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ABSTRACT

Cryo-electron microscopy is a method that produces 3D density maps of
macromolecular complexes. Segmentation and registration methods are heavily
used to extract structural information from such density maps.

Segmentation aims to identify regions in a density map corresponding to
individual molecular components, so as to allow us to understand their complex
arrangements and the relation of these arrangements to the function of the complex.
Currently used segmentation methods rely to a large degree upon user interaction
and thus are tedious and yield subjective results. We present a multi-scale
segmentation method requiring very little interaction and guidance from the user.
The segmentation accuracy of this method is quantified for simulated density maps,
using a shape-based metric. The method is applied to several density maps of
various sizes and complexity, producing accurate results.

Registration of molecular structures with density maps helps to relate the
vast structural information from X-ray crystallography with the structural
information contained in cryo-electron microscopy density maps. The most reliable
registration methods to date depend on exhaustive search, which is time-intensive
and scales poorly with map and structure size. Two methods are presented that
achieve direct registration of structures with density maps, based on the alignment
of the structures to segmented regions. The registrations are refined using a
gradient-based method, which locally optimizes the density cross-correlation score.
A search algorithm is presented for automatically finding groups of regions that
produce correct registrations. The accuracy of these registration methods is
measured using simulated density maps, and then the methods are used to register
structures of individual proteins and subunits with density maps obtained by cryo-
electron microscopy.
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Chapter 1. Introduction

1.1 Motivation

Macromolecular complexes are the building blocks and workhorses of biological
organisms. A macromolecular complex is composed of components such as proteins
and ribonucleic acids (RNA). Obtaining the structures of such complexes is critical
for better understanding how they function, and also for understanding why they

sometimes fail to function properly, which is a common cause of many diseases.

A well-established method used to determine the structure of
macromolecular complexes is X-ray crystallography. With this method, 3-
dimensional electron density maps are reconstructed from crystal diffraction
patterns, typically to high-enough resolution such that the position of individual
atoms can be determined [1]. However the complexes must first crystallize for this
method to be applicable. Thus this method cannot be applied universally, for
example to very large complexes, complexes that are structurally dynamic, or

complexes that are embedded in cellular membranes.

Cryo-electron microscopy (cryo-EM) doesn’t require crystallization and
hence can be applied to a wider variety of complexes. On the other hand, it involves
a large amount of computation and typically produces lower-resolution maps from
which atomic positions cannot be directly determined. However the reconstruction
methods are improving, and cryo-EM is increasingly being used to uncover the
structure of an increasing number of complexes. As a result, methods for analyzing

the resulting density maps are also increasing in importance.
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1.2 Problem statement

The relatively low resolution of cryo-EM density maps makes the extraction of
structural information a challenge. The tools used to build atomic models in an
electron density map from X-ray crystallography have not yet been applied
successfully, since those tools require higher resolutions. Hence, segmentation and
registration methods are commonly used to extract structural information from

cryo-EM density maps.

The segmentation and registration methods currently used in the analysis of
cryo-EM density maps have serious limitations, as will be described below. These
limitations will only get worse as the size and complexity of the density maps
obtained continue to grow. In this thesis, the aim is to develop fast, efficient,
accurate, and objective methods for segmentation and registration. Achieving such
methods will mean that the analysis of density maps will be easier and faster, and it
will allow us to more quickly and accurately extract structural information from

density maps obtained using the cryo-EM method.

1.2.1 Segmentation

During the segmentation process, the goal is to identify regions in a density map
that belong to individual molecular components. This helps us to learn what
components make up the complex, and how its composition may be related to its
function. Current segmentation methods applied to density maps from cryo-EM
require a lot of guidance from the user, and hence are tedious and labor intensive.
The results depend to a large degree on the skill and knowledge of the user, and

hence they can be highly subjective.

Segmentation of cryo-EM density maps is a hard problem for several reasons.
Firstly, the regions to be segmented are 3D in nature, and interacting with 3D

structures on 2D display devices is not an easy task to start with. Secondly,
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molecular shapes are very complex, and thus it is not easy for users with little prior
skills or knowledge to identify these shapes. Thirdly, the boundaries between
molecular components don’t clearly stand out when visualizing a density map, and
thus are hard to identify. To solve these problems, the segmentation method must
be able to efficiently deal with 3D data, and be mostly automated, so that the users

are not relied upon to identify the 3D shapes themselves.

1.2.2 Registration

The process of registration involves taking a known structure of a molecular
component, for example obtained using X-ray crystallography, and placing it such
that it best overlaps an analogous component in the density map. The registration of
a structure to a density map is a useful analysis tool. Since cryo-EM maps are of
lower resolution, they cannot be used to directly determine atomic positions of each
component. The registration of structures with the map can be used as a way to
build atomic-level structural models of the complexes captured in the cryo-EM
density map. Moreover, the process of registration can be used to uncover the
relationships between the many presently known structures and the density maps

being produced by cryo-EM.

In this work, the rigid-body registration problem is considered, which
assumes that the structures to be registered are similar to the structures in the cryo-
EM density map. Such a registration involves only 6 degrees of freedom: a 3-
dimensional position and a 3-dimensional orientation. Current methods for rigid
registration are problematic. For example, the structure can be positioned and
oriented manually by the user, however this is not an easy task since 2D displays
and input devices are ill suited for 3D manipulation. Exhaustive search can solve the
problem, however it requires long computation times, and the computation times
scale poorly with the sizes of the density map and the structures being registered.

Methods based on aligning feature points in the structure and density map are very

15



fast. However to reliably identify feature points is itself a hard problem, and
automatic identification of feature points does not always work well, especially in
the presence of noise in the density map. To solve these problems, the registration
method must therefore not rely on user-interaction, feature points, or exhaustive

search. A more direct way to register the structure is needed.
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Chapter 2. Background

2.1 Atomic structures

An atomic structure is defined by specifying a 3D position for each atom that it
contains, along with a list of covalent bonds between atoms. In a molecule, each
atom is bonded to at least one other atom that is also in the molecule. A structure
can consist of a single molecule or it can consist of multiple molecules that are held
together by van der Waals and electrostatic forces [2]. Structures that are composed
of two or more molecules are commonly called molecular complexes. Macro-
molecular complexes are composed of two or more large molecules such as proteins

or ribo nucleic acid molecules (RNAs).

2.1.1 Proteins

A protein is a chain of covalently bonded amino-acid molecules [3]. An amino-acid
molecule has backbone atoms, which connects it to other amino acids, and side-chain
atoms. The atoms that make up the side-chain branch out from one of the atoms in
the backbone. The sequence of amino acids along in the chain is commonly referred
to as the primary structure of the protein. A chain of amino-acid molecules
commonly folds into two types of secondary structures, namely alpha helices or beta
strands. These secondary structures tightly pack against one another when the
protein folds. The fold is also referred to as the tertiary structure of a protein.
Finally, the quaternary structure describes how different proteins bind to one
another to form complexes, through hydrophobic or electrodynamic interactions.

These four levels of protein structure are illustrated in Figure 2.1.

In every molecule such as a protein, an atom is covalently bonded with at

least one other atom that is part of the same molecule. Atoms that are covalently
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bonded to each other tend to be close together. On the other hand, non-covalently
bonded atoms tend to be further away from one another. Hence, interfaces between
different molecules tend to be less dense, since atoms are further apart, whereas the
spaces within a molecule, in which atoms are closer together due to covalent

bonding, are denser.

primary secondary: alpha helix secondary: beta strand tertiary quaternary

vl

Figure 2.1. Protein structure. The primary structure is the sequence of amino acids connected
together to form a long chain. In the image on the left, a chain of 4 amino acids is drawn. Secondary
structures include alpha helical and beta strand segments. The tertiary structure is the overall
arrangement of the entire chain. Quaternary structure captures how multiple proteins are bound to
one another. The structures here are show in the ribbon representation, in which a tube interpolating
the positions of the backbone atoms is drawn. Side chains in the first three figures are shown with
ball-and-stick model representing atoms and covalent bonds respectively. They are not drawn in
larger structures at the tertiary and quaternary level for clarity. All the images are created from the
crystal structure available in the protein data bank (PDB:1xck).

2.1.2 Ribonucleic acid (RNA) molecules

Ribonucleic acid (RNA) molecules are long chains of covalently bonded molecules
called nucleotides or bases. RNA molecules are usually single stranded, a strand
consisting of a single chain of covalently bonded bases. In RNA molecules, bases
from different points along the chain can form base pairs, which physically holds
those points together. RNA strands, much like proteins, have specific 3D structures.
RNA molecules also often bind to other RNA molecules or proteins. An example of
such an RNA-protein complex is the ribosome. The ribosome consists of two
subunits, where each subunit is a RNA-protein complex. These 4 levels of RNA

structure are illustrated in Figure 2.2.
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chain of bases base pairs 3D fold RNA-protein complex

Figure 2.2. RNA structure. On the left, the RNA chain structure is shown, showing the atoms in 4 of
the bases along the chain. The backbone atoms in the 4 bases are simplified and drawn as an orange
ribbon, for clarity. Second from left, bases from different positions in the RNA chain forming base
pairs are shown. Second from right, the 3D structure that a chain can take is shown. On the right, an
RNA (orange ribbon) and protein (blue ribbon) complex is shown. All images are created from the
crystal structure of the E-Coli ribosome small subunit, available from the protein data bank
(PDB:2avy).

2.2 X-ray crystallography

The atomic positions in a molecular complex can be determined using X-ray
crystallography [1]. An X-ray beam is sent through a crystal composed of many
copies of the same complex, all arranged regularly in a crystal lattice, producing a
diffraction pattern. A 3D electron density map is computed from this diffraction
pattern, from which the atomic positions are determined. The structures of many
proteins and complexes have been obtained to date with this method. All these
structures can be accessed in a publicly accessible database, the protein data bank
(PDB) [4]. The main limitation of X-ray crystallography is that the proteins or
protein complexes must first crystallize. Many proteins and protein complexes,
which are flexible in nature or are typically embedded in cellular membranes, do not

crystallize, and hence heir structures may never be found using this method.
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2.3 Cryo-electron microscopy (cryo-EM)

In cryo-EM, the crystallization of a molecular complex is not required. Instead, a
purified solution containing many copies of the same complex is frozen, and then
imaged with an electron microscope. This produces many 2D images of the complex
in varying orientations. First, the images that correspond to the same orientation
are found and averaged to improve the signal-to-noise ratio. Then the orientation of
each average image is found with respect to the 3D volume, and back-projection is
used to reconstruct a 3D density map. This back-projection methodology has been
used in other domains, for example radio astronomy and medical imaging, even

with arbitrary ray-sampling schemes [5].

