
 Page 1

Linear and Nonlinear Data Dimensionality Reduction

David Gering

April 17, 2002

Abstract
This report discusses one paper for linear data dimensionality reduction, Eigenfaces, and
two recently developed nonlinear techniques. The first nonlinear method, Locally Linear
Embedding (LLE), maps the input data points to a single global coordinate system of
lower dimension in a manner that preserves the relationships between neighboring points.
The second method, Isomap, computes geodesic distances along a manifold as sequences
of hops between neighboring points, and then applies Multidimensional Scaling (MDS)
to these geodesic distances instead of Euclidean distances. To provide depth of
understanding as well as background for comparison, the classical linear techniques MDS
and Principle Component Analysis (PCA) are derived from three different approaches.
The algorithmic, applicability, and implementation issues of the three papers are
discussed in the common framework of data dimensionality reduction. Simple
experimental results and suggestions for improvement are presented.

1 Introduction

Many problems in information processing involve some form of dimensionality reduction. Data
dimensionality reduction is a significant problem across a wide variety of fields and thus garners
broad interest. It appears in many forms such as characterizing variability, discarding what is
unimportant, and discovering compact representations. In this report, we specifically consider the
problem of characterizing the variability of images. We regard an image as a set of pixels that
specify the Cartesian coordinates of a point with respect to a set of axes – one axis per pixel. In
this interpretation, each image can be thought of as a point in an abstract space of images. A set
of N images represents a cloud of N points in image space.

Data dimensionality reduction refers to the process of deriving a set of degrees of freedom which
may be adjusted to reproduce much of the variability observed within a training set. (Informally,
imagine creating a small set of knobs which may be turned to generate reconstructions of all the
image instances.) For example, faces, being similar in overall configuration, will not be
randomly distributed in a huge image space, and thus can be described by a relatively low
dimensional subspace. One example presented in [Tenenbaum00] is the rotation of a face through
a number of views to produce a set of images. Since only one degree of freedom, the curve’s
parameterization, is being altered, the images lie along a continuous curve through image space.
However, the one-dimensional curve is embedded in a high-dimensional image space, equal to
the number of pixels per image. The curve is a simple example of a nonlinear manifold, which is
a surface where the linear combinations of two points on the surface produce points off the
surface.

The recent papers addressed in this report present unsupervised manifold learning algorithms
where the problem is one of inducing a smooth nonlinear constraint manifold from a set of

 Page 2

examples from the manifold. Unlike PCA and MDS which are restricted to learning only linear
manifolds, they attempt to discover the underlying structure of nonlinear manifolds in order to
map a given data set of high-dimensional points into a surrogate low-dimensional space:

dD ℜ∈⇒ℜ∈ YX , d << D

This report consists of a section for mathematical background followed by three parts, one for
each paper, where the ideas, algorithms, and experimental results are discussed for comparison.

2 Background on PCA and MDS

2.1 Principle Component Analysis
Principle Component Analysis (PCA) replaces the original variables of a data set with a smaller
number of uncorrelated variables called the principle components. If the original data set of
dimension D contains highly correlated variables, then there is an effective dimensionality, d < D,
that explains most of the data. The presence of only a few components of d makes it easier to
label each dimension with an intuitive meaning. Furthermore, it is more efficient to operate on
fewer variables in subsequent analysis. The method is linear in that the new variables are a linear
combination of the original. No assumption is made about the probability distribution of the
original variables.

The earliest descriptions of the technique were presented in [Pearson1901] and [Hotelling33]. To
facilitate comparisons with the three different papers later, this section will present three different
approaches to deriving PCA: those of Pearson, Hotelling, and myself.

2.1.1 Approach 1: Least Squares Distance
[Pearson1901] first introduced PCA from the standpoint of finding points and lines which best fit
a set of points, and this approach is reviewed in [Duda01]. Suppose we have a set of N D-
dimensional sample vectors, x1, x2,…, xn. The question of how to express them as d-dimensional
data, where d < D, may be answered by first examining how to approximate them as 0-
dimensional and 1-dimensional data. A 0-dimensional data set contains no axes of variation, so
we need only compute a single vector, x0, such that the sum of squared distances between x0 and
each xk is as small as possible. We minimize the squared-error criterion:

∑
=

−=
N

k
kJ

1

2
000)(xxx

(1)

The value of x0 that minimizes J0 is the sample mean:

∑
=

=
N

k
kN 1

1 xm
(2)

In a similar manner, consider how to reveal something about the variability of the data by
computing a 1-dimensional representation. Beginning with the sample mean, m, we will add one
variable which will assume a value for each data point. We need to determine two items: the
value of the variable for each data point, and the coordinate axis along which the value varies.
Mathematically, x will have a representation:

umx ky+= (3)

 Page 3

The coefficients, yk, each express the kth point’s distance from the sample mean m in the direction
of unit vector u. These coefficients can be found by minimizing the squared-error criterion:

∑

∑

=

=

−−=

−+=

N

k
kk

N

k
kkk

y

yyJ

1

2

1

2
1

)(

)()(

mxu

xum

(4)

Expand the norm by using the relation that ||x||2 = xTx, and uTu = 1 since u is a unit vector:

∑∑∑

∑

∑

===

=

=

−+−−=

−−+−−=

−−−−=

N

k
k

N

k
k

T
k

N

k
k

N

k
k

T
kk

T
k

T
k

N

k
kk

T
kkk

yy

yy

yyyJ

1

2

11

2

1

2

1
1

)]([2

)]()()(2[

))(())(()(

mxmxu

mxmxmxuuu

mxumxu

(5)

Since we are projecting the data onto the space spanned by a single line, the coefficients that
minimize J1 are the projection of xk onto the line in the direction of u that passes through m:

)(mxu −= k
T

ky (6)

Substitute (6) for yk in (5) to find the best direction for u to minimize the squared-error.

