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Abstract. We present a graphical user interface that allows an artist
to virtually design and visualize net sculptures. Net sculptures consist
of net pieces that are seamlessly connected to each other and to fixed
rails. They are flexible and hence dynamic under external forces such
as gravity and wind. The interface that we describe allows an artist to
create net sculptures made up of multiple net pieces. Simple operations
such as clicking on points and click-and-drag gestures are used to create
and modify individual net pieces, and drag-and-drop gestures are used
to connect net pieces to multiple rails. The effect of gravity on the net
sculpture is simulated, allowing the artist to simultaneously design and
visualize net sculptures as they would appear once installed in a real
setting.
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1 Introduction

Net sculptures are composed of multiple net-pieces that are joined together and
hung on suspended rails, producing aesthetic and dynamic 3D sculptures that
move under the influence of wind and gravity [1]. The net pieces that make up
a net sculpture must have dimensions that adhere to fabrication protocols, so
that they can be produced by available equipment. Net pieces are connected
to each other seamlessly, either by having the same number of knots along the
connecting edge, or numbers of knots that are multiples of each other (which are
known as gear changes). Creating and working with net pieces in the real world
can be time-consuming and expensive, and thus experimenting with complex
designs is prohibitive, motivating the need for computer-aided design methods
which would allow an artist to virtually design and visualize net sculptures.

2 Overview and Related Work

Net sculptures can be modeled using 3-dimensional surfaces. Hence, an artist
could use one of the many available computer-aided design tools to design a
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net sculpture, for example using parametric surfaces [2]. However, such surfaces,
which could have any shape imaginable, cannot easily be decomposed into indi-
vidual net pieces that can be fabricated in order to produce the net sculpture.
Moreover, gravity plays a very significant role in the final shape of the net sculp-
ture, and so without simulation to take this effect into account, a parametric
surface designed by the artist may not have the same shape when produced and
hung. A more effective interface would thus have to combine the particular char-
acteristics of net pieces and realistically simulate the net sculpture as a physical
object.

Since net sculptures have 3D geometries, the interface must also display and
allow the artist to interact with 3D objects. There are many challenges in the
development of effective 3D user interfaces, such as ensuring proper spatial ori-
entation and interaction with objects [3,4]. Commonly available 3D design tools
give a large degree of freedom over the results; however they can have steep
learning curves, and an artist can easily get lost in the complexity. By combin-
ing predictable physically-based object behaviour and simple gestures, easy to
use and fun 3D interfaces have been achieved [5]. In the same spirit, we present
an interface that allows an artist to create and modify net sculptures while at
the same time simulating their physical behaviour under the effect of gravity.

The interface does not require the user to explicitly position objects in 3D,
which can be a frustrating experience when using a 2D input device such as a
mouse [6]. Instead, net pieces are automatically connected either to pre-defined
rails or to other net pieces, and their geometry is automatically generated. For
other operations, with which the user adjusts dimensions of a net piece for ex-
ample, we use 2D mechanisms. More specifically, such a mechanism involves
clicking on a point with the mouse, followed by a dragging gesture (moving the
mouse while the button is still pressed). During the click-and-drag gesture, the
movement of the mouse is not related to positioning in 3D space, but rather to
increasing or decreasing a parameter value, the effect of which is visualized in
real-time.

In connecting a free-hanging side of a net piece to a rail, the user does actually
move a point through 3D space. To make this movement correspond to the
movement of the mouse, the point moves on a plane that is perpendicular to
the viewing direction [7]. However this plane on which the point is being moved
does not actually matter. Instead, if the point being moved is dropped while
the mouse pointer is on top of a rail to which the net can be attached, the
attachment is made. On top of is taken loosely to mean that the 2D position of
the mouse is roughly the same as the projected 2D position of a point on the
rail. This operation thus follows the typical drag-and-drop gesture that many
2D interfaces already use. The only inherently 3D operation that the artist has
to perform while using the interface is to position the camera in 3D space, so as
to view the net sculpture from different angles.