The process described above for the reconstruction of 3D density maps of
molecular complexes is commonly called single particle reconstruction, and is
illustrated in Figures 2.3 and 2.4. Several software tools have been developed
implementing this method, for example EMAN [6] and SPIDER [7]. These tools are
constantly being improved, and thus are they are becoming more efficient and
automated. Many 2D images (>100,000) and computational resources are typically

required to produce an accurate density map.
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electron beam

¥

Figure 2.3. [llustration of imaging and boxing steps in cryo-EM. Many copies of the same complex are
placed in a thin film, which is then cryogenically frozen to drastically reduce Brownian motion. The
film is imaged using an electron beam, producing many 2D images of the complex in different
orientations (left). Each image is a radon projection of the complex [8]. The resulting 2D image is
shown on the right, where individual images of the complex have been identified with red boxes.
These illustrations contain only simulated data.

Figure 2.4. Single-particle reconstruction process for cryo-EM. Boxed 2D images are first clustered,
based on similarity, to find representatives of different orientations. On the left, images from 3
clusters are shown. Images in the same cluster are averaged to create a ‘cluster-average image’ in
which the signal-to-noise ratio is improved. The 3D orientations of the resulting average images are
then found, with respect to the 3D volume. Using these orientations, the images are back-projected to
yield a 3D density map (right). The last two steps are iterative - first a guess of the 3D volume is
made, which is used to compute the orientations of each average image with respect to this volume.
The average images are then used to recreate the volume by back-projection. Then the first step is
repeated, but using the newly computed volume. The process stops when covergence is reached.
These illustrations contain only simulated data.
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2.3.1 Visualization of 3D density maps

A density map is defined as a 3D grid, with each grid point having a density value
that reflects the electron density at the corresponding point in space. To visualize a
density map, this 3D grid must somehow be projected to form a 2D image. A
common way of doing this is to create a 3D iso-surface through the grid, which is
projected to create the 2D image. The iso-surface is a collection of points that have
the same density value; the latter is also often called a threshold. The surface points,
along with triangles between them, which can be projected and drawn, can be

obtained using the marching cubes algorithm [9].

Another way to visualize a density map is to show a 2D slice through the 3D
grid. The slice shows the density values using varying intensities, e.g. darker values
representing higher densities. Both iso-surface and slice representations are
illustrated in Figure 2.5. Figure 2.6 shows the iso-surfaces resulting at different

thresholds in the same density map.

4 .2A Resolution 10.3A Resolution

Figure 2.5. Cryo-EM density maps of the GroEL complex at two different resolutions. The maps were
obtained from the EMDB (EMDB:5001 and 1042 respectively). Iso-surface (left) and slice (right)
representations are shown for maps at two resolutions. Higher resolution density maps (lower
number) have a greater amount of detail, while lower resolution (higher number) are smother.
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Figure 2.6. Cryo-EM density map of Mm-cpn, visualized with iso-surfaces at 4 different density
thresholds. The surfaces shown are drawn at decreasing threshold values, with the surface on the left
having the highest threshold. At higher threshold, the inner and denser parts of the complex are seen,
while at lower thresholds a larger outer envelope of the complex can be seen.

2.3.2 The Cryo-Electron Microscopy Data Bank (EMDB)

The EMDB is a publicly-accessible repository where cryo-EM density maps are
deposited [10]. This database is relatively new, with maps having been deposited
only as far back as 2002. In figure 2.7, a bar-char shows how the number of cryo-EM
density maps in the EMDB has been increasing. Figure 2.8 shows 5 cryo-EM maps
taken from the EMDB, illustrating the wide range in size and complexity of maps in

the EMDB.

Number of maps in EMDB

700 - —
600 -

500 -

400 -

300 -

200 -
100 - ]
-

0

2002 2003 2006 2007 2004 2005 2008 2009

Year

Figure 2.7. Chart of number of total cryo-EM maps in EMDB vs. year since its conception in 2002. The
number is increasing, a sign of increasing adoption of the method.
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Chaperones Ribosome

Figure 2.8. Five cryo-EM density maps of complexes with varying sizes and complexity. All density
maps are visualized using iso-surfaces, all drawn at the same scale, thus showing their relative sizes.

2.3.3 Resolution of a cryo-EM density map

The resolution of a cryo-EM density map is calculated using the Fourier shell
correlation criterion [11], and reflects the level of detail in the density map.
Resolutions of up to ~4A have been obtained to date [12-15]. These resolutions are
not high enough for the positions of individual atoms to be easily determined. By
comparison, X-ray crystallography is capable of obtaining density maps with higher

resolutions, from which the positions of the individual atoms can be determined.

2.4 Simulation of density maps from atomic structures

A simulated density map aims to capture the varying electron-density due to atoms
in a structure at discrete points in space. The electron density in due to a single
atom is complicated and requires quantum mechanics for an accurate description. A
simplified approximation is based on placing Gaussians functions at the coordinates

of each atom [16]. The Gaussian function captures both the exponentially decaying
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radial functions of electron density in an atom as well as the resolution limitations
inherent in the cryo-EM reconstruction process. Given a structure with N atoms at
positions 7. and atomic number a;, the approximate electron density function p at

every point in space p, is expressed as:

r.

p(p) = ianp -
L r20? | (2.1)

To simulate a density map, this function is discretized on a 3-dimensional
grid, with grid points evenly spaced in all dimensions. The typical step sizes vary
from 1A to 4A. The maps can vary in size from 100x100x100 voxels to as high as
500x500x500 voxels. The latter, even at such small number of grid points per
dimension, can already push the limits of current computers in terms of memory

storage and visualization.

To discretize the density function, a 3D grid is first created around the
structure, and the atomic mass of each atom is extrapolated to the 8 grid points
nearest to its position. This map is then convolved using a Gaussian filter. The width
of the filter is proportional to the resolution of the density map - the larger the
width, the lower the resolution. Based on the same principle as the Fourier shell
correlation criterion, which is used to determine the resolution of an experimental
cryo-EM density map [11], the width of the Gaussian kernel is set to 0.187r where r
is the resolution of the resulting density map. This makes the Fourier transform of
the Gaussian filtering function fall to half its maximum magnitude at the frequency
1/r. Two density maps of the same complex, simulated at different resolutions, are

illustrated in Figure 2.9.
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Structure of protein 4.2A Resolution 10.3A Resolution
complex

Figure 2.9. The crystal structure of a protein complex, and resulting simulated maps at two different
resolutions. The structure is of the chaperone GroEL, and contains 14 proteins, which are arranged
circularly in a barrel-like shape. Each protein in the image on the left is drawn as a ribbon with a
different color. The resulting density maps are shown using iso-surface and slice representations.
These simulated maps can be visually compared to cryo-EM density maps of the same complex,
shown in Figure 2.5. By comparison they are very similar, however the cryo-EM maps can be seen to
have a slightly more jagged appearance due to noise.
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Chapter 3. Prior work

3.1 Segmentation

Segmentation has been a widely studied subject, for example in computer vision
[17] and medical image analysis [18]. Approaches to segmentation include finding
contours around objects by edge detection [19,20], active contours [21], or level sets
[22], and partitioning regions in an image based on graph cuts [23,24], random
walks [25], or topological methods such as mean-shift [26,27] and watershed [28-
30]. Multi-scale analysis has been used along with some of these methods; it
involves smoothing of the input image, which reduces the number of segmented

contours or regions while retaining salient features [31-36].

For the segmentation of cryo-EM density maps into regions corresponding to
individual molecular components, several of these methods have been used, for
example the level set and watershed methods. The level-set method can produce
good results [37], but it heavily depends on prior placement of seed points in each
region to be segmented, which cannot be done automatically in a reliable way. The
watershed method is very effective in lower-resolution density maps, and requires
little if any user interaction [38,39]. However its main limitation is that it typically
produces too many regions in maps with high resolution or a lot of detail, an effect

typically referred to as over-segmentation.

Methods for dealing with over-segmentation include grouping of regions
based on metrics such as topological height [40] or topological persistence [28].
They generally do not produce accurate segmentations because the metrics they use
are based on local information, which is unreliable in the presence of noise and

discretization error. User-guided grouping of regions is not feasible, given that the
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number of regions produced in a high-resolution density map can be on the order of

thousands or more.

Due to these difficulties, segmentation of cryo-EM maps is presently
performed mainly using interactive methods, in which users manually select out
regions belonging to each molecular component. Several software tools implement
such approaches [41-43]. This is a labor-intensive task that can take many hours to
accomplish, and requires prior knowledge and skill. A faster, more automatic and

less subjective method has thus far remained elusive.

3.1.1 Filtering methods

The application of a filter to an image is usually an important step before the
application of a segmentation method [17]. Filters can be broadly divided into linear
filters and non-linear filters. Linear filters include low-pass filters, which keep only
the low frequencies in an image and thus have a smoothing effect, and high-pass
filters, which keep only higher frequencies, typically emphasizing contours around
objects. A filter based on the Gaussian function, for example, is a low-pass filter,

while a filter that computes gradient magnitudes is a high-pass filter.

High-pass filters are standard in image processing for computer vision and
medical image analysis, since they bring out the contours around objects, as shown
in Figure 3.1. Low-pass filters smooth the image, thus reducing high-frequency
noise, and in doing so they also tend to blur the contours around objects. This effect
is also illustrated in Figure 3.1. To reduce the blurring of object contours,
anisotropic low-pass filters can be used, which attempt to smooth in directions

perpendicular to contours [32], thus reducing the effect of blurring on the contour.
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A B C D

Figure 3.1. Effect of low-pass and high-pass filters applied to the image of a grey rectangle. A is the
initial image. B is the result of the application of a high-pass filter to A - it shows the contour of the
rectangular object. C is the result of the application of a low-pass filter (Gaussian) to A - the result is
that the image of the rectangle is blurred. D is the result of the application of a high-pass filter to
image C - again the contour is brought out, however the contour is now blurry.

3.1.2 Scale-space

Low-pass filters, in both isotropic [31] and anisotropic forms [32], are used for
scale-space analysis of an image. The scale space for an image is created by the
application of a low-pass filter, which progressively blurs the image. Coarser scales
have a larger degree of smoothing. The features that persist through scale space
tend to be the ones that are more salient [32]. The use of an anisotropic filter avoids

the blurring of contours at coarser scales [32].

3.1.3 The Gaussian filter and scale-space

The Gaussian filter is the most commonly used filter in scale-space analysis, and it
has been shown to be ideal in this process [44]. Its effect is similar to the application
of a diffusion or heat transfer equation [32]. A provable property is non-
enhancement of local extrema in any dimension. The latter is important, because it
implies that as a result of the application of the filter, the result is bounded, and no

spurious detail or noise will be introduced into the image.
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3.2 Registration

Registration is also extensively used in computer vision and medical image analysis.
For example, it can be used to find out which images of objects taken from a
database appear in a picture of a scene containing many objects, where exactly they
appear, and in what orientation. In the study of cryo-EM, very similarly, a database
of structures - the protein data bank (PDB) [4], is available, and structures from it
can be registered with density maps obtained by cryo-EM. This process helps to
build more detailed models of the structures seen in cryo-EM maps, since structures
from the PDB contain accurate atomic coordinates of most if not all of the atoms in a

structure.