∑∑

∑∑

∑∑∑

==

==

===

−+−−=

−+−=

−+−=

N

k
k

N

k
k

T

N

k
k

N

k
k

N

k
k

N

k
kk

N

k
kk

y

yyyyJ

1

2

1

2

1

2

1

2

1

2

11

2
1

)]([

][2)(

mxmxu

mx

mx

(7)

Expand the quadratric by using the relations that x2 = xxT, and (AB)T = BTAT:

∑∑

∑∑

==

==

−+−−−=

−+−−−=

N

k
k

N

k

T
kk

T

N

k
k

N

k

T
k

T
k

TJ

1

2

1

1

2

1
1

))((

)]()][([)(

mxumxmxu

mxmxumxuu

(8)

Substitute the formula for the scatter matrix, S, which is (N-1) times the sample covariance
matrix, Σ:

 Page 4

∑

∑

=

=

−−=

−−
−

=

=

n

k

T
kk

N

k

T
kk

NNNN

N

N

N

1

1

22
2

2
1

2
2

2
22

2
21

2
1

2
12

2
11

))((

))((
1

1

mxmxS

mxmxΣ

Σ

σσσ

σσσ
σσσ

ro

m

(9)

∑
=

−+−=
N

k
k

TJ
1

2
1)(mxSuuu

(10)

The second term on the right-hand side is not a function of u, so J1 will be minimized when uTSu
is maximized. Since this term grows larger with larger lengths of u, we cannot maximize it
without imposing some constraint to make the problem well posed. In this case, the constraint is
obvious because we want u to be a unit vector. Therefore, ||u|| = uTu = 1.

Maximization problems with constraints are facilitated by the method of Lagrange multipliers.
Given a function, f(x) and a constraint, g(x) = c for some constant c, we can maximize the
function L(x) containing an arbitrary constant muliplier, λ, attached to the constraint term, (g(x) -
c), which is 0:

0)(
))(()(

)()(

=
∂
∂+

∂
∂=

∂
∂

−+=
=

xxx
x

xx
xx

gfL
cgf

fL

λ

λ

(11)

In our case:

)1()(−−= uuSuuu TtL λ (12)

To maximize, set the gradient vector equal to 0, and compute the derivatives using the following
identities which can be verified by writing out the components [Duda01]. Given independent
vectors f and g, and symmetric matrix H:

Hf
f
Hff

g
f
gf

2)(

)(

=
∂

∂

=
∂

∂

T

T

(13)

Therefore:

uSu

uSu
u

λ

λ

=

=−=
∂
∂ 022L

(14)

 Page 5

Inspection of the form of the solution above reveals that u must be an eigenvector of S. That is, if
u is an input vector to be transformed by the matrix S, then the output is a scaled vector in the
same direction as the input. Substitute (14) into the objective function to realize that to maximize
the term, we must choose the eigenvector associated with the largest eigenvalue:

λ
λ

max

)(maxmax

=

= uuSuu TT

(15)

To summarize this result, we have found that from a standpoint of least squares, the data can best
be represented in 1-dimension if the coordinate axis is the eigenvector of the scatter matrix
corresponding with the largest eigenvalue. Similarly, representing the data in d-dimensions
involves projecting it onto d lines. The derivation follows directly from replacing equations (3)
and (4) with those below.

∑
=

+=
d

i
ddy

1
umx

(16)

∑ ∑
= =

−+=
n

k
k

d

i
ikid yJ

1

2

1

)(xum
(17)

Therefore, we have shown that D-dimensional data is best represented in d-dimensions when the
d coordinate axes are the eigenvectors corresponding to the d largest eigenvalues of the scatter
matrix S. Since S is real and symmetric, {ui} are orthogonal and comprise a natural set of basis
vectors as the principle axes. Their coefficients, yi in equation 16, are subsequently called the
principle components such that yk represents the d-dimensional version of the D-dimensional
random vector, xk.

2.1.2 Approach 2: Change of Variables
[Hotelling33] introduced PCA from a different standpoint which is reviewed in several textbooks
such as [Chatfield80,Jolliffe86,Johnson92,Harris01]. PCA transforms a set of correlated variables
to a new set of uncorrelated variables that are ordered by decreasing variance.

Suppose we are given a D-dimensional random variable x with mean m and DxD covariance
matrix Σ. Find a new vector, y, of d random variables which are uncorrelated and whose
variances are in descending order. Each yk is a linear combination of the xk’s, where the constant
multipliers are denoted by uij. This produces the linear system of equations:

xuT
kDDkkkk xuxuxuy =+++= m2211 (18)

The complete problem of finding all d new variables can be written in matrix notation for the dx1
column vector, y, the Dx1 column vector, x, and the Dxd coefficient matrix, U, containing the d
uk as its columns, as:

1

21

1
|

|

|

|

|

|

|

|

|

|

Dx

T

Dxd

d

dx

T

=

=

xuuuy

xUy

�

(19)

 Page 6

Since equation 18 exhibits an arbitrary scale factor, impose the constraint that uk is a unit vector.
This obtains an orthogonal transformation (rotation and reflection only) that preserves distances.

1
1

2 ==∑
=

D

k
kjk

T
k uuu

(20)

The first principle component, y1, is found by choosing the principle axis, u1, so that y1 has the
largest possible variance. That is, choose u1 to maximize the variance of u1

Tx subject to the
constraint u1

Tu1=1. Similarly, y2 is found by choosing u2 such that y2 has the largest possible
variance while also being uncorrelated with y1. More generally:

 kTH principle component = linear combination uk
Tx

 that maximizes Var(uk
Tx)

 subject to uTu=1 and Cov(ukx, ujx) = 0 for k < j
Where:

j
T
kjk

k
T
k

TTT

TTT

TTT

T

T
kk

yyCov

E
E
E
E
VaryVar

Σuu
Σuu

umxmxu
umxmxu
mxumxu

mxu
xu

=

=
−−=

−−=
−−=

−=

=

),(

])))([((
]))(([

]))())(([(
]))([(

)()(
2

(21)

The maximization of variance can be performed using Lagrange multipliers where equation 22
for y1 has identical form as equation 12 in our first approach. Therefore, y1 is computed by setting
the principle axis, u1, to be the eigenvector of Σ associated with the largest eigenvalue.

For y2, we have the additional constraint of zero correlation with y1, which we accommodate with
a second Lagrange multiplier, δ:

)0()1()(

)1()(

1222222

11111

−−−−=

−−=

uuuuΣuu
uuΣuu

TTT

TT

yL
yL

δλ
λ

(22)

The solutions are the same as we saw for equation 12 because δ must be 0. To see this
requirement, pre-multiply each side of the zero-gradient condition by u1

T:

δ
δλ

δλ

δλ

=
−−=

−−=

−−=
∂
∂

0
)1()0(2)0(20

)()(2)(20

22

112121

122
2

uuuuΣuu

uuΣu
u

TTT

L

(23)

 Page 7

2.1.3 Approach 3: Matrix Factorization for Variation Compression
Finally, I present perhaps the most intuitive derivation of PCA to form a clear picture of why the
eigenvectors are required. We approach from the perspective of matrix factorization for the
purpose of compressing the representation of image variation.

