] and PLOW

[5] semantic representation use a linguistically based form, called the Logical Form (LF).

Other approaches use a standard procedure language [9, 38], a variant of PRS, and others

use proprietary representations. We believe that integrating both language annotations to

find the relevant task and semantic parsing to map the request parameters will achieve better

abstraction and make the domain independence framework easier to design.

After interpreting the user request, the system needs to have access to a task bank. This

leads us to the creation and internal representations of Web tasks in the task bank (Chapter

3.) The tasks can be user fed via learning by observation or automatically generated by

crawling and wrapping Web applications. As we have seen from the detailed walk through

an earlier example, a lot of the sub-tasks are the same such as user information, and payment

method. In our solution we will use such information and leverage previously learned task

similarities to achieve a better and faster way to discover and add new tasks to the task

bank.

To automatically discover an application’s available tasks we need to design and build a

site wrapper. The site wrapper component will crawl the application’s site, discover the

underlying data and actions (Web forms, and links), infer the semantics of the underlying

data and actions, and generate a list of tasks from the structured tree of actions. In addition,

the component will assign natural language annotations and keywords for each task to be

used by the task manager to map a user request to task from the task bank.

A Wrapper can be seen as a set of specialized programs that extracts data from a data

source such as a Web site and manipulates the information into a suitably structured format

to enable further processing. Previous research efforts on creation wrappers were solely

concerned with information seeking and extracting and not with execution of real life tasks

on the Web.

Various machine learning techniques were used towards developing automated wrapper gen-

eration systems. In addition, wrapper generation systems specialize in particular types of

data sources. There are systems that deal with semi-structured data, such a WIEN [29],

STALKER [39], and Wrapster [47]. Wrappers are generated from a set of examples by com-

puting a generalization that explains the observations. There are also more general wrapper

generation systems, such as RAPIER [11, 12] and WHISK [43] that extract information from

8



unstructured text data. Given a hand-tagged template, these systems learn pattern-matching

rules to extract the tagged information in the template. We will extend our previous work of

wrapping semi-structured websites [47] and enhance it to handle Web applications. Web ap-

plications are themselves semi-structured in a sense; they present information about objects

in a similar structure and, in addition they allow actions to be performed on those objects.

In addition, we will explore various deep Web crawling techniques [36] to get a representative

sample of the application’s site which we will use to discover the site’s objects and actions.

What if the user request does not have a corresponding task to execute from the task bank.

To handle such a case, the system needs to have a task learning component that observes the

user actions and infers the correct parameterization of demonstrated task (Chapter 2.) The

problem has been addressed in previous work using various approaches to learn from specific

examples provided by users as they perform a task. Such approaches include programming

by demonstration, learning apprentices, case-based reasoning, and feature-based induction.

The challenge is to build a system which does not disturb the user’s workflow and able infer

the task parameters from fewer examples. Adaptive Programming Environment (APE),

a software assistant9, uses machine learning techniques to learn user habits by watching

what the user is doing, and then offers to complete repetitive tasks on his or her behalf.

Blythe [9] developed “Tailor”, a task learning system, to modify task information through

instruction using standard procedure language. “Tailor” improves Huffman’s [21] work by

reasoning about an abstract process description and assuming no domain knowledge. Other

approaches have used problem-solving methods, interdependency analysis and smart editors

to help user work with procedure representation [10, 28]. However, those approaches require

users to make implementation-level decisions about changes to procedures, during which it

is easy to lose track of changes or make mistakes.

In this thesis, we propose to develop an end-to-end personal assitant dialogue system that

helps casual users perform their real life Web tasks. A high-level view of our proposed

system architecture is shown in Figure 3. The system will consist of multiple components

related to different field of research such as deep language understanding, discourse and

dialog, knowledge representation, human-computer interaction, Web information extraction,

and discovery of underlying structure of Web applications. The base and important part

of our work is the knowledge representation of the Web applications and their underlying

data and services so that our system will generalize well to unseen sites and able to handle

9http://www.cincomsmalltalk.com

9



Figure 3: Proposed Framework Architecture

tasks involving multiple Web applications. We will also focus on how the system can learn

to perform tasks by observing the user actions and give semantic meaning to those tasks.

In addition, we expect that user guidance for learning new tasks will decrease as the system

is provided with enough training. Chapters 2 and 3 describe our proposed approach and

related work. In chapter 4, we define the thesis’s scope and assumptions, list the data that

we will evaluate on our system, summarize our expected contributions and present a detailed

work timeline.

10



2 Natural Language Interface

Computer programs that interact with humans whether via speech or text are called dialogue

systems. Our goal is to design and build a dialogue system that approach human performance

in natural language interaction to perform real life Web tasks. The system will handle

requests for any Web application and no initial training is required by the user. With each

interaction the system will update the user profile and learn about his preferences and habits.