Several approaches are typically taken for registration [45]. They include
interactive placement by the user, alignment of corresponding feature points in the
template and reference image [46], exhaustive search [17], and the use of moment-
based shape-descriptors [47]. Generally these methods are driven by a registration
metric, which evaluates how well the image being registered matches the

corresponding sub-part that it overlaps in the image it is being registered with.

Registration based on matching of two sets of feature points, given an
correspondence between points from each set, can be done very efficiently in closed
form [48]. In such methods, the mean distance between feature points can serve as
the registration metric, with the goal of the registration being to reduce the mean
distance between corresponding feature points. However, corresponding feature
points must first be identified before such a procedure can be used. An example of a
method that automatically identifies and registers images based on feature points is

SIFT [46].

When feature points are not used, the metrics are typically based on cross-
correlation [49] or mutual information [50] between corresponding intensities or

color values in the template and reference images. Computation of the cross-
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correlation in Fourier space is also particularly useful for speeding up registration

methods based on exhaustive search [51,52].

In the cryo-EM literature, previously reported registration methods include
manual placement [41,53,54], exhaustive search, e.g. EMFIT [55], DOCKEM [56],
SITUS [57], URO [58], Foldhunter [59], FRM [60], and ADP_EM [61], and matching of
feature points [62], or surface features, e.g. 3SOM [63,64]. Manual placement is
tedious and prone to error, exhaustive search is time-intensive and scales poorly
with map size, and feature-matching methods depend on reliably identifying the
same features in the map and structure being registered. The difficulties in the latter
in particular mean that manual placement or exhaustive search methods are the
predominantly used methods, and thus the process remains laborious and very

time-consuming.

3.2.1 Density cross-correlation for density maps

The density cross-correlation metric can be computed between two density maps,
but not between a structure and a map. Thus, to be able to compute this score, a
density map is simulated for the structure being registered. The simulated density
map is generated at the same resolution as the reference density map, and using the
same grid spacing. The simulated density map of the structure being registered will
be referred to as the template density map, and the density map with which it is

being registered will be referred to as the reference density map.

The cross-correlation score is computed between density values taken at
points in the template density map, and density values at the same positions in the
reference density map. The points in the template density map are translated and
rotated by transforms 7 and R respectively, which define the registration

parameters. The cross-correlation is computed as follows:
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where

and

S

=[b1,b2,...,bN]

In the above, a and b are vectors containing N scalar values. The vector a
contains density values above a given threshold, at grid points in the template
density map. The vector b contains density values from the reference density map,
calculated by trilinear interpolation at locations corresponding to the grid points
from which the density values in a are taken. An example registration between two

2D density maps is illustrated in Figure 3.2.

A A AN A
A A ( o A A .
A A A A
A A A KX
A A
[ ] [ ]

Figure 3.2 Example registration of 2D density maps. Grid points in the reference density map are
drawn using solid circles, and grid points in the template density map are drawn using triangles. An
isocontour is shown in the template density map and only the grid points within this contour are
shown. The density values taken from the reference map, to compute the cross-correlation score, are
computed by interpolation, at the positions of the grid points in the template map. Gradients, which
are used in the local refinement of a registration, are computed at these same positions, also by
interpolation, as shown by arrows in the image on the right.
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3.2.2 Local refinement of a registration

Local refinement aims to improve the density cross-correlation score of the
registration, by changing the translation and rotation (7 and R) registration
parameters. This process can be accomplished through optimization methods,
randomized Monte-Carlo search [65,66], or gradient-based search [67]. The
gradient-based approach was adopted here, mainly because it is faster and more
efficient compared to the other methods. It has previously been implemented in
UCSF Chimera [68], a software which we extended in order to implement the

segmentation and registration methods.

The gradient-based local refinement method makes use of density gradients
computed in the reference map, at the positions of the grid points in the template
density map (see Figure 3.2). First, the gradients are computed at the grid points in
the reference map, using a second order discretization scheme for the derivatives of
the density function. Then the gradients at the grid points in the template map are
found by trilinear interpolation, using gradients from the nearest 8 grid points in the
reference map. The movement of the structure follows the average gradient
direction in the reference map. These moves, since they’re in the direction of the
average density gradient, tend to increase the cross-correlation score, however the
steps must be small so as to not overshoot the local maximum. When the local
maximum is reached, the average density gradient becomes 0, and hence movement

ceases.

Two types of moves are used during the refinement process: translation and
rotation steps. These steps are alternated until movement of the template due to
both types of steps becomes insignificant. In the applications of this method,

convergence is typically obtained quickly, typically after less than 100 steps.
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3.2.2.1 Translation step

In the translation step, the gradients taken from the reference map at the positions
of the voxels in the template map are averaged together. This produces a
displacement vector, D, which an be expressed as:

I

D=—>»g,(3.2

N}j »(3.2)

where g, is the gradient vector computed at the position of a voxel i, for i=1..N, in the
template density map. This displacement vector is scaled so that its length is not

greater than the distance equal to the spacing between two grid points in the

reference map. The new position for the structure, after the displacement, is 7 + D.
3.2.2.2 Rotation step

In the rotation step, the gradients taken from the reference map, at the positions of
the voxels in the template map, are used to compute a torque on the structure being

registered. The torque is computed with respect to the center of rotation for the

structure, which is simply its center of mass. The total mass is:
N
m=Yd,(33)
i=1
and the center of mass is:

d-7.(3.4)

1=

3=
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In the above, 7. is the position of the i*h voxel in the template density map,
and d is the density value at that voxel. The torque due to a single gradient g, from

the reference map, computed at a voxel position 7, in the template density mabp, is:

i, =(7-¢)x3, (3.5)

The average torque used to rotate the template density map is computed by

averaging the torque at every voxel being considered in the template density map:

%’:

di, (3.6)

The average torque 7 is used to rotate the template density map about its
center of mass. The rotation axis is the normalized direction of T itself, and the
degree of rotation is proportional to the magnitude of 7. The degree of rotation is
scaled so that the largest displacement for any voxel in the template density map

does not exceed the distance between two grid points in the reference density map.
3.2.2.3 Limitations of local refinement

Local refinement of an initial registration only locally optimizes the cross-
correlation score, converging to a local maximum rather than a global maximum.

Thus to find a good registration, local refinement of a registration has to start with a

good initial placement of the structure which is close to the global maximum.
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Chapter 4. Contributions

4.1 Watershed segmentation of cryo-EM density maps

The immersion-inspired watershed method, presented in [29], was adapted for
application to 3D density maps. The algorithm is illustrated in Figure 4.1. The
algorithm is as follows:
* All density values in the density map are first sorted and then considered in
descending order.
* For each density value, if the corresponding grid point is:
o notadjacent (26-connected) to any voxels in any existing regions, it is
assigned to a new region.
o adjacent to voxels in a single region, it is assigned to that region.
o adjacent to voxels in two or more regions, the regions are sorted in
descending order of number of adjacent voxels, and the voxel is

assigned to the first region in the list

(a) (b)

(©) (d)

Figure 4.1. [llustration of the immersion-inspired watershed segmentation algorithm applied to a 1D
map. Each grid point is drawn at an elevation which is proportional to its density value. Initially, all
values are sorted from highest to lowest, and then considered one at a time in decreasing order. For a
point being considered, if it is adjacent to an existing point that is already labeled, it takes the same
label, otherwise it is assigned a new label. (a) to (c) illustrate this process. (d) illustrates the labels
given to each point, red and green, which specify two segmented ‘regions’.
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Each resulting region thus contains a number of adjacent voxels. The
boundaries between regions are the points with the lowest densities between local
maxima. The watershed segmentation of a 2D map, simulated from a slice of atoms
taken from a complex of two proteins, is illustrated in Figure 4.2. The pictures show
that for such a density map, many more regions than proteins result. However, the
region boundaries closely follow protein boundaries, and so if it were possible to
join regions corresponding to each protein, a segmentation that contained only two
regions and accurately captured the boundaries between the proteins could be
found. Such grouping methods, as previously discussed, are typically not accurate. A
multi-scale approach will be described in the next section, which attempts to

achieve such a grouping.

Figure 4.2. Topology and watershed segmentation of a 2D density map, simulated from a slice of
atoms through two proteins. The atoms are drawn as spheres, colored blue if they are from one
protein and red if from the other. In the top-left image, the density function and atoms are shown.
Darker pixels represent denser regions, which coincide with dense clusters of atoms. In the top-right
image, the regions resulting from watershed segmentation of this density function are shown, each
region having a random color. More regions than proteins result, however the region boundaries
coincide well with protein boundaries. In the bottom two images, the topological representation of
the density function (left) and the watershed segmentation (right) are shown.
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The watershed segmentation method can be applied to either density values
or to gradient magnitudes. For computer vision, the later is typically done, since
object contours tend to have higher gradient magnitudes. For cryo-EM density
maps, Figure 4.3 illustrates that applying it to density values is a better choice, since

it produces fewer regions, and the region boundaries tend to fall closer to molecular

boundaries.
Structure and Gradient ) Gradient
transparent magnitudes Density magnitude Density
isosurface (slice) (slice) watersheds watersheds
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Figure 4.3. Watershed segmentation of a small density map, using density values and gradient
magnitudes. A small complex of 2 molecules is shown in the left-most images, along with iso-surfaces
from simulated density maps at three different resolutions. Slices through gradient magnitudes,
density values, and segmentation regions are shown across the horizontal axis. The segmentation
regions are shown as smoothed surfaces encapsulating each region. As indicated with text above
each column, the slices are colored by density gradient magnitude, density value, and a random color
for each region.
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4.2 Multi-scale segmentation and sharpening

The topological watershed segmentation of a density map, as previously shown,
produces numerous small regions, since many local density maxima are present.
Here, a new, multi-scale approach is presented, which groups these numerous, small

regions, into fewer, larger regions that correspond to single proteins or subunits.

The multi-scale approach uses the watershed segmentations obtained from
the map at progressively smoothed levels. In more-smoothed maps, which
correspond to coarser scales, the finer features in a density map are blurred out, and
larger components such as proteins appear as single regions. The boundaries
between regions in smoother maps tend to follow protein or subunit boundaries,
which are normally less dense. However, the regions in smoothed maps lose the
finer detail of the original non-smoothed density map. The sharpening process
reintroduces this detail by joining regions from less smooth maps using a simple
overlap test. The sharpening achieves the grouping of regions in less-smoothed
maps based on which regions from more smoothed maps they overlap the most. The

process is illustrated in Figure 4.4.