Begin with the definition of an eigenvector, u, of a symmetric scatter matrix S:

uSu λ= (24)

Define U to be the matrix of columns of all D orthogonal eigenvectors of S scaled to be
orthonormal, and Λ is the diagonal matrix of eigenvalues. Then it follows that:

=

=

D

DD

NNNN

N

N

DxDNxDNxDNxN

sss

sss
sss

λ

λ
λ

00

00
00

|

|

|

|

|

|

|

|

|

|

|

|
2

1

2121

21

12221

11211

��

�

��
��

�

uuuuuu

ΛUUS

(25)

Since U is an orthonormal matrix, its inverse is its transpose, which allows to easily complete the
factorization of S below. This is the known as the Singular Value Decomposition for symmetric
matrices, or the diagonalization of S [Strang00]. One way to conceptualize this is to notice that
all off-diagonal terms of Λ are 0, so there are no correlations between variables. Given that the
matrix U is orthonormal, and orthonormal transforms perform only rotation, U rotated S so that
its coordinate axes align with the principle component axes. Thus, the new axes represent the
directions of maximum variability.

DD

T
DDn

TT

T

PPP
uuuuuu

UΛS
SUΛUSUU
UΛSU

λλλ
λλλ

+++=
+++=

=

=

=
−−

l

l

2211

222111

11

U

(26)

Since the outer products ukuk
T are projection matrices, A is the linear combination of ordered

projection matrices, Pk. Consequently, the amount of variance coverage by the first d of D
projections can be expressed as:

∑∑
==

D

i
i

d

i
i

11
λλ

(27)

Now, consider the problem of performing a change of basis for the purpose of image
compression. An example zero-mean, D-dimensional image, x, (vector of length D) begins in the
standard basis which is the identity matrix, I. That is, the columns of I (I1, I2, …ID) are the basis
vectors that span the space of all possible images. Any example image, x, is a linear combination
of the independent vectors in the standard basis. The D coefficients, z, are the image pixel values.
Storing a representation of the image in the standard space involves storing the vector z of all
these coefficients.

 Page 8

zIII

III
Izx

=

+++=
=

|

|

|

|

|

|

21

2211

D

DDzzz

�

�

(28)

To store a compressed representation of the image x, we could store only d coefficients, where d
<< D. However, the fraction (D-d)/D of the image would be completely dark. Therefore, we first
need to represent the image x in a new basis that has better properties for compression. For
example, consider the following wavelet basis, W, instead of I. Like the standard basis, these new
basis vectors are orthogonal (wi

Twj = 0). The difference is that this new basis is better for
compression because it is possible to represent some images with few basis vectors. For example,
a flat image could be represented entirely by using the low-frequency basis vector, w1.

−

−

−
−

=

=

1
1
1

1

1
1

1
1

1
1
1
1

|

|

|

|

|

|

321 wwwW

(29)

The most ideal representation for compression would be for the basis vectors to be the
eigenvectors because of the diagonalization explained above. Representing an example 0-mean
image, x, in this eigenspace, corresponds to storing its vector of coefficients, y, or principle
components of the principle axes in U. Compare equation 30 with 28.

yuuu

uuu
Uyx

=

+++=
=

|

|

|

|

|

|

21

2211

D

DDyyy

�

�

(30)

Compress the image by storing only its d most principle eigenvectors in a smaller basis matrix,
Ud. To perform compression by computing the coefficients, y, perform the inverse of the image
reconstruction operation:

xUy
yUUxU

yUx

~

~

~
11

T
d

ddd

d

=

=

=
−−

(31)

Thus, compression and reconstruction can each be performed with a single matrix multiplication.
Compare this result with the standard basis, where the representation and reconstruction
coefficients are identical.
Basis U (eigenvectors of scatter) I (standard basis)
Compression zUy T

d= zIy T=
Reconstruction yUz d=~ Iyz =
Compare yz ≠ yz =

 Page 9

2.2 Classical Multidimensional Scaling
Consider starting with a set of data points and computing their squared pairwise distances from
their coordinates. MDS addresses the inverse problem of finding a set of coordinate values from a
set of squared distances. Preferably, the new coordinates will have a very small number of
dimensions. (For example, convert the set of distances of N MIT classrooms (a symmetric NxN
matrix of distance pairs) to a 2-dimensional campus map.) Note that the output map will have
arbitrary location and orientation, so we will constrain its center of gravity to be at the origin, and
its orientation to align with principle axes, as derived below.

When the magnitude of the distance matters (classical scaling instead of ordinal scaling) and the
distances are Euclidean, MDS is equivalent to PCA [Torgerson52,Mardia79]. While there exists a
wide assortment of distance functions in use [Cox01], we will work only with Euclidean
distances for the remainder of this discussion.

Given a zero-mean, DxN data matrix, X, of D-dimensional vectors of N images, the set of
squared distances can be computed from the inner product of the difference between two columns
(such as individuals r and s):

ssrsrr

s
T
sr

T
sr

T
r

sr
T

sr

D

i
isirrs

bbb

d

+−=
+−=

−−=

−=∑
=

2
2

)()(

)(
1

22

xxxxxx
xxxx

xx

(32)

Let the NxN matrix, B, be the inner product matrix of all the between-individual inner products:

s
T
rrs

T

b xx
XXB

=
=

(33)

While with PCA, the input data is always in the form, X, with MDS, it may be given as X or only
the NxN matrix of squared distances, D = {drs

2}. In these cases, we need to invert the bottom line
of equation 32 to obtain B from D. Recall that we are constraining the center of gravity of the set
of pairwise distances to lie at the origin. This is referred to as centering the matrix D, and it is
achieved through subtracting the average of each row from every element in its row. Also
subtract the average of each column from every element in its column. Then we can solve for brs
in equation 32 to obtain:

2

2
1

rsrs db −=
(34)

Now that we have obtained B from D, the next step is to find the eigenvectors and eigenvalues of
B. The MDS problem differs from PCA in that we are searching for the eigenvectors and
eigenvalues of B = XTX instead of S = XXT. For Euclidean distances, these problems are shown
here to be equivalent. Let ui and vi be the eigenvectors of S and B, respectively. Then:

iii
T

iii
T

vXvX
uuXX

λ
λ

=

=

(35)