In the rest of the paper, we first describe the geometry of rails that net
pieces can be attached to, the operations that an artist can perform to create
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and modify net sculptures, and finally the simulation of net sculptures to take
into account the effects of gravity.

3 Rails

Rails can be either created by the artist, or pre-specified for a particular in-
stallation by the architectural team. There are no particular constraints in the
creation of rails; they are commonly fabricated as metal tubes, and can take the
form of any open or closed curve. The geometry of such rails can be created for
example using B-splines by many CAD programs. These curves can be read into
the net design interface either as B-splines or as continuous line segments. Two
example rails that are imported into the interface are shown in Figure 1.

Fig. 1. Two rails are shown, each rail having the form of a closed curve. The two rails
are show from top view (left), and side view (right).

4 Net piece geometry

The geometry of a net piece is illustrated in Figure 2. It is made up of knots
arranged in rows and columns, with each row staggered with respect to the
previous row. Each row has the same number of knots as all other rows, and
similarly, each column has the same number of knots as all other columns. As
shown in Figure 2, each knot is connected by links to two knots in the row above
(except for the knots in the first row), and to two knots in the row below (except
for knots in the last row). These links are commonly called bars, and we will use
this term through the rest of the paper.

Topologically a net piece is rectangular, with the same number of knots
in each column, and the same number of knots in each row. However the bar
lengths can be varied from row to row or from column to column (but not both),
so that the net piece can also have a trapezoidal geometry. The number rows
and columns in a net piece, along with the bar lengths, are the only parameters
required to produce it using a net fabrication machine. Hence, these are also the
parameters that an artist can control for each net piece when designing a net
sculpture.

In determining knot positions, the Pythagorean relationship is used:

12 = (s/2)? + h? (1)
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Fig. 2. A net piece is composed of knots connected by bars. The position of a knot is
denoted by py, where a is the row-index and b is the column-index of the knot. The
scalar s is the distance between two adjacent knots in the same row, h is the vertical
distance between knots in adjacent rows, and [ is the length of a bar attaching two
knots. The right-most knots of this net piece link back to the left-most knots, forming
a closed tube in this example.

In Equation (1), [ is the bar length, s is the spacing between adjacent knots
in a row and h is the vertical distance between knots in adjacent rows. The user
will be allowed to adjust s and [, from which h will be calculated. While s will
be kept the same when computing the initial geometry of a net piece, the bar
length [ can vary smoothly either row-wise or column-wise, but not both, and
thus h may also vary. The artist will be allowed to control how the bar length [
varies throughout a net piece, as will be described in Section 6.

5 Creation of new net pieces

New net pieces can be created in two ways: by directly attaching them to a
rail, or by attaching them to an existing net piece. Both ways are illustrated in
Figure 3. To create a new net piece, the user puts the interface in the new net
mode. In this mode, spheres are placed along rails or sides of existing net pieces,
where new net pieces can be attached. The user then simply clicks on one of
these spheres to create a new net piece.
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Fig. 3. Creation of net pieces by attachment to rails (left and middle images), or to
existing net pieces (middle and right images). On the rail, the nodes on the top edge of
the new net piece are attached to equally spaced points along the rail. On the existing
net piece, the nodes on the top edge of the new net piece are attached to nodes on the
bottom edge of the existing net piece.
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5.1 Attaching a new net piece to a rail

In the new net mode, points on a rail are generated at equidistant intervals, with
distance measured in parameter space along the curve. These represent points
that the nodes in the first row of a new piece can be attached to. In Figure 3,
in the left-most image, these points are shown with solid spheres. To create a
new net piece that attaches to these points, the user simply moves the mouse
over any one of the spheres, and clicks. As the user moves the mouse over a
sphere, a transparent red sphere is drawn on top of the original sphere, to let
the user know that that sphere is selected. If the user clicks while a sphere is
selected, a new net piece is created and attached to the rail, as shown in the
middle image in Figure 3. The new net piece has the name number of knots in
the width direction as points generated on the rail. Because the rail is a closed
curve in this case, the net piece itself is also closed, with the first and last column
attached to each other.