During the task solving process his profile will be used to reduce the number of clarification

interactions and make them more personal. In addition to natural language interactions, our

solution will leverage the browser display for interactions that are better suited for graphical

display such as displaying a list of airports to choose from.

Much research is conducted in the speech recognition community towards developing con-

versational dialogue systems for various applications and domains. Similar to Allen et al. [6],

we are concerned with specific type of dialogue, called practical dialogue, where the system

and the user interactions are focused towards accomplishing a task.

User: Book a flight from Boston to New York for tomorrow afternoon
System: Choose which airport in New York you prefer to flight to (the system
displays the list of airports in New York in the browser)
User: JFK (the user can also click on the corresponding item from the list
displayed in the browser window)
System: Select the return data
User: one-way ticket
System: Select you flight (the system displays a list of flights to choose from)
User: The one leaving at 2pm (the user can also click on the flight he wants in the
browser window)
System: (the system shows a confirmation summary for the reservation)

Figure 4: An Example interaction.

Figure 4 shows a typical conversation with the system. Even though it is a simple interaction,

it shows most of the capabilities that our solution will cover. From the first sentence, we

can see that the system needs to reason time to handle time expressions such as “tomorrow”

and “afternoon”. We will implement a time conceptual domain model to reason about

time. Other conceptual domain models will be added as necessary. In the above interaction,

the Web application itself already has a geographical conceptual model and is able to list

airports in the vicinity of New York city; therefore, our solution does not need to reason

11



about locations. In addition, we can notice that the system expects a return date for the

travel. This information is encoded in the task description with the task specific properties

such as “one-way ticket”. Finally, after the user chooses the flight that he prefers, the system

did not ask him for the payment method since it has his information already stored in his

profile from previous interactions.

We believe that plan-based dialogue system is well suited to for the performance we want

to achieve. We will investigate and build a domain independent ontology which does not

require adjustments for new domains and uses natural language annotations to map requests

to tasks. We will build upon previous work and augment them to support Web tasks. The

following modules delineate the dialogue system main components:

1. Interpretation Manager: This component receives user interaction, text and actions,

and has the following responsibilities: update the discourse context, semantically parse

the sentences, and send them to the task manager. We will experiment with various

parser and semantic representations.

2. Task Manager: The task manager (TM) receives the interpreted user requests, breaks

them into sub goals and identifies the set of corresponding tasks from the task bank

to execute. It matches the user interpreted requests with the tasks descriptions and

natural language annotations generated earlier during the site wrapping step. It takes

into account discourse history and context and decides which task to execute next.

The TM is also responsible to verify that all the parameters to perform the current

task are available. It reports successes and failures to the Generation Manager.

3. Generation Manager: This component is responsible for the interactions with the user.

There are multiple types of situations where the system needs interact with the user to

display task summary/confirmation or address difficulties executing the intended user

request. Our system will handle the following cases: if there is no task that matches the

user request, if the request has missing parameters, and if the parameters are incorrect

in type or value.

12



2.1 Related Work

2.1.1 Dialogue System

A dialogue system is a computer program that engages in a conversation with a human in

natural language. The main components of dialogue systems are natural language under-

standing, dialogue manager, and natural language generator. Other components might be

used depending on the type of input/output of the dialogue system such input decoder for a

spoken dialogue system. Dialogue systems are developed for various reasons and they can be

classified along the complexity of the tasks they can perform: finite-state, frame-based, sets

of contexts, plan-based models, and agent-based models. The finite-state systems, the sim-

plest of them all, are very popular today in voice billing systems. They follow a predefined

procedure of prompts for the user. At each prompt they accept a specific type of value.

Next in complexity are the frame-based systems which contain most of the spoken dialogues

systems built until now. This approach is based on the slot-filling concepts where slots

represent containers for information that must be extracted from the user for the system

to perform the action. This approach is domain dependent and handles a single task. It

has been used for systems providing information about current movies [13], about train

schedules [44], and about weather [48]. The simplicity of such domains makes it possible

to build robust language processing capabilities. Most information can be extracted using

simple patterns specific to the domain.

The sets of context approach generalizes the frame based approach to support multiple do-

mains. With such systems, the user can book a flight and rent a car. The task is represented

as a series of context, each represented using the framed-based approach. In addition, the

system needs to identify when the user is changing context or modify a previously discussed

context which can be quite challenging. Xu et al. [46] developed a flight scheduling dialogue

system where a user can change a first leg of a trip after discussing the second leg.

The last two levels of complexity require the system needs to maintain an explicit model of

the tasks and the world and reason about them. The language and the interaction become

harder these approach need to model a problem solving process that the user interact with.

In the plan-based approach, the dialogues involve interactively constructing a plan with the

user. The agent-based approach has in addition to monitor operations in a dynamically

13



changing world such as emergency rescue coordination.