Premultiply each side by X:

 Page 10

ii

iii
T

iii
T

Xvu
uuXX
XvXvXX

=
=

=

)()(

)()(

λ
λ

(36)

Thus, the eigenvalues are the same, and the eigenvectors are multiplied by X. The difference in
MDS is that we are not only solving for the {vi,} but also X. With {vi} as orthogonal unit vectors,
we compute X such that the coordinates of the rTH point are the components of {fi}, where:

dxNd

iii

−−

−−
−−

=

=

f

f
f

X

vf

�

2

1

λ

(37)

Then by orthogonality of {vi}:

ii

i
d

i
T

dd

i
T

i
T

i

d

i
T

v

fff

vv

vv
vv

Xv

f

f
f

XvXX

λ

λ
λ

λ
λ

=

=

−−

−−
−−

=

−−

−−
−−

=

0

0
0

|

|

|

|

|

|
)(21

22

11

2

1

1

1

1

�
��

(38)

To summarize:
MDS Algorithm

Step Description
1 Either be given the set of pairwise distances, D, or compute it from input data.
2 Obtain inner-products B from double-centering D and applying brs = -1/2 drs

2
3 Compute eigenvalues and eigenvectors of B
4 Factor B into XTX to obtain coordinates, X.

3 Eigenfaces

3.1 Idea
The central idea of the Eigenface system is to project face images onto a feature space that spans
the significant variations among known face images. The significant features are known as
eigenfaces because they are the eigenvectors, or principle axes, of the covariance matrix
corresponding to the original face images. These eigenvectors define the subspace of face images
which [Turk91a] names face space, and each vector is a linear combination of the original face
images. The projection operation characterizes an individual face by a weighed sum of the
eigenface features. Therefore, to recognize a particular face, the weights are compared to those of
known individuals. In essence, the high-dimensional set of pixels becomes reduced to the low-
dimensional set of feature weights called the principle components.

 Page 11

3.2 Algorithm
Let a face image be a two-dimensional array of intensity values, or pixels. Given N images,
convert each image to a column vector of length D so we have a set of N D-dimensional data
points:

Nxxxx ,...,,, 321 (39)

The average face, m, is defined as the sample mean of images:

∑
=

=
N

i
iN 1

1 xm
(40)

The mean is then subtracted from each training vector to align the centroid of the distribution
with the origin (so that each dimension has zero mean). Each face differs from the average by:

mx −i (41)

Construct the training matrix as the collection of these column vectors:

DxN

N

−−−=
|

|

|

|

|

|

21 mxmxmxM �

(42)

As described in section 2, we then to perform PCA to obtain a set of orthogonal vectors that
optimally represent the distribution of the data, where optimal is defined in the least squares
sense. However, N << D, so we prefer to avoid the computation of a DxD covariance matrix
which has complexity O(D2). We especially prefer to avoid finding its eigenvectors, which as
complexity O(D3). Fortunately, there is an algebraic trick we can exploit. Observe that the
covariance matrix can be expressed in terms of the outer product of M with itself.

T

N

i

T
ii

N

N

MM

mxmxΣ

1
1

))((
1

1
1

−
=

−−
−

= ∑
=

(43)

Instead of finding the eigenvectors, ui, of the DxD outer product:

iii
T uuMM λ= (44)

Consider finding the eigenvectors, vi, of the NxN inner:

iii
T vMvM λ= (45)

The result of this was shown in equation 36 to be:

ii Mvu = (46)

As explained in Chapter 2.1.3, once the eigenvalues have been computed, a new test face image is
transformed into its eigenface coordinates by:

()mxUy −= i
T
di (47)

And an image is reconstructed from its eigen-space representation by:

 Page 12

myUx += d
~ (48)

The following table summarizes a complete algorithm for face recognition.

Eigenface Algorithm
Step Description
1 Calculate the basis from the training set images
2 Project the training images into FaceSpace
3 Project the test images into FaceSpace
4 Determine if the image is a face (by testing if it is sufficiently close to FaceSpace)
5 If it is a face, compare it to the training images

3.3 Experimental Results
I implemented the algorithm in Matlab on a database of N=85 faces of size 300x250 for a total
dimensionality of D=75,000. There are three images of each volunteer with various expressions.
Figure 1 illustrates the fraction of variance accounted for by the highest subsets of principle
components. Figure 2 demonstrates the accuracy of reconstruction for various levels of data
dimensionality reduction, where the rightmost image is a single scaled eigenface.

Figure 1: Variance Coverage

Fraction of variance accounted for by the highest subsets of eigenvalues plotted versus the
number of eigenvalues used.

Figure 2: Reconstruction Accuracy
From left to right: original, reconstruction from 84, 40, 20, 3, 2, and 1 dimensions.

3.4 Discussion
PCA discovers the structure of data lying on or near a linear subspace of the high-dimensional
input space. The method is most applicable when the xi form a hyperellipsoid cloud, because then
the eigenvectors of S form the cloud’s principle axes. But the algorithm is not capable of
discovering nonlinear degrees of freedom that underlie complex natural observations. Regardless,
the reasons for the popularity of PCA became clear from my implementation. The algorithm is

 Page 13

straightforward to implement, has polynomial time complexity, converges to a global solution,
and its linear nature is easily understood and visualized.

Training run time is dominated by the solution for eigenvectors, which has complexity O(N3).
However, when a very small number, d, of eigenvectors are required, they can be solved for one
at a time using the Power Method [Bai00] with complexity O(N2) for each eigenvector. A real
strength of the algorithm is its run time for projecting novel test images, which requires only that
the input vector undergo vector subtraction and matrix multiplication, which has complexity
O(D+ND).

One issue with the algorithm is how well a test image is represented within eigen-space. To
support the process of selecting what dimension, d, to use, equation 27 can be employed to
measure the amount of variance accounted for. An advantage of the method is that it degrades
gracefully under small changes.

In addition to the restriction to linear subspaces, PCA also suffers the drawbacks of a high O(N3)
worst-case complexity, inability to handle missing data, and the lack of a probability model in the
space of inputs. It may be considered an algorithmic strength in the interest of generality to not
require assumptions regarding the statistical distributions of the data. However, it would be
desired to be able to answer how well new data are fit by the model in a probabilistic sense.
Instead, the only criterion available is the squared distance of the test image from its projection
into eigenspace. Approaches [Roweis98] using expectation-maximization (EM) [Dempster77]
have addressed all three of these drawbacks with some success.