When creating a net piece by attaching it to a rail, the positions of the knots
in the first row are set to the positions of the points generated at equal intervals
along the rail. The positions of the knots in subsequent rows are computed
based on these positions and the scalars s, h, and [, which are related as given in
Equation (1). In particular, we assume that s and [ are given (and controlled by
the user, as will be described in Section 6), and h will be calculated. Moreover,
we assume that the rails are given on the z-y plane, and the net will hang down
in the z direction. Thus, the position of a node in a net piece is:

—a—1 —a—1
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In Equation (2), a is the column-index and b is the row-index of the knot at
position P’y. (The indexes are automatically wrapped around the first and last
point in each column).

The positions that are computed for the knots in a new net piece using
Equation (2) are not necessarily the final positions of the knots after taking into
account the force of gravity. The final hanging shape of all the net pieces in a net
sculpture will be computed using the dynamical process described in Section 7.
Equation (2) is however very useful in attaining a reasonable starting geometry
for the net.

5.2 Attaching a new net piece to an existing net piece

In the new net mode, solid spheres are also drawn on the knots on the last row
of a net piece to which a new net piece can be attached. For example, the middle
image in Figure 3 shows such red spheres at the bottom of the net piece. Similar
to the spheres shown on a rail, the user can click on these spheres to attach a
new net piece to the last row of the existing net piece. When creating a new net
piece by attaching it to an existing net piece, the positions of the knots in the
first row of the new net piece are simply set to the positions of the knots in the
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last row of the existing net piece. The positions of all the other knots are then
calculated via Equation (2).

5.3 Splitting a net piece into multiple net pieces

A net piece can be divided into multiple net pieces, as shown in Figure 4. The
resulting net pieces will have the same number of rows as the original net piece,
but the number of columns in each net piece may be different. To divide a net
piece, the user first puts the interface in the divide net piece mode. In this mode,
spheres are placed on the top nodes of every net piece. When the user clicks on
one of these spheres, the net is divided at that column. This operation is useful
for various reasons. One reason is that the artist may want to use different bar
lengths in each net piece, or may want to use net pieces with different colors,
material properties, or bar thickness.

click on sphere click on sphere

Elus

Fig. 4. Splitting a net piece into multiple net pieces. In this drawing, the net piece is
drawn using both lines and triangles, for a more clear visualization of each net piece.
In the image on the left, the user clicks on the sphere at the top of the column along
which the net piece should be split, resulting in the net piece being divided into two
at this column (middle image). The two resulting net pieces are now attached to each
other column-wise, i.e. the knots on the last column of the net piece on the left are
attached to the knots in the first column on the piece on the right. Another split is
created by clicking on another sphere in the middle image (right-most image).

6 Changing net-piece dimensions

The interface allows the artist to modify the number of rows and columns of
each net piece, as well as bar lengths, as described in the following sections.

6.1 Changing the number of rows in a net piece

To change the number of rows of knots in a net piece, the user first puts the
interface in the change number of rows mode. In this mode, spheres are shown
at knots in the last row of all net pieces, as shown in Figure 5. The user can then
click on one of these spheres and drag it up to decrease the number of rows or
down to increase the number of rows. The reason for this mapping is that when
dragging up, the net piece appears to shorten, and thus the bottom row of the
net seems to follow the direction of the mouse gesture.
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Fig. 5. The number of rows in the illustrated net piece is changed by clicking and
dragging one of the spheres placed on the last row of the net piece. Dragging up
decreases the number of rows, while dragging down increases the number of rows.

6.2 Changing the number of columns in a net piece

To change the number of columns in a net piece, the user first puts the interface
in the change number of columns mode. In this mode, for a net piece attached to
a rail, as shown in Figure 6, spheres are drawn at all the points where the knots
in the first row of a net piece are attached to the rail. The user can then click
on one of these spheres and drag up or down to change the number of columns
in the net piece.