Dialogue models Traditionally, dialogue systems have distinguished between their dif-

ferent knowledge representations and have identified dialogue models, task models, domain

knowledge and user models. Dialogue systems may incorporate some but not all these differ-

ent models, and no hard boundaries are set between the various models. Furthermore, the

variety of dialogue system architectures that incorporate various models, has led to confu-

sion when it comes to the purpose and contributions of specific models. The categorization

of the various knowledge representation is more of a framework used to analyze existing

dialogue approaches and dialogues systems implementation than a theoretical approach to

the development of dialogue system [15].

The dialogue model is the component that is responsible on how to respond to the user

based on the user input and dialogue history. Common approaches to dialogue modeling are

dialogue grammars and plan-based models. They reflect the behavior of the dialogue system

and the types of dialogue it handles. Plan-based approaches try to model the user intentions

as goal and infer non-linguistics intentions behind the user utterances. Dialogue grammars

are based on adjacency pairs and used in simple human interactions such as information

retrieval tasks where the user needs to speak his intentions.

Domain models hold the knowledge of the referred world in the discourse. Having an agreed

upon domain knowledge help the system resolve ambiguities and interpret the user request

easier. Dalhback et al. [14] make a distinction between domain models and conceptual

models. The domain model represents the structure of the world, while the conceptual model

represents the conceptual relationship between the objects in the domain. The amount

of domain knowledge and type vary from system to system depending on the need and

complexity of the system. For example, the dialogue system LINLIN used a both conceptual

and domain knowledge. Their domain model contains geographical information and their

conceptual model was used to reason between departure times and departure places. Those

domains allow the system to answer queries about which is the nearest bus stop to a particular

place [18].

Task models are responsible for completing the user task. Dahlback et al. [14] define a task

as “some real-world non-linguistic activity that is directed towards achieving a particular

goal, and can be broken down into small steps, each having its own goal”. The task model is

14



in charge of the negotiations with the user and deciding whether all the required information

to complete is present. Furthermore, Fkycht-Eriksson [17] distinguished between the user’s

task (e.g. information access from an electronic programmer guide) and the system’s task

(e.g. controlling a device.) Having an task model separated from the dialogue model can

make the dialogue system more fluent and efficient.

User models represent the user’s goals and plan, capabilities, attitudes, and knowledge. User

models can be used for various purposes, i.e. the system can adapt its interaction depending

on the familiarity of the user with the underlying domain. Despite their importance, user

models are not common in dialogue systems.

Recently, Allen et al. [5] started en effort towards creating a generic framework for dialogue

systems. They introduced Plow, a collaborative task learning agent, which allows the user to

teach the computer to perform tasks on the web. Their language and dialogue management

is accomplished using the TRIPS system (Allen et al. 2001, Ferguson & Allen 1998). Trips

central components are based on a domain independent representation such as a linguistically

based semantic form (the Logical Form (LF), and a collaborative problem solving model.

Domain independence is critical for portability between domains: the system can be tai-

lored to individual domains through an ontology mapping between the domain-independent

representations and the domain-specific representations [15]. Our system will built on these

ideas towards a system that will learn to perform tasks by observing the user activities on

the web.

2.1.2 Question Answering

Question answering systems are in a way similar to dialogue systems. Given a collection

of documents question answering systems retrieve answers to questions posed in natural

language. They return precise answers, as opposed to search engines that return lists of whole

documents. Complex question answering require the integration of nuggets of information

from multiple data resources.

START10, a high-precision question answering system, is very interesting for our research

since it uses the Web as part of its knowledge base [27, 23, 24]. START uses a system called

Omnibase [26] as its uniform access interface to the Web. The main portion of Omnibase

10http://start.csail.mit.edu

15



is a database of scripts that extract information from various websites. Omnibase uses an

object property value relational model, and the execution of a script generates the value of

a predefined property from a predefined site. A wrapper for a site constitutes all the scripts

that belong to it, with their corresponding property names.

Recently, a large number of QA system emerged following two direction. One direction

is to built QA system for the TREC QA track [45], training and testing the systems on

predefined corpus. They develop their own search engines and answer extraction techniques

on top of the corpus. The other direction used the Web as the potential answer source and

use generic search engines, such as Google11, to retrieve information related to the question

and post-process Web documents to extract answers for the user questions.

The TREC conference offers an exciting environment for competitive research on Question-

Answering. However, the questions that can be answered from the fixed text corpus as

in TREC are limited. Search engines quality has improved significantly and they offers a

promising source for question answering [41].

Agichtein et al.[2] and Glover et al. [19] presented a technique on how to learn search engine

specific query transformations for question answering. Their idea is that the current query

interfaces of most generic search engines do not provide enough capabilities for direct question

answering in natural language. They transformed the user questions into a certain format

which include domain specific information to improve the chances of getting high quality

documents from the search engine.