To describe the multi-scale segmentation process more precisely, let M;
represent a density map in scale space, with i=0..n. My is the initial non-smoothed
density map, and M, is the most smoothed map after n smoothing steps. The map M;,
with i=1..n, is obtained by smoothing M;.; with a Gaussian filter of a user-specified
standard deviation, or step size. Each map M; is segmented using the watershed

algorithm, to produce a set of regions R;, i=0..n.
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Figure 4.4. lllustration of the multi-scale segmentation and sharpening methods for a cryo-EM
density map of GroEL. (A) The top row shows the original density map (left), which is progressively
smoothed (left to right). The middle row shows the watershed segmentation of each of the maps;
each region is shown using a surface enclosing the voxels it contains. The bottom row shows the
regions from the most smoothed map successively sharpened using regions from less smoothed
maps. (B) Sharpening of 2 regions from a smoothed map (dashed contours) by grouping regions from
a less-smoothed map (solid contours). The latter are grouped based on which of the 2 regions from
the more-smoothed map they overlap the most. (C) The 2 sharpened regions have more detail than
the corresponding regions from the smoothed map.

In the first step of the sharpening process, the overlap between every region
in Rn.; and every region in R, is computed. Regions are defined using voxels from the
same grid, and thus the overlap between two regions is simply the number of voxels
that the two regions have in common. For every region in R;.;, the region it overlaps
the most in Ry is recorded. Regions in Ry.; that overlap the same region in R, the
most are joined. The resulting region is assigned the voxels from every region being
joined. The set of resulting regions becomes R,.;shapened, [n the next step, regions in
Rz are grouped based on which regions in R,.;sharrened they overlap the most,
producing Rj.zsharpened This process is repeated, grouping regions in R; based on their

overlap with regions in R;.;sharpened, to produce Rgharpened, with i=n-3,n-4,...,0.
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The regions Rysharpened gre the final result. It should be noted that while
regions in Rysharpened directly correspond to regions in Ry, not every region in R,
produces a region in Rysharpened, This happens when for some region in Ry, no region

in Rn.; overlaps it more then it overlaps any other region in R.

Figure 4.5 illustrates this method on a density map generated from a small
two-molecule complex. As shown in Figure 4.6, the multi-scale process is able to
group the regions obtained in the non-smoothed map into two regions that very

closely match the map of each individual protein.
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Figure 4.5 Multi-scale segmentation method applied to a simulated density map generated from two

small molecules.
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non-smoothed molecules each region in
map smoothest map

Figure 4.6 Results of multi-scale method on regions from the simulated density map of a small two-
molecule complex. The regions grouped by the multi-scale method (right) closely resemble the
density maps of each molecule individually.
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4.2.1 Region hierarchies

During the sharpening process, a hierarchical grouping of regions is created. This
hierarchical grouping is ideal for allowing the user to modify the segmented regions
by subdividing them into smaller regions. The creation of a hierarchy during the

sharpening process is illustrated in Figure 4.7.

A hierarchy is defined as an arrangement of items, or nodes, in which a node can
have a number of descendant or children nodes, and a single parent node. All nodes
that have no parents are the root nodes, and all nodes that have no children are leaf
nodes. A hierarchy has multiple levels, and nodes are either at the same level, or
“above” or “below” other nodes. Root nodes are at the top level, while leaf nodes are

at the bottom level.

A hierarchy of regions as created during the sharpening process meets the

following conditions:

1. Every sharpened region in Rgsharpened corresponds to a root node in the
hierarchy.

2. Everyregion in Ry corresponds to a leaf node.

3. Regions in R;, for i=1..n-1 correspond to nodes at level i of the hierarchy.

4. Everyregion in R;, for i=0..n-1, has exactly one parent, and the parent can only

be a node that corresponds to a region from Rj.;.
These conditions aim to make the user-editing process simple and intuitive, and
to maintain consistency when dividing a region into smaller regions. More

specifically:

1. The regions first presented to the user are the sharpened regions. Hence

these regions are at the top of the hierarchy.
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2. The regions in the unsmoothed-map, which correspond to leaf nodes, are the

ideal ones to present to the user, since they contain the most detail. These
regions, being from the non-smoothed map, represent the highest level of
detail.

The ungrouping of a single region at any level should result in a small
number of sub-regions. By grouping regions in a hierarchy with multiple
levels, the ungrouping of a region makes use of descendants only one level
down into the hierarchy, which are fewer than descendents at levels further
down.

Since every region has only one parent, this means that the ungrouping is
unambiguous. If this condition is not met, then the same region could be seen

in the subdivisions of different ancestor regions.

At the first sharpening step, the root nodes are added to the hierarchy. These

root nodes correspond to every region in R,. At subsequent sharpening steps,

another level is added to the hierarchy as follows:

In the second sharpening step, the regions in R,.; which overlap the same
region r in R, more than they overlap any other region in Ry, are assigned to

nodes whose parent is the root node corresponding to region r.

At subsequent steps, the following process is repeated, which is described

here for the third sharpening step (so the indexes can be compared to those

shown in Figure 4.7). All subsequent steps are the same, with the indexes

decreased by one. The process for the third sharpening step is:

* The regions in R,.; that overlap the same region in R,.;sharpened the most
are grouped together.

* The regions in R,.; that overlapped a region r in Ry.ssharpened the most,
which are part of a group gn-2, are considered one at a time, computing
their overlap with every region in the group of regions from Ry.1, gn-1,

which also overlapped the region r from R, the most.
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* The regions in group gn-2 which overlap the same region from g,.; the
most are assigned to nodes whose parent is the node corresponding to

the region in g,.; which they overlapped the most.

Rn Rn_1sharpened R7sharpened Rosharpened

Figure 4.7. Hierarchical grouping of regions in the Mm-cpn cryo-EM density map. The top row shows
the complete set of sharpened regions at each step during the sharpening process. The middle row
shows a subset of regions [r;] from each complete set of sharpened regions. Each region corresponds
to a node in the hierarchy, and the parent-child relationships for one region, r from R,, and its
descendants are illustrated with arrows. The bottom row shows the sharpened versions for the same
region r and its descendants. For any region at any level in the hierarchy, the sharpened version is
constructed by combining all regions from Ry that are descendants of that node.
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4.2.2 Segmentation procedure and parameters

The user first selects a desired threshold for the map to be segmented, and all voxels
with density value above this threshold are segmented using the watershed method.
This threshold affects the resulting regions much like it affects the iso-surface
visualization of the density map:

* At higher thresholds, the inner parts of a component are segmented, since
they are denser. In particular, in high resolutions maps, at high threshold
values, the backbone and secondary structures are seen.

* Atlower thresholds, the outer surface of each protein is segmented, and thus,

regions tend to be larger.

The user then chooses a smoothing step size, which specifies the standard
deviation of the Gaussian kernel used to smooth the map. This step size determines
how much smoothing is performed at each step. For example, a step size of ~2A
produces a small decrease in the number of regions and a small change in the
boundaries between regions. Larger step sizes cause a larger drop in the number of
regions at each step, and also more drastic changes to the boundaries. Thus, smaller
step sizes are preferred, since they produce more gradual changes. Larger step sizes
may however be used if the density map is particularly large and memory is an

issue.

The multi-scale segmentation procedure can be performed either
interactively, as directed by the user, or automatically, based on a number of regions

to be segmented.

4.2.2.1 Interactive multi-scale segmentation

In the interactive approach, the user triggers every smoothing step. At each step, the

smoothest map so far is further smoothed using the specified step size. The
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resulting map is then segmented using the watershed algorithm (the segmentation
threshold is automatically chosen so that the resulting regions cover every region in
the map from the previous step). The user then inspects the resulting regions. In the
ideal case, the process is repeated until the obtained regions correspond to
individual proteins or subunits. If instead a point is reached where single regions
span more than one protein or subunit, the user can backtrack to a previous point in
the process, where small groups of regions appear to correspond to single proteins
or subunits. These regions are then sharpened, which does not require any further

parameters.

4.2.2.2 Automatic multi-scale segmentation

In the automatic approach, it is assumed that after a number of smoothing steps,
every segmented region will correspond to a single protein or subunit. Thus the
user can simply enter the number of proteins or subunits expected. This can be
based on prior knowledge about how many proteins or subunits are expected in the
density map (e.g. from a crystal structure or from biochemical experiments). The
input density map is then repeatedly smoothed and segmented, until the number of

segmented regions matches this number.

4.2.3 Dependence of segmentation time on map size

Typically, simulated or cryo-EM density maps can range in size from approximately
80x80x80 voxels to 500x500x500 voxels, using a grid spacings of 1A-4A. There is no
upper limit on the map size that can be segmented with this method. The running
time for watershed algorithm is O(nlogn), where n is the total number of voxels to
be segmented, and thus the method scales favorably with map size. The smoothing

operation is performed in Fourier space after transformation of the map and
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Gaussian kernel using FFT, and thus its running time also scales well with n.

However n itself scales poorly with map dimension d, by O(d3).

4.3 Segmentation accuracy

Simulated maps are used to measure the accuracy of the multi-scale segmentation
method. To do this, the segmented regions produced by the method are compared to
protein-masked or subunit-masked regions. Protein/subunit-masked regions are
generated by masking the density map with structures of the individual proteins or
subunits in the structure used to simulate the map. Hence, these regions give the
ideal segmentation. The process for measuring the segmentation accuracy, including
simulation and segmentation of a density map, and generation of protein-masked

regions is diagrammed in Figure 4.8.

simulated density
map of entire
complex segmented map
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of 14 proteins /
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Figure 4.8. [llustration of how segmented and protein-masked regions are generated from a
simulated density map of GroEL (PDB:1xck). A comparison of the segmented and ground-truth
regions can then be done to validate and test how accurate the method is.
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4.3.1 Protein/subunit-masked regions

To generate a protein-masked region or subunit-masked region, all voxels in the
density map that are closer than 2.0A to any atom in the protein or subunit keep
their density values, and all others are given density values of 0. The value of 2.04 is
chosen because it is close to what the radius of an atom is when drawing a
molecular surface for a structure. The voxels in the density map with density value
lower than the threshold used to segment the map are also given density values of 0,
so as to eliminate voxels that weren’t included in the segmentation of the density
map. The remaining voxels with non-zero density value are taken to belong to the

protein-masked or subunit-masked region.
4.3.2 The shape-match score

Segmented regions are compared to protein/subunit-masked regions using a shape-

match score. This score is defined as follows:

volume(R N G)
Sm =
volume(R U G)

(4.1)

In the above equation, volume(R N G) is the volume of the intersection of
regions R and G, and volume(R U G) is the volume of the union of the two regions.
The shape-match score will be 0 if the two regions do not match at all (the
intersection will have 0 volume), and it will be 1 if they match exactly (the volumes
of the intersection and the union will be the same). Both regions being compared
are defined by voxels on the same grid, so the intersection and union operations are

performed directly on these sets of voxels.
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Figure 4.9 illustrates this metric for 2D shapes. On the right, assuming the
red region is the segmented region, and the blue region is the protein-masked
region, ‘wrong’ segments are present in the segmented region but not the protein-
masked region or are not present in the segmented region but are present in the
protein-masked region. The ‘right’ segments are in both the segmented and protein-
masked regions. The shape match score captures the proportion of ‘right’ segments
to ‘right’ + ‘wrong’ segments. In the most accurate segmentation, the volume of

‘wrong’ segments would be zero, and hence the score would be a maximum of 1.
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Figure 4.9: Illustration of the shape-match score in 2D. The score is illustrated for 3 examples (left).
‘Right’ and ‘wrong’ regions are illustrated on the right. The shape match score captures the ratio of
the ‘right’ to ‘right+wrong’.