4 Locally Linear Embedding

4.1 Idea
Consider a set of input data points of dimensionality, D, that lie on or near a smooth underlying
nonlinear manifold of lower dimensionality, d. Figure 3 depicts such a situation where the 3D
points form the topology of a 2D rectangular manifold bent into the shape of a 3D S-curve. The
authors draw the following informal analogy that frames the motivation behind their algorithm.
Imagine using a scissors to cut the manifold into small squares that represent locally linear
patches of the nonlinear S-curve surface. Then position these squares onto a flat tabletop while
preserving the angular relationships between neighboring squares. Note that the transplantation is
a linear mapping because it involves only the operations of translation, rotation, and scaling of
each patch. Thus, the algorithm identifies the data’s nonlinear structure through two linear
computational steps: first, compute the locally linear patches, and second, compute the linear
mapping to a lower dimensional embedding, which is the coordinate system on the manifold.

Figure 3: LLE operating on Swiss Roll

From left to right: nonlinear manifold, input data as manifold samples, mapping to low-
dimensional space.

 Page 14

More formally, the main idea behind Locally Linear Embedding (LLE) [Roweis00] is to map the
input data points to a single global coordinate system of lower dimension in such a way as to
preserve the relationships between neighboring points. Each data point and its neighbors are
expected to lie on, or close to, a locally-linear patch of a manifold. The intrinsic geometry of a
patch can be captured by approximating each point by a linear combination of its neighbors. The
coefficients for this combination are chosen to be invariant to the transplantation operations
mentioned above (translation, rotation, and scaling). Therefore, the characterization of local
geometry in the original high-dimensional data space will be equally valid in the lower-
dimensional space. The algorithm then finds a set of low-dimensional points that can be linearly
approximated by their neighbors with the same coefficients that were determined from the high-
dimensional data points.

4.2 Algorithm
Given N real-valued vectors xi, each of dimensionality, D, compute the NxN weight matrix, W,
of linear coefficients, Wij, that reconstruct each data point from its K neighbors. The weight, Wji,
expresses the contribution of the jth data point to the reconstruction of the ith data point. The
reconstruction weights for each data point are computed from its local neighborhood independent
of the weights for other data points. Choose Wij to minimize a cost function of squared
reconstruction errors:

∑ ∑
= =

−=
N

i

K

j
jjii WJ

1

2

1
1)(xxW

(49)

LLE then constructs the neighborhood-preserving mapping by mapping each high dimensional
observation, xi, to a low dimensional vector, yi, representing coordinates on the manifold. This is
done by choosing the d-dimensional coordinates, yi, to minimize the embedding cost function by
optimizing yi while holding Wij fixed:

∑ ∑
= =

−=
N

i

N

j
jjii WJ

1

2

1
2)(yyY

(50)

The embedding coordinates are computed by a global operation that couples all data points in
connected components of the graph defined by the weight matrix. Since the computation is
always coupled across data points, the algorithm leverages overlapping local information to
discover global structure.

The authors neglected to fully derive the solutions to these two equations in the brief paper in
Science [Roweis00], and they added incomplete derivations in a companion paper [Roweis01], so
I have taken the opportunity to derive them in full detail below. (Note that my notation uses the
transpose of the matrices W and M used by the authors because this allows the derivations to
follow more directly from the others in this report.)

4.2.1 Solution for Reconstruction Weights
The iTH data point is reconstructed independently from all others, so the iTH column of W is the
only column of W participating in each term of the summation in equation 49. Therefore, the
minimization can be determined one term at a time, allowing us to notate each column by w for
convenience in the following equations. Also denote neighbors by nj.

 Page 15

2

1
1)(∑

=
−=

K

j
jji wJ nxw

(51)

The quality of the reconstruction of a data point from the linear combination of its neighbors
depends on how close it lies to the space spanned by its neighbors. Finding this combination
poses a problem with D equations and K unknowns.

1
1

2

1

21

|

~
|

|

|

|

|

|

|

Dx

i

KxK
DxK

K

w

w
w

=

xnnn
o

m

(52)

For the typical case of D > K, the minimization in equation 52 is an over-constrained, least
squares problem. (For the under-constrained case D < K, regularization must be added to make
the problem well-posed.) Moreover, since only the K of N coefficients that weight the K
neighbors of xi are allowed to take on non-zero values, the solution of the entire column of
coefficients, w, poses a constrained least squares problem. An additional constraint is imposed by
the requirement that the reconstruction hold equally well in D-dimensional space as in d-
dimensional space. That is, the solution for the weights must be invariant to the transformations
of the linear mapping (translation, rotation, and scaling) that maps each high dimensional
coordinate of each neighborhood to global coordinates on the manifold. While the authors stated
this without proof in the paper, I will prove the invariance to rotation and scaling. Consider
multiplying each input data point by the rotation and scaling matrix, R. I show that the weights,
w, applied to the original data points equal the weights, v, applied to the rotated and scaled points:

vw

xx

xx

RxRRxR

RxRxRxRxRx

11

=

=

=

=

+++==

∑∑

∑

∑

∑

==

=

=

−−

=

K

j
jj

K

j
jj

K

j
jji

K

j
jji

KK

K

j
jji

vw

v

v

vvvv

11

1

1

2211
1

�

(59)

Similarly, consider the translation, t, added to each input point:

∑ ∑ ∑

∑

= = =

=

+=+

+=+

K

j

K

j

K

j
jjjjj

K

j
jji

vvw

vx

1 1 1

1
)(

txtx

txt

(60)

Therefore, the weights are invariant to translations of the data point and its neighbors (w = v) if
and only if we add the following constraint that all rows of the weight matrix sum to 1:

 Page 16

∑ =
j

jw 1 (61)

This constraint allows us to massage the minimization cost function:

Sww
wNXNXw
wNXwNX

wNX

NwXw

Nwx

nxw

T

TT

T

i

K

j
jji wJ

=

−−=

−−=

−=

−=

−=

−= ∑
=

))((
))(())((

)(

)(

2

2

2

2

1
1

(62)

Where I define the X matrix to be the matrix of columns xi repeated K times. Then S represents
the scatter matrix of (X-N):

−−−=−
|

|

|

|

|

|
)(21 Kiii NXNXNXNX �

(63)

Minimize by finding the zero-gradient condition using Lagrange multipliers to accommodate the
constraint that the weights sum to 1:

1Sw

1Sw

1wSwww

c
w
L

L TT

=

+==
∂
∂

−+=

λ

λ

20

)1()(

(64)

Theoretically the above solution for w involves inverting S, but in practice, we equivalently solve
with the constant c arbitrarily set to 1, and then scale w to sum to 1.