Many of the Web-based QA systems use similar techniques as in the TREC conference [30].

Newer approaches do not use deep natural language parse [40] since such approaches are

a very slow and not usable on the Web. They introduced a probabilistic phrase reranking

method and implemented it in the NSIR12 Web QA system.

11http://www.google.com
12http://tangra.si.umich.edu/clair/NSIR/html/nsir.cgi

16



3 Task Generation

For the natural language task engine to perform user requests, it needs access to a task bank.

The task bank is a database of tasks populated automatically via Web applications wrapping

techniques, or inferred by the system observing user Web actions. Each task, i.e. booking a

flight ticket, can execute a particular set of actions on a Web application. To execute a task,

the dialogue system’s task manager needs to fill the corresponding task required parameters.

Therefore, each task must contain a list of parameters, their meaning and their type. For

example, the parameter attributes for the “Origin” input field in the “book a flight” task

will contain (1) the input value type as a city or an airport, and (2) its semantic meaning as

departing location. In addition, each task will store natural language annotations, content-

describing phrases and sentences of the task, te be used later by the task manager to map

the user’s request to the corresponding task to be performed.

To manage the tasks in the task bank we need to implement a Web user interface where the

user can edit and add new applications to be wrapped. It will allow the user to inspect and

update his stored profile. In addition, since our graphical user interface is a Web application

the user will be able to manipulate it using natural language.

3.1 Site Wrapping

Given a site, the system will crawl the site, discover the underlying data and actions (Web

forms), infer the semantics of the underlying data and actions, and generate a list of possible

tasks.

We will extend our previous work of wrapping semi-structured websites [47] and enhance

it to handle Web applications. Web applications are themselves semi-structured in a sense;

they present information about objects in a similar structure, and they allow actions to be

perform on those objects. The following steps delineate the site wrapping components:

1. Crawl the site: We will explore all pages we can get to from the main page through

hyperlinks and forms. The form’s fields descriptions are a good indicator of what type

of argument each field expects. We will use those features, apply machine learning

techniques to determine the possible values for those fields, and discover the sites

17



objects. Sometimes, it is impractical to discover all the site underlying pages since

the site could contains information about millions of products such as flights, movies,

restaurants, books, etc. Our goal in this step to get a representative sample of the site

pages which we will use in later steps to discover the site’s objects and actions.

2. Page classification: Using machine learning techniques, we will cluster the pages dis-

covered in the previous step into similar types.

3. Wrapper induction: We will generate a template by aligning the pages of each type,

identify their content, and semantically annotate the properties.

4. Generate the task graph: The task graph is like a site map. We will generate the task

graph where pages are the nodes and actions are the edges. Each path in the graph

will represent a task.

5. Tasks semantic annotation: After building the task graph we will automatically label

the tasks with a meaningful descriptions and generate natural language annotations.

We will experiment with machine learning techniques using as features - context and

parameters of the actions consisting the tasks.

3.2 Task Learning

The task learning component has two responsibilities. First, given a set of user actions in the

Web browser, the component will identify the variables from the actions, infer the semantics

for those variables, and assign a list of possible natural language annotations for the new

learned tasks. Second, it will use the contexts and the values of each actions to learn the

user habits, and infer his preferences to improve the overall interaction with the system. We

will experiment with various pattern recognition techniques to identify the variables in the

actions, and annotate them with semantic information. We will also update the user profile

with the learned preferences.

18



3.3 Related Work

3.3.1 Wrapper Generation

Wrapper generation is the creation of wrappers which contains scripts that extract and

integrate data from data sources, mostly from Web data sources due to the large amount

of data available on the World Wide Web. A Wrapper can be seen as a set of specialized

programs that extracts data from a data source such as a Web site and manipulates the

information into a suitably structured format to enable further processing. Usually after

creating a wrapper for a Web site, the wrapper is post-processed and annotated with semantic

properties. This process enables the extracted data to be further manipulated by other

specialized programs. For example, an answer to “What are the 10 richest countries?”

might require the question answering system to request the GDP field of all countries from

a country site wrapper, sort the answers from richest to poorest, and present the 10 highest

answers.

Various machine learning techniques were used towards developing automated wrapper gen-

eration systems. In addition, Wrapper generation systems specialize in particular types of

data sources. There are systems that deal with semi-structured data, such a WIEN [29],

STALKER [39], and Wrapster [47]. Wrappers are generated from a set of examples by

computing a generalization that explains the observations. There are also more general

wrapper generation systems, such as RAPIER [11, 12] and WHISK [43] that extract infor-

mation from unstructured text data. Given a hand-tagged template, these systems learn

pattern-matching rules to extract the tagged information in the template.

