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Abstract 

A framework is proposed for the segmentation of brain tumors from MRI. Instead of 
training on pathology, the proposed method trains exclusively on healthy tissue.  The 
algorithm attempts to recognize deviations from normalcy in order to compute a fitness 
map over the image associated with the presence of pathology.  The resulting fitness map 
may then be used by conventional image segmentation techniques for honing in on 
boundary delineation. Such an approach is applicable to structures that are too irregular, 
in both shape and texture, to permit construction of comprehensive training sets.   

 
We develop the method of diagonalized nearest neighbor pattern recognition, and we use 
it to demonstrate that recognizing deviations from normalcy requires a rich understanding 
of context. Therefore, we propose a framework for a Contextual Dependency Network 
(CDN) that incorporates context at multiple levels: voxel intensities, neighborhood 
coherence, intra-structure properties, inter-structure relationships, and user input. 
Information flows bi-directionally between the layers via multi-level Markov random 
fields or iterated Bayesian classification. A simple instantiation of the framework has 
been implemented to perform preliminary experiments on synthetic and MRI data. 
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Chapter 1 

Introduction 

1.1 Motivations 

On Friday, November 8, 1895, German physicist Wilhelm Conrad Roentgen recorded a 

photograph of his wife’s hand with mysterious rays labeled “X” for unknown. Doctors’ 

future dependence on internal imaging was so immediately apparent, that exactly 3 

months later, X-rays were first used clinically in the United States.  

That dependence has grown dramatically in the subsequent century as 

technological innovations have increased the value of doctors’ “X-ray vision”.  While the 

original radiographs revealed only 2D projections, today’s Computed Tomography (CT) 

scanners rotate the imaging apparatus to reconstruct 3D volumetric maps of X-ray 

attenuation coefficients. Furthermore, instead of producing contrast between only bones 

and soft tissues, today’s Magnetic Resonance Imaging (MRI) scanners can differentiate 

between various soft tissues. They accomplish this by detecting radio frequency signals 

emitted by the excited magnetic dipoles of each tissue’s constituent molecules. In 

addition to these modalities for gathering anatomical data, functional information can be 

acquired by functional MRI (fMRI) or Positron Emission Tomography (PET).  fMRI 

measures the indirect effects of neural activity on blood flow and oxygen consumption.  

PET can distinguish metabolically active tumors from necrotic areas by detecting the 

gamma rays emitted by positrons that collide with the brain’s electrons. These positrons 

originate from the breakdown of radioactive tracers that are injected into the circulatory 

system to concentrate in regions of high blood flow and metabolism. 

While the advances in medical imaging have been impressive, the need for 

scientific progress does not end with the image acquisition process.  Post-processing, or 

computational analysis of the image data, has attracted researchers in artificial 
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intelligence, pattern recognition, neurobiology, and applied mathematics. Many clinical 

applications of medical image analysis rely on computers to embody the capability to 

understand the image data to some degree. This understanding involves comprehension 

of knowledge of the image content. Hence, the basic component of image understanding 

is image segmentation. Segmentation is the process of labeling a scan’s volume elements, 

or voxels, according to the tissue type represented. A subset of the clinical applications 

dependent on segmentation are outlined below. 

Figure 1.1. Advances in Internal Medical Imaging (Left:) In 1895,  X-ray vision of 
Bertha Roentgen’s hand and wedding ring fascinated the public and puzzled scientists. 
(Right:) Today, "augmented X-ray“ vision is enabling doctors to optimize patient 
diagnosis, treatment, and monitoring, as well as improve surgical planning and 
guidance. In this example, the 3D Slicer [Gering01] is used to fuse anatomical MRI data 
of a tumor (green) with functional MRI data that localizes visual verb generation (blue), 
auditory verb generation (red) and the motor cortex (yellow). 

1.1.1 Surgical Planning 

Many surgeries are delicate operations that require pre-operative planning to ascertain the 

operability, or identify the optimum approach trajectory. The benefits of planning vary 

widely with the circumstances encompassing each case, but planning is most critical in 

cases where the target tissue is situated either deeply or within fragile surroundings. 