When the user drags up, the spacing between the attachment points is de-
creased, meaning that the number of columns increases, as more points are
required to circumnavigate the entire rail. If the user drags down, the spacing
between the attachment points is increased, meaning the number of columns de-
creases as fewer points are required to cover the entire rail. Note that the number
of rows in the net piece stays constant during this operation; however, because
the bar length also stays constant, the distance between knots in adjacent rows
changes, and therefore the actual length of the net piece may appear to increase
and decrease, as can be seen in Figure 6.

click + drag up

Fig. 6. Changing the number of columns in a net piece attached to a rail. The user clicks
on a sphere and drags up to increase the spacing between attachment points, or drags
down to decrease the spacing. Because the number of attachment points changes, the
number of columns in the net piece also changes. Because the bar lengths and number
of rows stay the same, the physical length of the net piece also increases or decreases
as shown.
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6.3 Gear changes

To change the number of columns in a net piece connected to another net piece,
the same mode and gestures are used. However, the number of columns in such
a net piece is constrained, because it must seamlessly connect to the net piece
above. This operation is also commonly called gear changing. The number of
columns in a net piece connected to another net piece can be either double
(gear-up of 2), triple (gear-up of 3), half (gear-down of 2), a third (gear-down
of 3) of the number of columns in the net piece it is connected to. These gear
changes are illustrated in Figure 7.
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Fig. 7. Changing the number of columns in a net piece which is attached to another net
piece, through gear changes. Gear-up changes are obtained by clicking on a sphere and
dragging up, which doubles or triples the number of columns in the net piece (top row,
right). Gear-down changes are obtained by clicking on a sphere and dragging down,
which halves or thirds the number of columns in the net piece (bottom row, right).

6.4 Changing the bar length of a net piece

The bar length of a net piece can also be adjusted by the artist. To do so, the
artist first puts the interface in change bar length mode. In this mode, spheres
are drawn on the knots in the first column of a net piece, as shown in Figure
8. The artist can click on one of these spheres and drag up to decrease the bar
length, or down to increase it. For a single net piece, the bar length is the same
in all of its columns. Note that the number of rows and columns in the net pieces
are not changing during this operation, even though the actual physical length
is changing, due to smaller or larger bar lengths.

When two or more net pieces are attached at their first and last columns,
the bar lengths are the same at each column where net pieces are connected.
However, the bar lengths are linearly interpolated between the first and last
column in the net-piece, as shown in Figure 9. A varying bar length results in a
varying physical length of the net piece at each column, as shown in Figure 9.
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Fig. 8. Changing the bar length of a single net piece. The user clicks a sphere which
is drawn at knots in the first column of a net piece, and drags up/down to de-
crease/increase the bar length. In this example, the net piece is not connected to
other net pieces column-wise, so the bar length is the same in every column. A net
piece attached to the last row of the net piece is updated as well to maintain that
connection.
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Fig. 9. The bar length at a column of a net piece is modified by clicking on a sphere
drawn on this column, and dragging up to decrease the bar length or down to increase
it. For each net piece, the bar length is linearly interpolated between its values at the
first and last column. The bar lengths at the columns where two net pieces are attached
are the same for both net pieces.

7 Dynamics of net sculptures

The geometry created for each net piece, as described in previous sections, serves
only as an initial configuration for a net sculpture. It is also desirable to the artist
to see how the entire net sculpture hangs under the pull of gravity. In order to
simulate this hanging shape, we model each net piece in the sculpture as a
mass-spring system, where the knots are masses and the bars between them are
springs. Such dynamical model has been used in various applications, such as
cloth modeling [9,10] and surgery simulation [11]. Cloth has different material
properties, and here we try to adapt the force equations to better capture the
properties of nets. The force acting on each knot can be written as:

7P
?} + Z?:l kf,j(livj — leq)ﬁ Zf li,j > lfg»

i, T
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G+ ik - )5 o La <
i J

Equation (3) expresses the force on a knot j, ?j , as a combination of the
force of gravity, ¢, which points down, and the springs attaching it to n other
knots. The scalar k; ; is the stretching spring constant for the bar attaching knots
i and j, and k7 ; is the compression spring constant for the same bar. A piece of
rope is very resistant to stretching, but not very resistant to compression, since
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in the latter case it simply bends; thus we set & ; to be relatively high and £f
to be relatively low.