Recently, different approaches have been developed for semi-structured detail pages and list

pages. A detail page is a page that focuses on a single item. A list page is a page that lists

several items. The field of research that deals with list pages is also known as data record

extraction. It has been shown by Liu et al. [35] that one input page is sufficient for this

task. Wrapper generation systems for list pages first identify data record boundaries and

then generate patterns to extract the data records their properties.

Other efforts were conducted towards interactive wrapper generation also known as visual

wrapper generation. Such an approach provides specialized pattern specification languages

to help the user construct data extraction programs. Interactive wrapper generation systems

19



hide their complexities under a graphical user interface. Systems that follow this approach

include WICCAP [33], Wargo [42], Lixto [8], DEBye [31], Dapper13, etc. Those systems were

the beginning of a new research field called mashups described in the next section.

A mashup is a web application that integrates data from more than one source into a new

integrated view of the data. The new view creates a new way to view data from the inde-

pendent sources into non-existent view that fit the user needs. Most well known mashups

are those using Web map services by adding location information to any data source that

contains location such as restaurants and real-estate data, thus creating new non-existent

services.

Recently, the creation and use of mashups have become very popular over the Web and the

more editors and tools have emerged to help non-expert users create their own mashups

and augment simple sites to rich and interactive services. Examples include Intel Mash

maker [16], Google Mashup Editor 14, Potluck [22], etc.

Even though the field of mashup creation in not concerned with natural language interfaces,

we are interested in mashup creation tools since they integrate information from multiple

different data sources which can help our system perform complex user requests requiring

fusion between multiple Web services. For example, Ennals et al. [16] showed how a casual

user can augment a travel site with airplane legroom information and search for flights using

this new non-existent attribute using a airplane legroom data source.

3.3.2 Learning by Demonstration

To perform user requests, either answering a question or retrieving information requires

the computer systems to have knowledge. This knowledge a computer program has, is not

infinite and in many cases the system cannot perform the user request. Task learning is the

field of research where user teach the system interactively how to perform new custom tasks

or modify old ones.

The problem has been addressed in previous work using various approaches to learn from

specific examples provided by users as they perform a task, and include programming by

13http://www.dapper.net
14http://code.google.com/gme/

20



demonstration, learning apprentices, case-based reasoning, and feature-based induction. Pro-

gramming by demonstration (PBD) [34, 32] also known as Programming by examples, is a

technique that creates an executable program from example data and/or sequence of ex-

amples operations/actions given by the user. The PBD framework allows users with little

programming skill to automate repetitive tasks without learning any complicated program-

ming skill to automate repetitive task. This approach can be inefficient if examples are hard

to formulate, for instance in complex domains. Huffman et al. [21] used informal language

to tell the system what to change and had the system modify the procedure appropriately

without the need to make low-level decisions about the implementation. Blythe [9] developed

tailor a task learning system to modify task information through instruction using standard

procedure language. Tailor improves Huffman’s work and reasons about an abstract pro-

cess description and it does not assume domain knowledge. Other approaches have used

problem-solving methods, interdependency analysis and smart editors to help user work

with procedure representation [10, 28]. However, those approaches requires users to make

implementation-level decisions about changes to procedures, during which it is easy to lose

track of changes or make mistakes.

In addition, task learning was used in adaptive Programming Environment (APE), a software

assistant that watches what the user is doing, draws on machine learning to learn user habits,

and afterward offers to complete repetitive tasks on his or her behalf. The goal of a APE

framework was: (1) design an assistant with a minimal amount of user’s intervention, (2)

able to replay and automate complex repetitive tasks (3) give right suggestions at the right

moments. This approach address a flaws in PBD where teaching the system disrupts the user

workflow. Predictive interfaces [20] and learning interface agents [37] observe the user while

he manipulates the environment. They try to learn from the correlations between situations

the user has encountered and the corresponding commands he has performed, and to predict

after each new command what the next one will be. They assist him by afterward predicting

and suggesting some commands to perform automatically. Such assistants for the Web exist,

but are very limited. WebWatcher [7], an assistant for the World Wide Web, suggests links

of interest to the user.

Plow [5] uses collaborative problem solving (CPS) agent, which settles on the most likely

intended interpretation given the current problem solving context. Depending on the actions,

the CPS agent then drives other parts of the system. For example, if the recognized user

action is to demonstrate the next step in the task, the CPS agent invokes task learning,

21



which if successful will update the task models in the knowledge base. If, on the other hand,

the recognized user intent is to request the execution of a (sub-)task, the CPS agent attempts

to look up a task that can accomplish this action in the knowledge base. It then invokes the

execution system to perform the task. During the collaborative learning, the system may do

both parts. It may learn a new step in the task being learned, but because it already knows

how to do the sub-task, it also performs that sub-task for the user. This type of collaborative

execution while learning is critical in enabling of iterative steps without requiring the user

to tediously demonstrate each loop through the iteration.