4.2.2 Solution for Lower-Dimensional Coordinates
For the following derivation of a solution to the cost function for the manifold coordinates, define
Y to be the matrix of columns, yi, and wi to be the iTH column of W, and Ii to be the iTH column of
the identity matrix.

∑

∑

∑ ∑

=

=

= =

−=

−=

−=

N

i
ii

N

i
ii

N

i

N

j
jiji WJ

1

2

1

2

1

2

1
2

)(

)(

wIY

YwYI

yyY

(65)

 Page 17

As an aside, note that for column vectors, ai, of a given matrix A [Golub96]:

∑ ∑ ===
i i

T
i

T
ii trace 22)(AAAaaa (66)

Therefore:
2

2)()(WIYY −=J (67)

Since |A|2 = Σaij
2 = Σaji

2 = |AT|2, we can write:

)(
)))(((

)()(
2

2

T

TT

TT

trace
trace

J

YMY
YWIWIY

YWIY

=
−−=

−=

(68)

The matrix M is the scatter matrix that would be the zero matrix (appropriately yielding a cost of
J=0) if W were to equal I, (which is impossible given the earlier constraint that a point cannot be
its own neighbor):

T))((WIWIM −−= (69)

As before, we can minimize by finding the zero-gradient condition using Lagrange multipliers to
include the constraints that make the problem well posed. In this case of determining new
coordinates, Y, we must remove the degrees of freedom associated with defining Y to have an
arbitrary origin and orientation. Therefore, constrain Y to have the simplest possible mean and
covariance:

∑

∑

=

=

=
−

=

N

i

T
ii

N

i
i

N 1

1

1
1 Iyy

0y

(70)

Initially, optimize the cost function, J2, using the second of these two constraints:

))1(()(IYYYMYY −−+= NL TT λ (71)

To compute the derivative, apply the transposes of the identities from equation 13, so that:

TT

TTL

YMY

YMY
Y

λ

λ

=

+==
∂
∂ 220

(72)

Thus, L is minimized when the columns of the YT (rows of Y) are the eigenvectors associated
with the lowest eigenvalues of M. We can impose the first constraint above (for zero mean) by
discarding the eigenvectors associated with eigenvalue 0 (free translation), and keeping the
eigenvectors, ui, associated with the bottom d nonzero eigenvalues. These produce the d rows of
the d-by-N output matrix Y:

 Page 18

dxNd
dxN

N

−−

−−
−−

=

=

u

u
u

yyyY
�

�
2

1

21

|

|

|

|

|

|

(73)

This concludes the complete derivation, and the following table summarizes the three steps of the
LLE algorithm.

LLE Algorithm
Step Name Description
1
O(DN2)

K neighbors Compute the neighbors of each data point xi

2
O(DNK3)

Wij Compute the weights Wij that best reconstruct each data point xi
from its neighbors, minimizing the cost by constrained linear least
squares.

3
O(dN2)

yi Compute the vectors yi that are best reconstructed by the weights
Wij, using the bottom nonzero eigenvectors of the scatter matrix of
(I-W).

4.3 Discussion
Recall that we derived Eigenfaces (PCA) by finding a new set of data points, Y, that are a linear
combination of the original points, X, but of a lower dimension. We also derived PCA from the
approach of minimizing the distance of all data points to the new coordinate vectors. In contrast,
LLE, finds new global coordinate vectors that best fit only the local neighborhood geometric
relationships between points.

Attempts to extend PCA to nonlinear data sets generally fall into two broad classes which LLE
overcomes. Within the first set, local linear techniques [Bregler95, Basri98, Hinton95] attempt to
extend PCA to nonlinear data by first clustering the data, and then performing PCA locally within
each cluster. However, they are not designed to represent the global structure of a data set within
a single coordinate system. Within the second set, greedy optimization procedures [Durby87,
Kohonen88, Kramer91, Hecht-Nielson95, Bishop98] attempt to discover global structure, but
lack the non-iterative, polynomial time procedure with guarantee of global optimality, absence of
many free parameters, and the ability to discover manifolds of arbitrary dimension.

The scissors sketch in section 4.1 is an accurate portrayal of the LLE algorithm if each square
represents one data point. Each square does not represent each neighborhood because the squares
are disjoint. In the algorithm, there exists a neighborhood of size K surrounding every point. The
scissors analogy would have to involve cutting K manifolds of overlapping squares to build one
reconstruction on the table. This visualization depicts how global structure emerges from
overlapping local neighborhoods. This is the main idea behind LLE (and also Isomap, as
described later), that overlapping local structure, collectively analyzed, can provide information
about global geometry.

This visualization leads me to suggest ways to improve the algorithm. The quality of the
characterization of the nonlinear manifold is heavily dependent on the choice of neighborhoods.
But many natural data sets with embedded manifolds feature neither a uniform nor dense

 Page 19

sampling. I suggest allowing a data point’s number of neighbors, K, to vary locally according to
the properties of the sampling. The author’s proposal of choosing neighbors by their proximity to
a fixed radius, ε, achieves the effect of a locally varying K, but ignores the ill effects of high
curvature. A processing step of clustering can be used to identify local neighborhoods. Although
this approach was taken in the aforementioned list of alternative methods, those methods lacked
the global optimization step of LLE.

Furthermore, I suggest making the algorithm more robust to noisy outliers from the manifold.
Weight less those reconstruction weights computed for points that exhibit poor reconstructions (in
a least squares sense) from their linear combination of neighbors.

Finally, I address the issue of mapping a novel test image from the input space to the manifold
space. The LLE authors mention neither this problem nor its inverse problem of reconstructing an
image from its low-dimensional representation (mapping arbitrary manifold points back to input
space). I propose determining the novel point’s K neighbors, compute the point’s reconstruction
via linear combination of neighbors, and approximating the point’s embedded manifold
coordinates by applying its weights to the Y obtained in the training stage. For a single test point,
this process has time complexity O(DNK3) verses O(DN2) for training on N points.