4.3.3 Maximum segmentation accuracy by grouping watershed regions

We also measure what is the best that the multi-scale grouping could do, i.e. what is
most accurate segmentation attainable by grouping watershed regions in Ry,
obtained from the non-smoothed map My. To obtain this maximum watershed

segmentation accuracy, the regions in Ry are joined based on which protein-masked
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or subunit-masked region they overlap the most. This process is illustrated in Figure

4.10.

The resulting regions are compared to the protein-masked or subunit-
masked regions using the shape-match score. This score will tell us how accurate a
segmentation could be obtained using the watershed segmentation method
followed by perfect grouping of the resulting regions, and more importantly, how

the multi-scale and sharpening methods perform in comparison.
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group regions §
by overlap with
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segmented segmentation by
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Figure 4.10. Optimal grouping of regions generated by the watershed method in a simulated density
map. The regions generated by the watershed method are grouped based on which protein-masked
region they overlap the most.

4.4 Registration of structures by alignment with regions

The results of the segmentation method are single regions, or small groups of

regions, which correspond to each individual molecular component such as a
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protein or subunit. These regions are used to generate registrations of structures of
individual components with the density maps. The registrations are created by
aligning the structures with a single region or a small group of regions. The resulting
alignments are then locally refined using the gradient-based method that optimizes

the cross-correlation score.

Two methods for creating alignments of structures to regions are presented.
The first is based on the principal-axes transform, which aligns the centers of mass
and principal axes of the structure and regions. This works well for structures that
are not spherical, cubical, or rod-like. When the principal axes transform does not
produce a good registration, this can be detected by visual inspection, and it is also
reflected by a low cross-correlation score. For such cases, a second method has been
implemented, which is based on the alignment of centers of mass, followed by

exhaustive search through the 3 degrees of freedom in rotational space.

4.4.1 Principal-axes transform

The principal axes of a structure are computed directly from its atomic positions.
The principal axes of the region (or regions) that the structure is being aligned with
are also computed in the same way, but using the positions of all the constituent
voxels. The principal axes are coarse shape descriptors and are not affected greatly

by noise or small differences in the shapes.

The principal axes are obtained from the second-moment tensor of a
structure or region. The second-moment tensor is computed with respect to the

center of mass of the structure or region (Eqn. 3.3). It is a 3x3 matrix defined as:

51



where j,k=0,1,2, 7, is the position of the i*" atom or voxel in the structure/region,
and ¢ is the center of the structure/region. The indexes 0,1,2 for j and k refer to the
x,y and z components of the vectors 7, and ¢. The total mass of the structure or
region, m, is the sum of the masses of each atom or voxel in the region, m,. The mass

of a voxel is the density value at the corresponding grid point, multiplied by the

volume of the voxel.

The tensor matrix M is symmetric and can be diagonalized using the Jacobi
transformation [69]. The resulting three eigenvectors are the directions of the
principal axes, and the corresponding eigenvalues represent the relative lengths of
these axes. The eigenvectors and the corresponding principal axes are sorted in

order of decreasing eigenvalues.

The principal axes transform is illustrated for 2-dimensional shapes in Figure
4.11. The signs of the principal axes are ambiguous, so 2 possible alignments are
possible. In the first alignment, the principal axes of the structure are pointing in the
same direction as those of the region. In the second alignment, the two axes of the
structure are flipped. The transform resulting from flipping a single axis would

involve a reflection, which would not be a valid registration.

¢4

Figure 4.11. Illustration of the principal axes transform for 2D shapes. The transform aligns centers
of mass and principal axes. The signs of the principal axes are ambiguous, so two alignments are
possible in this 2D scenario.

52



In the 3D case, a total of 4 alignments are possible, as illustrated in Figure
4.12. After each alignment, the registration is first refined using the gradient-based

method, and then the registration with the highest cross-correlation score is kept.

Figure 4.12. Illustration of the principal axes transform for a structure and segmented region from a
3D density map. The structure, region and their respective principal axes are shown in the two
images to the left. The remaining 4 images show the 4 possible alignments in which centers of mass
and principal axes are matched. In the first alignment, the principal axes are unmodified. In the other
three alignments, two of the three axes have their signs flipped. Alignments where one or three axes
are flipped at a time are not considered, since that would result in a reflection of the structure.

4.4.2 Alignment of centers and rotational search

When the principal-axis registration method doesn’t produce a good registration, as
indicated by a low cross-correlations score or by visual inspection, an alternate
registration method is used. This method first aligns the centers of mass of the
structure and region(s), and then evenly samples rotational space. Each resulting
registration is first locally refined to optimize the cross-correlation score, and the

registration with the highest cross-correlation score is kept.

To evenly sample rotational space, 3 degrees of freedom are required. The 3
degrees of freedom include 2 degrees of freedom specifying an axis of rotation, and
one degree of freedom specifying the amount of rotation. The axes of rotation are

obtained by evenly sampling points on a sphere, and taking the axis to be the
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direction from the origin to each point on the sphere. The amount of rotation is

specified by a scalar which is varied between 0° and 360°.

Since only 3 degrees of freedom are required to specify all possible
orientations, this process is also relatively fast when compared to exhaustive search,
which must search through 6 degrees of freedom. For each rotation considered,
local refinement is also performed using the gradient-based method to optimize the

cross-correlation score.

4.4.3 Interactive specification of regions for alignment

The segmentation method produces single regions or small groups of regions
corresponding to each protein or subunit. To register the structure of a single
protein or subunit, the regions with which it is to be aligned so as to create the
correct registration have to be determined. One way in which this can be
accomplished is for the user to interactively select the region or small groups of
regions to align the structure with. The alignment is then performed using the
principal-axes transform first, since it is faster. If the resulting registration does not
look right, or if the cross-correlation score is low, rotational search can be used to

see if a better registration is found.

4.4.4 Automated alignment of structures to regions

The structure can also be aligned to groups of regions that are automatically

generated from all segmented regions, as described below. Again, the principal-axes

alignment method is used first, followed by rotational search if the resulting fits do

not appear to be correct or produce low cross-correlation scores.
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After aligning a structure to all groups, the resulting fits are sorted in order of
decreasing cross-correlation score, and the first N fits are kept, where N is the
number of times the structure is expected to appear in the density map. N can be
determined by inspecting the cross-correlation scores, since cross-correlation
scores of incorrect fits tend to be much lower than cross-correlation scores of
correct fits. For the fits kept, the regions overlapping the fitted structure are joined,
to create single regions corresponding to the fitted structure. This process is

illustrated in Figure 4.13.
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Segmented ” m
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with groups of regions

Figure 4.13. Registration a structures by alignment with groups of segmented regions. The best
registration is found after aligning the structure to automatically generated groups of regions.

4.4.4.1 Generation of groups of adjacent regions

The goal in this process is to consider all possible groups of adjacent regions, so that
when the structure is aligned with one or more of these groups, the correct
registration is found. An exhaustive enumeration of all possible combinations of
regions could generate a very large number of groups. However, by requiring that
the groups contain adjacent regions, since each region is adjacent to only a small

number of other regions, the number of possible groups is drastically reduced.
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To automatically generate groups of adjacent regions, a recursive algorithm
was implemented, which uses a queue. A queue is a list of elements that are yet to be
processed. The elements in the queue are groups of adjacent regions. The queue is
initialized with the same number of groups as regions, with each group containing a
different region. At each step, a group is removed from the front of the queue and is

processed. The algorithm stops when the queue becomes empty.

In parallel, a set of groups is maintained, which is the resulting list of groups.
This set of groups is initially empty, and groups are added to it during the recursive
algorithm. The list of resulting groups is maintained such that every group in it is
different from any other group in the list. Two groups are different if the set of

regions they contain are not the same.

The processing of each group removed from the queue is as follows. If the
group is the same as a group already added to the list of resulting groups, it is
ignored. Otherwise, it is added to the list of resulting groups, and it is further
considered as follows. If the volume of the group is smaller than the volume of any
of the structures to be fit, then further regions are considered for addition to the
group. First, all regions that are adjacent to at least one region in the group are
listed. All possible combinations of these adjacent regions are added to the group to

create new groups, which are all added to the queue.

4.4.4.2 Filtering of groups

When considering a structure for alignment to groups of regions, the groups are first

filtered to remove groups that are too dissimilar from the structure, and thus which

would not create correct registrations. Considering fewer groups for each structure

reduces the number of alignments considered, and thus makes the automated
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process faster. The groups are filtered using two metrics: the ratio of volumes and

ratio of bounding radii.

The bounding radius of a structure is the largest distance from its center to
any of the atoms it contains. The bounding radius of a group of regions is the largest
distance to any of the voxels in any of the regions, from the center of the voxels from
every region in the group. The volume of a group of regions is the number of
combined voxels from all the regions in the group, multiplied by the volume of each
voxel. The volume of a structure is computed from its simulated density map: it is
the number of voxels with density values above a threshold, multiplied by the
volume of each voxel. The threshold can be adjusted by the user, to get a volume
that is close to the volume of the group of regions that it correctly aligns with. We do
this interactively, varying the threshold until the iso-surface of the simulated map

looks similar to the segmented regions.

To compute the volume ratio, the difference between the volume of the
structure and the volume of the combined regions in a group is computed. The
absolute value of this difference is divided by the volume of the structure to get the
ratio. If this ratio is greater than a cut-off value, for which we use 0.5, the group is
ignored. The above process is the same for the bounding radius, with a cut-off of 0.1.
These values were determined by starting with small values, and increasing them
until we found that all correct registrations were found for the structures
considered here. They can be set to different values by the user if necessary.
Decreasing them speeds up the process but the correct registrations may not be
found, while increasing them will make the process take more time but increases

the chances that the correct registrations will be found.
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4.5 The Segger software

A tool has been developed that allows a user to perform the multi-scale
segmentation and registration procedures described above, which we call Segger. It
has been developed as a plug-in to Chimera [70,71], which is an extensible platform
based on Python and C++ for molecular visualization. The plug-in is written mostly
in Python, making extensive use of functionality already implemented in Chimera.
Computation-intensive functions such as the watershed segmentation and

sharpening procedures were compiled in C++ for speed.