22



4 Discussion

To summarize, the work in this thesis includes the design and implementation of an end-to-

end system to perform real life tasks on the Web using natural language. While there are still

serious research and technical issues remaining to be overcome, dialogue-based user interfaces

are showing promise. The proposed system architecture (Figure 3) consists of following

components: dialogue system, site wrapping, task learning, and task bank. The dialogue

system interacts with the user towards achieving the user underlying goal. After interpreting

the user request it will access the task bank to find the set of actions corresponding to the

user request. The task learning component observes the user actions at all times and infers

new tasks to add to the task bank. It also learns user habits and preferences to provide more

natural future interaction with the system. The site wrapping component feeds new tasks to

the task bank by automatically crawling Web applications, discovering the underlying data

and structure, and inferring the services that the applications provide.

Apart from evaluating each component with a held out data, we will evaluate the system

as a whole. We will choose subjects that have never seen the system to interact with it to

achieve a list of tasks and choose a new task of their liking to add to the task bank. We will

provide the user with a survey to comment on the quality and intuitiveness of the system

and whether the system successfully executed the tasks.

4.1 Scope and Assumptions

While attempting to solve this goal, we are very aware of the difficulty to develop an error-

free system. Therefore, the system will always take into account user feedback and adapt. In

addition, the user will be able to interrupt the system through the user interface and correct

the system actions when necessary.

In some cases, to protect against bots, Web applications use various protection tools such as

displaying distorted character sequence which the user needs to repeat in order to perform

his requests. There is little we can do to handle these situations but in such a case the task

manager will request from the user the missing information. In addition, our system need to

be very careful dealing with user private information for security and user privacy concerns.

23



Concerning the system implementation environment, there are many Web browsers available;

however, their rendering module differs from one to another. In addition, each browser

provides different customization features. We choose to use Mozilla Firefox15 to develop and

test our user interface on since making the system compatible with all Web browsers require

many little tweaks that are not the focus of this thesis.

Furhermore, even though it will be valuable to have the system suggest related tasks by

observing the user actions and requests history, and notify the user about conflicts with

previously executed requests, we will it leave for future work.

4.2 Data

There is an abundance of different applications on the Web such as Web mail, document

editors, retail sites, and wikis. In this thesis, we will focus on retail sites. Web retail sites

are online stores that that offer products or services. They vary in functionality, logic, and

appearance and are used by millions of users every day. We will use a representative group

from various available types of applications to evaluate our framework on. The framework we

will develop should also apply to other types of Web application; however, Web applications

such as Web mail have a simple and known set of actions for which it is not clear if a natural

language interface is better than the existing structured interface.

We will choose a couple of applications from each of the following types to train and test

our framework on:

• Internet travel companies, i.e. orbitz, travelocity

• Ticketing companies , i.e. fandango, ticketmaster

• Online reservation services, i.e. opentable,

• Dining in services, i.e. campus dining, diningin

• retail stores, i.e. newegg, amazon

• banking services, i.e. bankofamerica, citibank

15http://www.firefox.com

24



• renting services, i.e. netflix, blockbuster

4.3 Expected Contributions

The following is a list of proposed contributions:

1. Automatically discovering the underlying data and actions of Web application.

2. Formalizing a knowledge representation model of Web applications.

3. Constructing a general framework for performing Web tasks using natural language

interface.

4. Learning hidden variables of Web tasks by observing user actions.

5. Determining system response type/format based to user query.

6. Demonstrating an interactive user interface to manage the wrapped sites, and their

corresponding tasks that can be operated by casual users.

25



References

[1] Toward conversational human-computer interaction. AI Mag., 22(4):27–37, 2001.

[2] Eugene Agichtein, Steve Lawrence, and Luis Gravano. Learning search engine specific
query transformations for question answering. In WWW ’01: Proceedings of the 10th
international conference on World Wide Web, pages 169–178, New York, NY, USA,
2001. ACM.

[3] Stephanie Seneff Alexander Gruenstein and Chao Wang. Scalable and portable web-
based multimodal dialogue interaction with geographical databases. In Proceedings of
Interspeech 2006 ICSLP, pages 453–456, Pittsburgh, 2006.

[4] James Allen, Donna Byron, Myroslava Dzikovska, George Ferguson, Lucian Galescu,
and Amanda Stent. An architecture for a generic dialogue shell. Nat. Lang. Eng.,
6(3-4):213–228, 2000.

[5] James Allen, Nathanael Chambers, George Ferguson, Lucian Galescu, Hyuckchul Jung,
Mary Swift, and William Taysom. Demonstration of PLOW: A dialogue system for
one-shot task learning. In Proceedings of Human Language Technologies: The Annual
Conference of the North American Chapter of the Association for Computational Lin-
guistics (NAACL-HLT), pages 1–2, Rochester, New York, USA, April 2007. Association
for Computational Linguistics.