In Eqn. 3, I; ; is the actual length of the bar attaching knots 7 and j during the
simulation. The equilibrium length for the same bar is lfg, which stays constant
and is set when the positions of the knots are calculated as previously described.
Lastly, 7’; and ’; are the positions of the knots 7 and j, which are initialized
using Eqn. (2), and which change during the simulation. To update the positions
for each knot, Eqn. (2) is written into two ordinary differential equations, relating
the acceleration, velocity, and position of every knot in the net sculpture:

dv

;= dt] (4)
d7T

v = dtJ (5)

In Equations 4 and 5, @ is the acceleration that knot j experiences due to
the forces on it, @'; is the velocity of a knot, and d7; is the position of the
knot. The acceleration of a knot is related to the force acting on it, as dictated
by Newtons law:

= (6)

In Eqn. 6, m; is the mass of the knot j. For design purposes, we would
simply like to find the equilibrated hanging shape of a net sculpture, ignoring
any oscillatory motion that is typical of mass-spring systems. Hence we assume
an infinitely damped system, free of inertia, in which the velocity on a knot is
simply the force acting on it:

dz; F; .
dt o mj ( )
To find the equilibrium hanging shape of a net sculpture, Eqn. 7 is discretized
and integrated using the Runge-Kutta method [12], with the initial positions of
each knot being the positions computed as previously described. Net sculptures
are inherently stiff systems, since the spring constants should be high and the
masses relatively low, and thus stability is an issue. We use relatively low spring
constants, large masses, and small time steps, making the simulation stable dur-
ing the design process. Once design is complete, the spring constants are grad-
ually increased to achieve a more accurate hanging shape. Figure 10 shows the
initial and equilibrium hanging shape of a single net piece hung on a circular
rail.

8 Attaching net pieces to multiple rails

To design a more complex net sculpture, an artist often uses net pieces that
connect to each other and also to more than one rail. To facilitate this within
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Fig. 10. A single net piece attached to a circular rail, with knots in the initial computed
positions (left), and after the equilibrium hanging shape is reached (right).

the user interface, we employ a drag-and-drop mechanism, which is illustrated
in Figure 11. To perform this operation, the user first puts the interface in the
connect net mode. In this mode, spheres are drawn on the last rows of net pieces
which can be attached to a rail. The user clicks on one of these spheres and
starts dragging it. While dragging, spheres are drawn on rails to which the net
piece can be attached. To complete the attachment, the user drops the sphere
they are dragging on top of any of the spheres placed on the rails they wish to
attach the net piece to. On top of means simply that on the 2D projected image,
the user has moved the mouse so as to select any of the spheres drawn on the
rail on which they are attaching the net piece to.

After this operation is performed, all the knots on the last row of the net
piece which is being attached are automatically fixed to points on the rail to
which the net piece is being attached. From this configuration, the mass-spring
simulation method is used to bring the net to its hanging shape.

Fig.11. The free-hanging side of a net sculpture (left), is attached to another rail
(middle). A point on the free-hanging side is clicked, dragged, and dropped when the
mouse pointer coincides with a point on the rail that it should be attached to. The
final hanging net geometry is then shown (right).

9 Conclusions and future work

We presented a graphical user interface that allows an artist to virtually design
net sculptures, which are composed of multiple net pieces that seamlessly connect
to one another and to supporting rails. The artist can create and modify net
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pieces by clicking on points and using simple click-and-drag gestures. Moreover
net pieces can be connected to other rails by dragging and dropping a point on
the end of a net to the rail that it should be attached to. In preliminary trials,
it was apparent that such an interface has great potential in allowing an artist
to virtually design realizable net sculptures. In the future, we aim to further
explore its effectiveness in allowing an artist to fully exercise their artistic and
creative visions.
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