The reasons for developing the software as a plug-in to Chimera are that
firstly, Chimera already implements tools for visualization and manipulation of 3D
density maps, and hence development time was greatly reduced. The Segger plug-in
simply adds further functionality rather than recreating the functionality already
there. Secondly, many researchers already use Chimera, and hence it would be much

easier for them to use Segger than if it was a stand-alone software.
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Chapter 5. Results

5.1 Effects of parameters on segmentation accuracy

The effect of parameters used in the multi-scale segmentation process on
segmentation accuracy was measured. The two parameters that were varied are the
initial segmentation threshold and the step size. The total number of steps depends
on how many segmented regions are desired in the segmentation, and thus it

automatically detected for the simulated maps used.

5.1.1 Initial segmentation threshold

The initial segmentation threshold mostly affects the visualization of each
segmented region. A simulated density map of GroEL, segmented at various
thresholds is shown in Figure 5.1. As illustrated, at high threshold values, the denser
inner regions of each protein are segmented, and at low thresholds, the segmented
regions are larger and capture the outer surface of each protein. Despite the

threshold used, the same number of regions as proteins are produced.

The plots in Figure 5.1 show that the segmentation accuracies are not greatly
affected by the threshold value, although at higher thresholds they increase slightly.
The protein-masked regions are thresholded using the same threshold used to
segment the density map, and so they also contain only the higher density values
which were segmented. The accuracies increase slightly at higher thresholds
because the ‘wrong’ segments become slightly smaller in proportion to ‘right’

segments.
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Figure 5.1. Effect of threshold on segmentation of a simulated map of GroEL. The simulated density
maps (top) and resulting segmentations with the multi-scale procedure (bottom) are shown at
various thresholds. The segmentation accuracies and maximum watershed segmentation accuracies
are plotted using error bars indicating the lowest and highest shape-match scores between the
segmented regions in each complex and the protein-masked regions.

5.1.2 Smoothing step size

The smoothing steps size determines how much smoothing occurs at each
smoothing step. The multi-scale segmentation procedure was applied to 3
complexes, with step sizes varying between 2A and 12A. Regardless of the step size,
the number of resulting regions is the same as the number of proteins in the
complex. The segmentation accuracies were measured for the resulting regions. The
plots of the segmentation accuracies at various step sizes, shown in Figure 5.2, show
that the segmentation accuracies tend to be similar at different step size, however

for the thermosome they are higher when smaller step sizes are used.
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Figure 5.2. Effect of step size on segmentation accuracies of 3 simulated density maps. The maps are
of GroEL (PDB:1xck, top), the thermosome (PDB:1aon, middle), and HK97 capsid (PDB:1ohg,
bottom). For each complex, the density map (left) and the segmented regions for a step size of 2.0A
(middle) are shown. The step sizes were varied between 2A and 12A. The multi-scale procedure was
applied to each density map, producing the same number of regions as proteins regardless of step
size. The segmentation accuracies are plotted for each step size (right), as error bars indicating the
lowest and highest segmentation accuracies amongst the regions in each complex. The plots show
that the segmentation accuracies are somewhat similar regardless of step size, although for the
thermosome complex smaller step sizes yield better accuracies.

5.2 Segmentation of 5 simulated density maps

Density maps of 5 molecular machines were simulated at 104 resolution, using the
Chimera molmap command, sigmaFactor 0.187, grid spacing 2.0A. For the multi-
scale segmentation procedure, only a segmentation threshold of 0.2, smoothing step
size of 2.0A, and target number of regions were specified. The target number of
regions was set to the number of proteins or subunits: GroEL - 14 proteins,

thermosome - 16 proteins, E-coli ribosome - 2 subunits, and HK97 - 7 proteins.
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The numbers of smoothing steps taken were automatically determined based
on the number of target regions. The number of steps taken for each density map
was: GroEL - 48, thermsome - 40, ribosome - 115, HK97 pro-capsid - 11, HK97
mature capsid - 21. In all cases, the final number of regions matched the number of
proteins or subunits. The process took only several minutes for each complex, and
thus is extremely fast given that interactive segmentation can typically take many

hours and require much input from the user. The results are shown in Figure 5.3.

Figure 5.3. Segmentation results for simulated density maps of GroEL, thermosome, ribosome, HK97
procapsid and mature capsid asymmetric units. The first row shows the simulated density maps, all
equally scaled. The second row shows the numerous regions resulting from watershed segmentation
of these maps. The third row shows the regions produced by the multi-scale process. The fourth row
shows single regions using transparent surfaces, along with the structure of the corresponding
protein or subunit. The fifth row shows the same protein structure, along with a region that was
generated based on which regions in the watershed segmentation (second row) overlap the protein-
masked or subunit-masked region they overlap the most, thus yielding the maximum segmentation
accuracy by grouping of watershed regions.
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5.2.1 Segmentation accuracies

Segmentation accuracies for each component were measured by computing the
shape-match scores between segmented regions produced by the multi-scale
method and protein/subunit-masked regions. The scores are plotted in Figure 5.4.
Good segmentation accuracies were obtained for GroEL (0.859-0.886), thermosome
(0.812-0.880), and the ribosome large and small subunits (0.973, 0.983), but lower
accuracies (0.501-0.886) for HK97. For the components segmented with high
accuracy, the segmented regions closely match the corresponding structure of each

protein or subunit (Figure 5).

Figure 5.4 also plots the maximum watershed segmentation accuracies.
These are the best segmentation accuracies that can be obtained by joining regions
obtained using the watershed method in the non-smoothed map, My. All the
maximum watershed accuracies for each component are high, indicating that the
watershed method could be used to produce very accurate segmentations. These
accuracies however are not 1, because the protein-masked regions approximate the
molecular surface of each protein, whereas the regions resulting from grouping
watershed region are limited by the watershed method and the resolution of the

simulated density map.

The segmentations accuracies produced by the multi-scale method are lower
than the maximum watershed accuracies. Despite this, the results of this method are
still close for the GroeL, thermosome, and ribosome complexes, however they are
much lower for the HK97 asymmetric units. Even in the latter cases, the multi-scale
method still produces a single region for each protein, a good result given that

minimal user-interaction was required.
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Figure 5.4. Segmentation accuracies for regions in the 5 simulated density maps shown in Figure 5.3.
Each bar with a random color represents a single protein or subunit. The maximum watershed
segmentation accuracies are also plotted for each component using light gray bars. The multi-scale
and sharpening method do very well comparatively, except for proteins in the HK97 asymmetric
units. Despite the lower accuracies for the multi-scale method in the latter, the same number of
regions as proteins is produced.

5.2.2 Cause of low accuracies

Figure 5.3 shows that narrow segments in the proteins of HK97 were not captured
correctly in the regions produced by the multi-scale method, and hence the
segmentation accuracies for these components were low (0.5-0.6). This happens
because the regions corresponding to these protruding segments are joined with
regions corresponding to the nearby proteins they interact with. They appear as
separate regions in less-smoothed maps, however the sharpening process does not
join them with the correct regions corresponding to the protein they belong to, since
they mostly overlap the smoother regions corresponding to the nearby proteins
they interact with. We tried improving the sharpening process by taking into
account local metrics such as density values between regions, however this doesn’t
work in general, most likely because the local metrics are easily influenced by noise

and discretization error.

The segmentation accuracies plotted in Figure 5.4 also show that one of the
proteins in HK97 has substantially higher segmentation accuracy than the other six.
The units with lower accuracies are part of a 6-fold ring-like symmetric

arrangement where each protein interacts with two others. The protein with the
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higher accuracy is part of a 5-fold symmetric arrangement that is formed with
proteins from 4 other asymmetric units. The segmentation of this protein was more
accurate because the two neighbors it has in adjacent asymmetric units are not

present in the asymmetric unit.

5.3 Segmentation accuracy at various resolutions

An important question in the analysis of cryo-EM density maps is how accurately
molecular components can be identified at different resolutions. This is an
important question because high-resolution density maps cannot always be
obtained, so the question has to do with how valuable maps with lower resolution
might be. We try to answer this question using density maps simulated at a range of
resolutions (6A -304, in steps of ZA) for GRoEL, GroEL+GroES, Ribosome, HK97
procapsid and HK97 mature capsid. Each simulated map at every resolution was
segmented using the multi-scale method, specifying only an initial threshold for
each map, the number of proteins or subunits to be segmented, and smoothing step

size of 2.0A.

In Figure 5.5, the highest segmentation accuracy (blue lines) produced by the
multi-scale method and highest maximum watershed segmentation accuracy
(dashed red lines) in each density map is plotted vs. resolution. The plots show that
both accuracies are higher for the high-resolution density maps, and decrease with
resolution, but stay above 0.6 even at the lowest resolution of 30A. At lower
resolutions, the multi-scale segmentation method yields the same accuracy as the
maximum accuracy possible with the watershed method, since the two lines
coincide. This is because at lower resolutions, there are fewer watershed regions to

join, and hence it becomes somewhat easier to join the correct regions.
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Figure 5.5. Segmentation accuracies for 5 density maps simulated at various resolutions (6A-304,
every 2A). The highest segmentation accuracy (blue lines) and highest maximum watershed
segmentation accuracy (dashed red lines) for a component in each density map is plotted vs.
resolution. The plots show that segmentation accuracies drop as the resolution increases.

To illustrate the effect of resolution on segmented regions, a single protein
from GroEL is shown in Figure 5.6. The regions shown are the protein-masked
region and regions produced by the multi-scale method applied to simulated maps
at different resolutions. At high resolution, the segmentation closely resembles the
ground-truth region. At lower resolutions, the segmented region has a smoother
surface compared to the protein-masked region. However, even at low resolutions,

the segmented region still closely, if roughly, captures the shape of the protein.
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Figure 5.6. Protein-masked region and segmented regions corresponding to a single protein in
simulated maps of GroEL at different resolutions. The protein-masked is the first from the left. The
remaining segmented regions are from maps with resolutions of (left to right) 64, 104, 204, and 30A.
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5.4 User-edits of segmented regions

The user has no control over the regions generated from the multi-scale method
other than the initial segmentation threshold, the number of smoothing steps and
the step size. In some cases a user may desire to be able to modify and fine-tune the
resulting regions. We use the hierarchical grouping of regions to make this process

easy and intuitive. To do so, the user can perform two types of operations:

* Ungrouping: the user can select a region and split it up into smaller sub-
regions. Ideally, only a small number of sub-regions result, so that the
number of regions the user has to deal with does not become overwhelming.

* Group regions: once a larger region has been split into smaller regions, the

user may decide to join one of the smaller regions with a different region.

The ungrouping and grouping processes are illustrated in Figure 5.7. This
process relies on the user’s knowledge about the structure of each protein or
subunit being segmented, and it is can be used to try to improve the segmentation
accuracy. For this example, which is performed on segmented regions from a
simulated density map, comparison of the resulting regions with protein-masked
regions shows that the segmentation accuracy can be increased during such a

procedure (Figure 5.8).