[6] James Allen, George Ferguson, and Amanda Stent. An architecture for more realistic
conversational systems. In IUI ’01: Proceedings of the 6th international conference on
Intelligent user interfaces, pages 1–8, New York, NY, USA, 2001. ACM.

[7] Robert Armstrong, Dayne Freitag, Thorsten Joachims, and Tom Mitchell. Webwatcher:
A learning apprentice for the world wide web. pages 6–12. AAAI Press, 1995.

[8] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual Web Information Ex-
traction with Lixto. In The VLDB Journal, pages 119–128, 2001.

[9] Jim Blythe. Task learning by instruction in tailor. In IUI ’05: Proceedings of the 10th
international conference on Intelligent user interfaces, pages 191–198, New York, NY,
USA, 2005. ACM.

[10] Jim Blythe, Jihie Kim, Surya Ramachandran, and Yolanda Gil. An integrated en-
vironment for knowledge acquisition. In IUI ’01: Proceedings of the 6th international
conference on Intelligent user interfaces, pages 13–20, New York, NY, USA, 2001. ACM.

[11] Mary Elaine Califf. Relational Learning Techniques for Natural Language Information
Extraction. PhD thesis, Department of Computer Sciences, University of Texas, Austin,
TX, August 1998. Also appears as Artificial Intelligence Laboratory Technical Report
AI 98-276 (see http://www.cs.utexas.edu/users/ai-lab).

26



[12] Mary Elaine Califf and Raymond J. Mooney. Bottom-up relational learning of pat-
tern matching rules for information extraction. Journal of Machine Learning Research,
4:177–210, 2003.

[13] Jennifer Chu-carroll. Mimic: An adaptive mixed initiative spoken dialogue system
for information queries. In In Proceedings of the Sixth Conference on Applied Natural
Language Processing, pages 97–104. AAAI Press, 2000.

[14] Nils Dahlback and Arne Jonsson. Knowledge sources in spoken dialogue systems. In In
Proceedings of Eurospeech’99, pages 1523–1526, 1999.

[15] Myroslava O. Dzikovska, James F. Allen, and Mary D. Swift. Integrating linguistic
and domain knowledge for spoken dialogue systems in multiple domains. In IJCAI,
Acapulco, Mexico, 2003.

[16] Rob Ennals, Eric Brewer, Minos Garofalakis, Michael Shadle, and Prashant Gandhi.
Intel mash maker: join the web. SIGMOD Rec., 36(4):27–33, 2007.

[17] Annika Flycht-eriksson. A survey of knowledge sources in dialogue systems. In In: Proc.
of IJCAI’99 Workshop on Knowledge and Reasoning in Practical Dialogue Systems,
pages 41–48, 1999.

[18] Annika Flycht-eriksson and Arne Jonsson. A spoken dialogue system utilizing spatial
information. In In Proceedings of ICSLP’98, 1998.

[19] Eric J. Glover, Gary W. Flake, Steve Lawrence, Andries Kruger, David M. Pennock,
William P. Birmingham, and C. Lee Giles. Improving category specific web search by
learning query modifications. In SAINT ’01: Proceedings of the 2001 Symposium on
Applications and the Internet (SAINT 2001), page 23, Washington, DC, USA, 2001.
IEEE Computer Society.

[20] Saul Greenberg, John J. Darragh, David Maulsby, and Ian H. Witten. Predictive inter-
faces: what will they think of next? pages 103–140, 1995.

[21] Scott B. Huffman and John E. Laird. Flexibly instructable agents. Journal of Artificial
Intelligence Research, 3:271–324, 1995.

[22] David F. Huynh, Robert C. Miller, and David R. Karger. Potluck: Data mash-up tool
for casual users. In ISWC/ASWC, pages 239–252, 2007.

[23] Boris Katz. Using English for Indexing and Retrieving. Technical Report AIM-1096,
1988.

[24] Boris Katz. Annotating the World Wide Web Using Natural Language. In Proceedings of
the 5th RIAO Conference on Computer Assisted Information Searching on the Internet
(RIAO ’97), Montreal, Canada, 1997.

27



[25] Boris Katz, Gary Borchardt, and Sue Felshin. Syntactic and semantic decomposition
strategies for question answering from multiple resources. In Proceedings of the AAAI
2005 Workshop on Inference for Textual Question Answering, pages 35–41, 2005.

[26] Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim, Jimmy Lin, Gregory Marton, Al-
ton Jerome McFarland, and Baris Temelkuran. Omnibase: Uniform Access to Heteroge-
neous Data for Question Answering. In Proc. of the 7th Int. Workshop on Applications
of Natural Language to Information Systems (NLDB ’02), Stockholm, Sweden, June
2002.