5 Isomap

5.1 Idea
The main idea behind the Isomap (isometric feature mapping) algorithm [Tenenbaum00,
Tenenbaum01] is to perform classical MDS to map data points from their high-dimensional input
space to low-dimensional coordinates of a nonlinear manifold. The key contribution is to compute
the MDS pairwise distances not in the input Euclidean space, but in the geodesic space of the
manifold. The geodesic distances represent the shortest paths along the curved surface of the
manifold (measured as if the surface were flat). Clues to the shape of the manifold are only
provided by the input data as surface samples. The actual geodesic distances are therefore
approximated by a sequence of short hops between neighboring sample points. Finally, MDS is
applied to the geodesic distances to find a set of low-dimensional points with similar pairwise
distances.

Since only the geodesic distances represent the true, low-dimensional geometry of the manifold,
the algorithm is capable of discovering nonlinear degrees of freedom that underlie complex
natural observations.

5.2 Algorithm
The Isomap algorithm proceeds through three steps: identifying the neighbors of each input point,
computing the geodesic pairwise distances between all points, and solving for the manifold
coordinates using MDS.

The first step is to determine which points are neighbors on the manifold, M, based on the
distances dX(i,j) between pairs of points (i,j) in the input space, X. One method involves
identifying the K nearest neighbors, while another selects all points within some fixed radius, ε.
These neighborhood relations are represented as a weighted graph, G, over the data points, with
edges of weight dX(i,j) between neighbors.

The second step involves estimating the geodesic distances dM(i,j) between all pairs of points on
the manifold, M, by computing approximations as the shortest path distances dG(i,j) in the graph

 Page 20

G. Techniques to facilitate this computation include Dijkstra’s O(N2) algorithm [Cormen01] and
Floyd’s O(N3) algorithm [Kumar94] described below:

Initialize dG(i,j) to dX(i,j) if (i,j) neighbors
for i = 1 to N do

for j = 1 to N do
for k = 1 to N do

dG(i,j) ← min(dG(i,j), dG(i,k)+dG(k,j))

Then the final matrix of graph distances DG={dG(i,j)} will contain the shortest path distance
between all pairs of points in G.

The third step applies classical MDS to DG to construct an embedding of the data in a d-
dimensional Euclidean space Y that best preserves the manifold’s estimated intrinsic geometry.
As derived in section 2.2, the global minimum of the cost function is achieved by setting the
coordinates of yi to the top d eigenvectors, of the inner-product matrix B obtained from DG:

dxNdd
dxN

N

−−

−−
−−

=

=

v

v
v

yyyY

λ

λ
λ

o
m

22

11

21

|

|

|

|

|

|

(74)

The following table summarizes the algorithm and its time complexity:

ISOMAP ALGORITHM
Step Name Description
1
O(DN2)

Construct
neighborhood graph

Define the graph G over all data points by connecting
neighbors. Set edge lengths to dx(i,j)

2
O(DN2)

Compute shortest paths Compute matrix DG={dG(i,j)} to contain the shortest path
distance between all pairs of points in G.

3
O(dN2)

Construct d-
dimensional
embedding

Use MDS to compute the top d eigenvectors of B obtained
from DG to arrive at d-dimensional coordinate vectors yi.

5.3 Discussion
The Isomap algorithm shares several similarities with LLE. Both begin with a preprocessing step
that decides for each data point which of the other data points should be considered its neighbors.
Both seek to preserve the intrinsic geometry of the data by computing a measure of local
geometry of the manifold, after which, the original data points may be discarded. For LLE, the
measure was the linear combination of neighbors, while Isomap instead captures intrinsic
geometry in the geodesic manifold distance between all pairs of data points. Furthermore, like
LLE, Isomap overcomes the same attempts to extend PCA as described in section 4.3.

The challenge of nonlinearity can be clearly illustrated by the “Swiss Roll” example in Figure 4.
Points on the underlying manifold with distant geodesic distances may have small Euclidean
distance. Only the geodesic distances reflect the true low-dimensional geometry of the manifold,
but PCA and conventional MDS effectively see the Euclidean structure, and fail to detect the
intrinsic two-dimensionality.

 Page 21

Figure 4: Isomap operating on Swiss Roll
Left: inaccuracy of Euclidean distance (dashed line) compared with geodesic distance (solid line).
Center and Right: approximation of geodesic distance (red line) overestimates actual distance.

Isomap also shares similarities with Eigenfaces because Eigenfaces could be computed using
MDS where the pairwise distances matrix DG would be computed directly from the input
coordinates, X in Euclidean space. The only difference with Isomap is that DG is computed in
geodesic space, and the algorithm continues on from there exactly as Eigenfaces would. Isomap
presents an attractive alternative to MDS for data sets that are known to have a smooth manifold,
such as a video sequence or data set that conceptually could be organized as a visually pleasing
video sequence. That is, smooth manifolds manifest themselves as slightly noticeable changes
between an ordered set of examples. When it is unknown a priori if a data set contains nonlinear
structure, one merely needs to run both PCA and Isomap to observe if the resulting low-
dimensional coordinates differ significantly.

Just as PCA and MDS are guaranteed, given sufficient data, to recover the true structure of linear
manifolds, Isomap is guaranteed asymptotically to recover the true dimensionality and geometric
structure of a strictly larger class of nonlinear manifolds. This is because as the number of data
points increases, the graph distances provide increasingly better approximations to true geodesic
distances. The approximation will tend to overestimate dM(i,j) due to the graph’s discreteness.
Highly and irregularly curved surfaces may require an impractically large sample size. Also, K
needs to be increased to avoid “shortcuts” near regions of high surface curvature.

6 Summary
Three techniques have been discussed for mapping data points to a lower dimension, each of
which featured different optimization constraints. Eigenfaces posed the new coordinates as a
linear combination of the original that accounts for maximum variance, LLE sought to preserve
the intrinsic geometry of neighboring points, and Isomap approximated geodesic distances as a
sequence of neighbor-to-neighbor hops. The following table summarizes the major algorithmic
issues as well as practical aspects of each method.