Figure 5.7. User editing of the simulated map of the thermosome by hierarchical ungrouping and
regrouping of regions. Large segmented regions (left) are ungrouped, resulting in smaller regions
(middle) around the area that needs to be modified. The small regions are then regrouped,
reproducing the large starting regions but with small modifications in the center area (right).
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Figure 5.8. Segmentation accuracies of 8 segmented regions before and after user-edits. The blue
bars are the accuracies for 8 of the segmented regions before the user-edits, and the red bars are the
segmentation accuracies after the user-edits. Most of the accuracies are higher after the user-edits.

5.5 Segmentation of cryo-EM density maps

A total of five cryo-EM density maps were segmented using the multi-scale
watershed method. The results are shown in Figure 5.9. The segmentation of each
complex took only several minutes. For the GroEL, Mm-cpn, and ribosome density
maps, the resulting segmentations contained the same number of regions as
proteins or subunits being segmented. For the maps of GroEL+GroES and
bacteriophage lambda, groups of at most two regions corresponded to single
proteins. In the latter maps, segmentation of further smoothed maps produced
regions spanning more than one protein, and so in these cases, a smoothing level
where every region corresponded to a single protein could not be reached. However
due to the small number of regions, it was very easy to interactively select out

groups of regions belonging to individual proteins.

5.5.1 GroEL

GroEL is a barrel-like protein complex, with 7 proteins arranged in a symmetric
fashion to form a ring with a cavity in the middle. Two rings are stacked on top of

one another. This complex is also commonly referred to as a chaperone. Its function
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is to bind unfolded proteins in its large central cavity. With the help of the lid-like
co-chaperone GroES, the unfolded protein is isolated from the environment and is
helped to fold to its native state. The density map for GroEL at 4.2A resolution [13]
(EMDB:5001) was segmented using the watershed method, producing 2936 regions
at a threshold of 0.597. The map was smoothed with 4 steps of size 7.5A. The most
smoothed map yielded 14 regions, each region corresponding to a single protein,

which were then sharpened.

Figure 5.9. Five cryo-EM density maps segmented using the multi-scale watershed method. From left
to right the maps are GroEL, GroEL+GroES, Mm-cpn, ribosome, and bacteriophage lambda. The top
row shows the cryo-EM density maps (all scaled equally), middle row shows the resulting segmented
regions, and the bottom row show single or groups of 2 regions corresponding to individual proteins
or subunits.



5.5.2 GroEL+GroES

The GroEL+GroES complex consists of the barrel-like GroEL complex and a lid-like
GroES complex attached to one end of the barrel. The GroES complex is made of 7
proteins, arranged in a symmetric ring-like fashion with no cavity in the middle. Its
function is to close off one side of the barrel-like GroEL. The density map for
GroEL+GroES at 7.74 resolution [72] (EMDB:1180) was segmented into 2684
regions using the watershed method at a threshold of 0.608. The map was then
smoothed with 3 steps of size 5A. The smoothest map segmented into 42 regions,
which were then sharpened. In the resulting segmentation, groups of two regions
correspond to single proteins in the barrel-like GroEL complex, while single regions

correspond to single proteins in the lid-like GroES complex.

5.5.3 Mm-cpn

Mm-cpn is also a barrel-like complex, consisting of two symmetric rings, each ring
being made up of 8 proteins. This complex does not require a lid to close off the
internal cavity; instead the top (apical) parts of the proteins bind to each other in an
iris-like form in the closed state. (This iris-like arrangement can be seen in Figure
5.7). The density map at 104 resolution [73] was segmented at a threshold of 1.25,
producing 192 regions. The map was smoothed with 8 steps of size 5.0A. The most
smoothed map produced 16 regions, with each region corresponding to a single

protein.

5.5.4 Ribosome

The ribosome is a large complex that consists of both proteins and RNA. It consists
of two subunits, commonly reffered to as the large and small subunits. The cryo-EM

density map of the E-coli ribosome at 9A resolution [74] (EMDB:1056) was
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segmented at a threshold of 43.4, producing 897 regions. Smoothing was done with
32 steps of size 5.0A. Segmentation of the most smoothed map produced only two

regions corresponding to the large and small subunits, which were then sharpened.

5.5.5 Bacteriophage lambda

Bacteriophage lambda is a large capsid, which consists of 60 asymmetric units
symmetrically arranged in an icosahedron-like shape. An asymmetric unit is
composed of 7 proteins. This capsid encloses DNA, protecting it while the phage is
outside of a cell. The capsid usually also has a portal complex which drives the DNA
inside during assembly and pushes the DNA out during infection of a cell. The portal
complex is not usually required for the capsid to assemble [75], which is why a

portal is not present in this density map.

The density map of bacteriophage lambda at 14.54 resolution [76]
(EMDB:1507) was segmented at a threshold of 2.57, resulting in 12,580 regions. It
was then smoothed with 5 steps of size 4.0A. In the most smoothed map, 308
regions resulted, which were then sharpened. In this segmentation, 6-fold and 5-fold
symmetric arrangements of proteins in the capsid are clearly visible, with single or
groups of 2 regions corresponding to individual proteins. The regions making up an
asymmetric unit, which includes 6 proteins in the 6-fold arrangements and 1 of the
proteins from the 5-fold arrangement, were interactively selected and extracted
from the rest of the regions. The entire asymmetric unit is shown in blue in the top
row of Figure 5.9 superimposed on the entire density map. The segmented regions

that make up a single asymmetric unit are also shown separately in the middle row.
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5.6 Registration of structures with simulated density maps

To test the accuracy of the registration method, it was used to fit structures of
individual proteins or subunits into simulated density maps. When the transformed
positions, (7."), of the atoms in the registered structure, match the corresponding
atomic positions, (7;), of a single component from the entire structure that was used
to simulate the density map, the registration is accurate. The root-mean-square-

deviation (RMSD) between these corresponding positions is computed as follows:

Alow RMSD score indicates the corresponding atomic positions are close by,
which means the registration is accurate. The entire process is illustrated in Figure

5.10.

structure consisting registered structures
of 14 proteins of proteins

compare each
registered )
structure to the ¢
structure of a
single protein in

the complex
—_— ., e 20000 s
i register
mep with
segmented structure of
simulated density rogions single protein

map of structure

Figure 5.10. Procedure for testing accuracy of registration. The structure consisting of 14 proteins
(top left) is used to simulate a density map (bottom left), which is then segmented. The structure of a
single protein (bottom right) is registered with each segmented region. Each resulting registered
structures is compared with the structure of a single protein from the entire complex, using the
RMSD score.
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5.6.1 GroE, thermosome, ribosome, and HK97 asymmetric units

In the 5 simulated maps of GroE, thermosome, ribosome, and HK97 asymmetric
units, as discussed in section 5.2, each segmented region corresponded to a single
protein or subunit. The automated registration procedure was used, and since each
region corresponded to a single structure being registered, all automatically
generated groups contained only single regions. The RMSD between the atoms in
each registered structure and the corresponding structure in the complex from
which density maps was simulated were all less than 14, indicating that the
registrations for all the structures were very accurate. The principal-axes
registration method gave the correct registrations for all the structures, and
rotational search was not required at all. The registration method was also tested
with simulated maps at lower resolutions. Correct registrations were obtained for

density maps simulated at up to 304 resolution.

5.6.2 GroEL+GroES

We simulated a map of the structure (PDB:1aon) at 104 resolution, with grid
spacing of 2.0A. Watershed segmentation of this map produces 1474 regions. As this
map is smoothed, regions corresponding to individual proteins are not eventually
obtained. Instead, regions spanning more than one protein result. However,
stopping the smoothing process before this happens, the result is a small number of
regions (48), with groups of 1-3 regions corresponding to single proteins (Figure
5.11). In total, we smoothed the map with 10 smoothing steps, with step size of 2A.
After sharpening, single regions are obtained for proteins in the lid (GroES) section,

and groups of 2-3 regions for proteins in the barrel (GroEL) section.

The automated registration method was used to register the 3 different
protein structures (chains A, H, and O) with the segmented regions. The principal-

axes transform produced correct registrations for proteins in the barrel section, but
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not in the lid section, where rotational search was used. The RMSD between atoms
in the registered structures and the corresponding atoms in the structure used to
simulate the density map were all below 1.04, indicating that the correct
registrations were produced. After the registration of all the structures, the regions
overlapping the same structure were joined, to produce single regions
corresponding to each structure. Segmentation accuracies for the resulting regions
are plotted in Figure 5.13. Good accuracies are obtained for regions in the barrel

section (0.81-0.90), but lower accuracies for regions in the lid section (0.64-0.71).

Figure 5.11. Registration of three structures with groups of regions from a simulated density map of
GroEL+GroES. The regions resulting from the multi-scale method are shown at left. The structures
were registered with groups of these regions, producing the registrations shown in the middle. Each
structure is drawn as a ribbon, and each of the three different structures registered is drawn with a
different color. The structures are shown individually along with the regions they were registered
with as transparent surfaces. On the right, the regions joined based on which protein they join the
most are shown.

5.6.3 Ribosome

For the simulated map of the E-coli ribosome (PDB:2avy,2aw4), as described in
section 5.2, multi-scale grouping was able to produce single regions for the large
and small subunits after a large degree of smoothing. In less-smoothed maps (5
steps of size 2.04), groups of 2-4 regions were found to correspond to single

proteins.
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The automated registration process was used to register all 49 protein
structures to these regions. Most structures were registered correctly using the
principal axes transform, however a few required rotational search. Regions
corresponding to single proteins were produced; a few of these regions and the

structures of the proteins that were registered with them are shown in Figure 5.12.

All correct registrations gave RMSD scores lower than 1A between the
registered structure and the corresponding structure in the complex, signifying
correct registrations. Other regions not joined in this process were taken to belong
to RNA components, shown with a gray surface in Figure 5.12. The segmentation
accuracies computed by shape-match score between the segmented regions and
ground-truth regions ranged between 0.322 and 0.933, and are plotted in Figure
5.13. Despite the lower segmentation accuracies for some of the regions (e.g. 0.322),
the correct registration were still found, mainly because the centers of the
segmented regions and the correct fit of the corresponding structure are still close

enough to allow a good initial alignment.

Figure 5.12. Segmented regions and registration of structures in simulated maps of the ribosome. On
the left, the segmented regions after the multi-scale method was applied are shown. In the middle 8
of the 49 protein structures which were registered with groups of regions are shown, along with the
corresponding region as a transparent surface. On the right, the regions were joined based on which
structure they overlap. All remaining regions were joined to produce the grey region which
corresponds to RNA.
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Figure 5.13. Segmentation accuracies in simulated maps of GroEL+GroES and ribosome.
Segmentation accuracies of regions produced by the multi-scale method followed by registration of
protein structures are plotted using randomly colored bars, and maximum watershed segmentation
accuracies are plotted for each component using grey bars.