[27] Boris Katz and Jimmy J. Lin. Start and Beyond.
http://citeseer.ist.psu.edu/556306.html, 2002.

[28] Jihie Kim and Yolanda Gil. Deriving expectations to guide knowledge base creation.
In AAAI ’99/IAAI ’99: Proceedings of the sixteenth national conference on Artificial
intelligence and the eleventh Innovative applications of artificial intelligence conference
innovative applications of artificial intelligence, pages 235–241, Menlo Park, CA, USA,
1999. American Association for Artificial Intelligence.

[29] Nicholas Kushmerick, Daniel S. Weld, and Robert B. Doorenbos. Wrapper Induction
for Information Extraction. In Intl. Joint Conference on Artificial Intelligence (IJCAI),
pages 729–737, 1997.

[30] Cody Kwok, Oren Etzioni, and Daniel S. Weld. Scaling question answering to the web.
ACM Trans. Inf. Syst., 19(3):242–262, 2001.

[31] Alberto H. F. Laender, Berthier Ribeiro-Neto, and Altigran S. da Silva. DEByE - Data
extraction by example. Data Knowledge Engineering, 40(2):121–154, 2002.

[32] Tessa Lau, Lawrence Bergman, Vittorio Castelli, and Daniel Oblinger. Sheepdog: Learn-
ing procedures for technical support. In In Proceedings of IUI 2004, pages 109–116,
2004.

[33] Zhao Li and Wee Keong Ng. WICCAP: From Semi-structured Data to Structured Data.
Engineering of Computer-Based Systems, 00:86, 2004.

[34] Henry Lieberman, editor. Your wish is my command, Programming by example. Morgan
Kaufmann, 2001.

[35] Bing Liu, Robert Grossman, and Yanhong Zhai. Mining data records in Web pages. In
KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on knowl-
edge discovery and data mining, pages 601–606, New York, NY, USA, 2003. ACM Press.

[36] Jayant Madhavan, David Ko, Lucja Kot, Vignesh Ganapathy, Alex Rasmussen, and
Alon Halevy. Google’s deep web crawl. Proc. VLDB Endow., 1(2):1241–1252, 2008.

28



[37] Pattie Maes. Agents that reduce work and information overload. Commun. ACM,
37(7):30–40, 1994.

[38] David Morley and Karen Myers. The spark agent framework. In AAMAS ’04: Proceed-
ings of the Third International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 714–721, Washington, DC, USA, 2004. IEEE Computer Society.

[39] Ion Muslea, Steve Minton, and Craig Knoblock. A hierarchical approach to wrapper
induction. In AGENTS ’99: Proceedings of the third annual conference on Autonomous
Agents, pages 190–197, New York, NY, USA, 1999. ACM Press.

[40] Dragomir Radev, Weiguo Fan, Hong Qi, Harris Wu, and Amardeep Grewal. Probabilis-
tic question answering on the web. In Journal of the American Society for Information
Science and Technology, pages 408–419, 2002.

[41] Dragomir R. Radev, Kelsey Libner, and Weiguo Fan. Getting answers to natural lan-
guage questions on the web. JASIST, 53.

[42] Juan Raposo, Alberto Pan, Manuel Álvarez, Justo Hidalgo, and Ángel Viña. The Wargo
System: Semi-Automatic Wrapper Generation in Presence of Complex Data Access
Modes. In DEXA ’02: Proceedings of the 13th International Workshop on Database
and Expert Systems Applications, pages 313–320, Washington, DC, USA, 2002. IEEE
Computer Society.

[43] Stephen Soderland. Learning information extraction rules for semi-structured and free
text. Journal of Machine Learning, 34(1-3):233–272, 1999.

[44] Janienke Sturin, Els den Os, and Lou Boves. Dialogue management in the dutch arise
train timetable information system.

[45] Ellen M. Voorhees and Dawn M. Tice. The trec-8 question answering track evaluation.
In In Text Retrieval Conference TREC-8, pages 83–105, 1999.

[46] Wei Xu and Alexander I. Rudnicky. Task-based dialog management using an agenda. In
ANLP/NAACL 2000 Workshop on Conversational systems, pages 42–47, Morristown,
NJ, USA, 2000. Association for Computational Linguistics.

[47] Gabriel Zaccak. Wrapster: Semi-automatic wrapper generation for semi-structured
websites. Master’s thesis, MIT, 2007.

[48] Victor Zue, Stephanie Sene, James Glass, Joseph Polifroni, Christine Pao, Timothy J.
Hazen, and Lee Hetherington. A telephone-based conversational interface for weather
information. IEEE Trans. on Speech and Audio Processing, 8:85–96, 2000.

29