 Eigenfaces LLE Isomap
Optimization
Constraint

Linear combination of
original coordinates
that accounts for most
variance

Local intrinsic
geometry represented
as linear combination
of neighbors

Geodesic distance
approximated as
neighbor-to-neighbor
hopping distance

Parameters None K or ε K or ε
Global optimality Yes Yes Yes
Handles nonlinear
manifolds

No Yes Yes

Training Complexity O(N3) O(DN2) O(DN2)

 Page 22

7 References

[Bai00]� Z. Bai, J. Demmel, J. Dongarra, A, Ruhe, H. van der Vorst. Templates for

Solution of Algebraic Eigenvalue Problems. Society for Industrial Applied
Mathematics, 2000. �

[Basri98]� R. Basri, D. Roth, D. Jacobs. "Clustering Appearances of 3D Objects". In:
Computer Vision and Pattern Recognition (CVPR). 1998; 414-420. �

[Bishop95]� C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1995.
[Bishop98]� C.M. Bishop, M. Svensen, C.K.I. Williams. "GTM: The Generative

Topographic Mapping". Neural Computation 1998; 10:215-234. �
[Bregler95]� C. Bregler, S.M. Omoundro. "Nonlinear Image Interpolation using Manifold

Learning". Advances in Neural Information Processing Systems 1995; 7:973-
980. �

[Chatfield80]� C. Chatfield, A.J. Collins. Introduction to Multivariate Analysis. Chapman &
Hall, 1980. �

[Cormen01]� T.H. Cormen, C.E. Leiserson, R.L. Rivest, C.Stein. Introduction to Algorithms.
MIT Press, 2001. �

[Cox01]� T.F. Cox, M.A.A. Cox. Multidimensional Scaling. Chapman & Hall, 2000. �
[Dempster77]� A.P. Dempster, N.M. Laird, D.B. Rubin. "Maximum Likelihood from

Incomplete Data via the EM Algorithm". Journal Royal Statistical Society 1977;
39:1-38. �

[Duda01]� R.O. Duda, P.E. Hart, D.G. Stork. Pattern Classification. John Wiley & Sons,
2001. �

[Durbin87]� R. Durbin, D. Willshaw. "An Analogue Approach to the Travelling Salesman
Problem Using an Elastic Surface Net". Nature April 1987; 326:689-691. �

[Golub96]� G.H. Golub, C.F. Van Loan. Matrix Computations. Johns Hopkins University
Press, 1996. �

[Harris01]� R.J. Harris. A Primer of Multivariate Statistics. Lawrence Erlbaum Associates,
2001. �

[Healy00]� M.J.R. Healy. Matrices for Statistics. Clarendon Press, 2000. �
[Hecht-
Nielson95]�

R. Hecht-Nielsen. "Replicator Neural Networks for Universal Optimal Source
Coding". Science September 1995; 279:1860-1861. �

[Hinton95]� G.E. Hinton, M. Revow, P. Dayan. "Recognizing Handwritten Digits Using
Mixtures of Linear Models". Advances in Neural Information Processing
Systems 1995; 7:1015-1022. �

[Johnson92]� R.A. Johnson, D.W. Wichern. Applied Multivariate Statistical Analysis. Prentice
Hall, 1992. �

[Jolliffe86]� I.T. Jolliffe. Principle Component Analysis. Springer-Verlag, 1986. �
[Kohonen89]� T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag, 1989.
[Kramer91]� M.A Kramer. "Nonlinear Principal Component Analysis Using Autoassociative

Neural Networks". AIChE Journal February 1991; 37:233-243. �
[Kumar94]� V. Kumar, A. Grama, A. Gupta, G. Karypis. Introduction to Parallel

Computing. Benjamin/Cummings, 1994. �

 Page 23

[Liu98]� A.K. Liu, J.W. Belliveau, A.M. Dale. "Visualizing Spatial Resolution of Linear
Estimation Techniques of Electromagnetic Brain Activity Localization". In:
W.M. Wells III, A. Colchester, S. Delp, eds. First International Conference on
Medical Image Computing and Computer-Assisted Intervention. Boston:
Springer-Verlag, 1998; 670-678. �

[Mardia79]� K.V. Mardia, J.T. Kent, J.M. Bibby. Multivariate Analysis. Academic Press,
1979. �

[Roweis00]� S.T. Roweis, L.K. Saul. "Nonlinear Dimensionality Reduction by Locally Linear
Embedding". Science December 2000; 290:2323-2326. �

[Roweis01]� Introduction to Locally Linear Embedding.
http://www.cs.toronto.edu/~roweis/lle/publications.html. �

[Roweis98]� S. Roweis. "EM Algorithms for PCA and SPCA". Advances in Neural
Information Processing Systems 1998; 10: �

[Strang98]� G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 1998. �
[Tenenbaum00]� J.B. Tenenbaum, V.d.Silva, J.C. Langford. "A Global Geometric Framework for

Nonlinear Dimensionality Reduction". Science December 2000; 290:2319-2323.
[Tenenbaum01]� Introduction to Locally Linear Embedding. http://isomap.stanford.edu/. �
[Turk91a]� M.A. Turk, A.P. Pentland. "Face Recognition Using Eigenfaces". In: Computer

Vision and Pattern Recognition (CVPR). Maui, Hawaii: 1991; 586-591. �
[Turk91b]� M. Turk, A. Pentland. "Eigenfaces for Recognition". Journal of Cognitive

Neuroscience 1991; 3:71-86. �

	Linear and Nonlinear Data Dimensionality Reduction
	
	David Gering
	Abstract

	1 Introduction
	2 Background on PCA and MDS
	2.1 Principle Component Analysis
	2.1.1 Approach 1: Least Squares Distance
	2.1.2 Approach 2: Change of Variables
	2.1.3 Approach 3: Matrix Factorization for Variation Compression
	U (eigenvectors of scatter)
	
	
	I (standard basis)

	2.2 Classical Multidimensional Scaling

	3 Eigenfaces
	3.1 Idea
	3.2 Algorithm
	3.3 Experimental Results
	
	Figure 1: Variance Coverage

	3.4 Discussion

	4 Locally Linear Embedding
	4.1 Idea
	4.2 Algorithm
	4.2.1 Solution for Reconstruction Weights
	4.2.2 Solution for Lower-Dimensional Coordinates
	
	LLE Algorithm

	4.3 Discussion

	5 Isomap
	5.1 Idea
	5.2 Algorithm
	5.3 Discussion
	
	Figure 4: Isomap operating on Swiss Roll
	Left: inaccuracy of Euclidean distance (dashed line) compared with geodesic distance (solid line). Center and Right: approximation of geodesic distance (red line) overestimates actual distance.

	6 Summary
	7 References