5.7 Registration of structures with cryo-EM density maps

Structures of individual proteins or subunits were registered to segmented regions
in 5 cryo-EM density maps. For use in the registration process, maps for each
structure were simulated at the same resolution as the experimentally reported
resolution and grid spacing of the cryo-EM map. The segmentation and registration
results are shown in Figure 5.14. The registered structures of each component were
used to generate protein or subunit-masked regions. The shape match-score was
used to measure how similar the segmented regions are to these regions. These
scores, plotted in Figure 5.15, reflect segmentation accuracy, and also how similar

cryo-EM and crystal structures of individual components in these structures are.
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Figure 5.14. Segmented regions for 5 cryo-EM density maps and structures of proteins or subunits
registered with them. The density maps are, from left to right, GroEL (EMDB:5001), GroEL+GroES
(EMDB:1180), ribosome (EMDB:1056) large/small subunits and RNA/proteins, rice dwarf virus
(EMDB:1060), and bacteriophage lambda (EMDB:1507). The top row shows regions after
segmentation and registration, and the bottom row shows single regions as transparent surfaces and
corresponding registered structures as ribbons. The structures are, from left to right, PDB:1xck chain
A, 1aon chain A, 2avy all chains, 2avy chains M,I,] (top) and 2aw4 chains G,P (bottom), 1uf2 chain C,
and 3bqw.

shape-match scores

|
GroEL GroEL+GroES Ribosome subunits  Ribosome proteins  Rice Dwarf Virus Lambda

Figure 5.15. Shape-match scores between simulated density maps of registered structures and
corresponding segmented regions in experimental density maps.
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5.7.1 GroEL
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Figure 5.16 Segmentation and registration results for the density map of the GroEL chaperone.

The structure of a single protein in the GreEL complex (PDB:1xck, chain A),
was used to simulate a density map which was aligned to the segmented regions,
using the automated procedure. Because each region corresponded to a single
structure, only 14 groups (each group containing a single region) were generated
for alignment. The shape-match scores between each of the 14 segmented regions
and protein-masked regions, generated from the registered structures, ranged
between 0.799 and 0.854. The scores are slightly lower than for the analogous
simulated density map, signifying lower segmentation accuracy (perhaps due to

noise), and/or slight difference between crystal and cryo-EM structures
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5.7.2 GroEL+GroES

aligned
to regions

multi-scale
segmentation &

PDB:laon.A PDB:laon.H PDB:laon.O

21 registered structures regions grouped structures & regions
by registered structure

Figure 5.17 Segmentation and registration results for the density map of the GroEL+GroES
chaperone.

Simulated maps of the 3 different proteins in the GroEL+GroES complex
(PDB:1aon, chains A,H,0) were aligned to groups generated by the automatic
procedure. For each structure, respectively, 58, 57, and 21 groups of regions were
automatically generated, and alignment of the structures with these groups yielded

the correct registrations.

Chain A registered correctly using rotational search with groups of 2 regions
each. The resulting joined regions, compared to protein-masked regions, gave
shape-match scores between 0.457 and 0.543. Chain H registered correctly using
the principal-axis transform with 7 groups of 2 regions each in the lower barrel
section with shape-match scores between 0.615 and 0.625. Chain O registered
correctly also using the principal-axis transform with 7 regions in the lid section,

with shape-match scores ranging between 0.412 and 0.558. All these scores are
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quite low, and by visual inspection, the cause appears to be a great deal of noise in
the density map. Despite this noise, the segmentation and fitting methods still
produced results consistent with the structure of the analogous simulated density

map.

5.7.3 Ribosome

multi-scale
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structures & regions

2 registered structures

Figure 5.18 Segmentation of the ribosome density map into the large and small subunits, and
registration of structures with the resulting regions.

Simulated maps from the structure of the large (PDB:2aw4) and small
(PDB:2avy) subunits were registered correctly to the corresponding regions of the
larger and small subunit, using the principal-axes transform, giving cross-
correlations of 0.618 and 0.597 respectively. The shape-match scores between the

segmented regions and protein-masked regions were 0.770 and 0.761.
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Figure 5.19 Segmentation of the ribosome density map and registration of the 49 proteins from both
small and large subunits.

Simulated maps of each of the 49 proteins in both larger and small subunits
were registered with regions in the unsmoothed cryo-EM map. Each structure was
registered using the automated procedure. About 800 groups were generated for
each structure. Of the 49 proteins, 33 were correctly registered (2avy chains
B,C,D,EF,G,L],M,0,P,QR,T,U, and 2aw4 chains 0,1,2,C,D,E,F,GKM,P,QR,S,UV,X)Y,Z),

most of them using only the principal-axes transform.

The shape-match scores computed for the regions and the protein-masked
regions ranged between 0.436 and 0.784. For the proteins that weren’t registered
correctly, the potential cause is that the state for the ribosome captured in the cryo-
EM map is different than the state captured in the crystal structure, so that some of
the proteins may have different conformations, or may not be present at all. In
particular, the region in which transcription factor is bound appears substantially

different in the cryo-EM density map and crystal structure.
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5.7.4 Bacteriophage lambda
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Figure 5.20 Segmentation of the density map of the bacteriophage lambda, and registration of the
structure of a single protein with regions from an asymmetric unit.

A total of 10 regions, corresponding to 7 proteins, which make up an
asymmetric unit were interactively selected. Amongst these regions, 4 of them
corresponded to individual proteins, and the remaining 6, in groups of 2,

corresponded to the other 3 proteins.

The structure of a single pro-capsid protein (PDB:3bqw) was registered to
these selected regions using the automated procedure. A total of 21 groups of
adjacent regions were considered. The principal-axes transform produced correct

registrations of the structure to 7 of these groups (some of which were groups
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containing a single region). The shape-match scores computed between segmented
regions and protein-masked regions were quite high, ranging between 0.825 and

0.879.

5.7.5 Rice dwarf virus (RDV)
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Figure 5.21 Segmentation of the density map of the rice dwarf virus, and registration of the structure
of a single asymmetric unit with the map.

The density maps of the rice dwarf virus at 6.8A resolution [77]
(EMDB:1060) contains a symmetric half of the T=15 icosahedral capsid. The
segmentation of this map is not shown in the results in chapter 3, since the
registration of the entire asymmetric unit, as described below, is required.
Segmentation of the entire map alone, without registration, is challenging because

the this virus contains both an outer and an inner capsid. However, after extraction
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of a single asymmetric unit, as described below, the segmentation of this ASU and

the registration of individual proteins with it are much easier.

The entire density map was segmented at a threshold of 1.8, resulting in
19,416 regions. The map was smoothed twice with step size of 5.0A. The most
smoothed map produced 1,618 regions, which were sharpened. Individual proteins
in the outer capsid could be seen in this segmentation, corresponding with groups of
2 regions each. The crystal structure of the asymmetric unit of this virus (PDB:1uf2)
is composed of 13 proteins that form trimers in the outer capsid, and 2 proteins in
the inner capsid. A simulated density map of chain C, one of the trimer proteins, was
registered correctly using the principal-axes transform with two of the regions,

which were selected interactively.

The structure of the entire asymmetric unit was placed into the density map
by alignment of the corresponding chain in the structure to the registered chain. The
resulting registration was then locally refined. The cryo-EM map was masked with
this structure, thus extracting a map the asymmetric unit alone. This was done to

simplify further segmentation and registration of structures.

The map of the asymmetric unit alone was then segmented, producing 1155
regions. It was smoothed with 7 steps of size 2.0A. The most smoothed map
produced 65 regions, which were then sharpened. Groups of 2-5 regions
corresponded to each protein in this segmentation. Structures of each protein
(chains A, B, and C from PDB:1uf2) were aligned with regions using the automated
procedure. In total 34, 89, and 94 groups were considered for each structure
respectively. All structures were correctly registered using only the principal-axes
transform. The shape match scores between segmented regions and protein-masked
regions were between 0.561 and 0.704. These scores are quite low, signifying lower
segmentation accuracy and/or more substantial differences between crystal and

cryo-EM structures.
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Figure 5.22 Segmentation of the density map of the rice dwarf virus, masked with the structure of a
single asymmetric unit, and registration of structures with the resulting regions.
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Chapter 6. Conclusions and future work

6.1 Segmentation

A segmentation method that is very easy to use and requires little prior structural
knowledge has been presented. This method can produce the segmentation of a
density map in several minutes, a process that can otherwise take hours by more
interactive approaches. Interactive segmentation is also highly tedious and
subjective, requiring a lot of knowledge and skill on the part of the user. The user-
interaction required for the method we presented is very minimal. Thus the method
is also more objective, requires less skill and knowledge, and gives reproducible
results given only three parameters: the initial threshold, the smoothing step size,

and the number of smoothing steps.

A metric was used to quantitatively measure segmentation accuracies, by
comparison of the segmented regions to protein/subunit-masked regions. Good
accuracies were obtained using the multi-scale method. However in some
complexes, narrow protrusions were not segmented correctly, and thus lower
accuracies were obtained. Maximal accuracies attainable using the watershed
method were also computed, showing that by grouping regions obtained using the
watershed method, very accurate segmentations are possible. Future studies will
attempt to study whether the accuracy of the multi-scale method can be further

improved.

A method was also presented allowing the user to subdivide the resulting
regions recursively into smaller regions, and to regroup regions so as to locally
modify segmented regions. The use of a hierarchy makes the process simple and
intuitive. It was shown that the segmentation accuracy could be improved using

such edits. It will also be interesting to further study how users respond to these
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user-editing capabilities, how effective they are, and how easy-to-use other users

will find them.

6.2 Registration

Methods were presented which allow structures of individual structures to be
accurately, quickly, and reliably registered with a density map, through the
alignment of structures to segmented regions. Two alignment methods were used,
based on alignment of centers and principal-axes or rotational search. The principal-
axes transform is extremely fast since the registration is direct, and it is successful in
many of the cases presented here. When it doesn’t work, the rotational search is
able to find the correct registration, and is also relatively fast since it only searches
through 3 degrees of freedom, compared to exhaustive search, which searches
through 6 degrees of freedom. These registration methods were shown to be very
accurate when used with simulated maps. Their use in experimental density maps
was also very successful, producing registrations in which the registered structures

closely matched the segmented regions.

For future work, it will be important to allow flexibility in the structure being
registered, so that it better captures different conformations of the components in
cryo-EM density maps. This is an important task, since it will allow us to discover
structures of complexes in a wider variety of states seen in cryo-EM density maps.
The use of the methods described in this work will help with this task. Firstly, the
initial registration for a structure can be created using the registration methods
presented here. Moreover, the target shape of the structure of a single component

can be obtained by segmentation of the density map.
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6.3 Public use of contributed methods

Aside from focusing extensively on providing accurate and efficient methods for
segmentation and registration, we have also aimed to make the methods presented
here easy to use and widely accessible to the public, through the Segger software
[70]. Continued effort in this direction should lead to improved tools allowing us to
more quickly and accurately extract important biological information from the wide

variety of density maps obtained by the increasingly popular cryo-EM method.
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