Consider neurosurgery, where tumors can either infiltrate functional tissue, or push it 
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aside. A tumor that invades eloquent cortex can be considered inoperable for the sake of 

preserving the quality of life rather than its longevity. For example, the patient depicted 

in Figure 1.1 had a tumor in Broca’s area where 96% of speech is generally processed. 

The 3D integrated visualization clearly demonstrated that speech activity had migrated to 

the right side, proving the operability of this lesion.  

Figure 1.2. Lightbox vs. 3D Graphics (Left:) 3-D data is traditionally viewed by 
radiologists as a set of consecutive 2-D slices. (Right:) Multiple data sets (MRI, fMRI, 
MR Angiography) are registered, or aligned, and the surfaces of critical structures are 
rendered to reveal their spatial relationships: vessels (red), tumor (green), pre-central 
gyrus (pink), post-central gyrus (yellow), and motor cortex (blue). 

 

Accurate visualization is vital in a variety of other neurosurgical cases. For 

malignant tumors, the complete resection of diseased tissue is required for prolonged 

survival. For biopsies and benign tumors, the tolerance for error is significantly lower 

given that the risks of complications, such as speech impairment, blindness, paresis, or 

hemorrhaging, threaten to outweigh the benefits of operating. Since the operational 
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hazards are structures arrayed in 3D space, they lend themselves to 3D explorative 

viewing from novel trajectories not physically possible. Figure 1.2 illustrates the contrast 

between the traditional approach of viewing a sequence of slices on a 2D sheet of film, 

and the 3D visualization made possible by computational analysis [Gering99b]. 

1.1.2 Surgical Guidance 

Surgeons can benefit not only from pre-operative planning, but also online guidance for 

precise, intra-operative localization [Gering99a], as depicted in Figure 1.4. Patients can 

benefit from the smaller access holes, shorter hospital stays, and reduced pain made 

possible by minimally invasive surgery [Jolesz97, Black97]. Therefore, surgical guidance 

aims to equip the surgeon with an enhanced vision of reality that enables the surgeon to 

approach the target tissue without inflicting harm to neighboring healthy structures 

Figure 1.3. Systems for Surgical Guidance The surgeon stands within the gap of an 
Intervention MRI suite [Schenk95], monitoring the 3D display screen that presents the 
results of computational analysis. (Images appeared in [Grimson99]. Used with 
permission.) 

 

While an unassisted surgeon can see the surfaces of exposed tissues, the internal 

structures are invisible.  Image-guided surgery provides ”X-ray” vision of what lies 

beyond the exposed surfaces, what types of tissue are seen, and what functions the tissues 

serve. Different types of tissue may be difficult to distinguish with the eye alone, but 
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appear markedly different on certain medical imaging scans.  Similarly, tissues that 

handle critical functions, such as voluntary movements, speech, or vision, appear 

identical to companion tissue, but can be highlighted by a functional exam. 

Surgical guidance systems, such as Instatrak (GE Nav, Lawrence, MA) and 

Signa-SP (GE Medical Systems, Waukesha, WI), track surgical instruments for rendering 

their position relative to anatomical structures within the 3D operating theater, as 

depicted in Figures 1.3 and 1.4. 

Figure 1.4. Tracking and Rendering Instruments for Surgical Guidance (Left:) The 
surgeon resects a cavernoma by maneuvering the instrument (yellow wand) to avoid the 
hazards posed by the vasculature (red) and visual cortex (yellow). (Right:) Photograph 
of the tracked wand in surgery. 

 

1.1.3 Volumetric Analysis 

Quantitative measurements often contribute to disease characterization, treatment 

planning, and progress assessment. Traditional metrics have been crudely based on 2D 

geometry. For example, muscle volume was characterized by radius, and joint range-of-

motion studies were drawn on X-ray films with rulers and protractors. Computational 

image analysis allows true volumetric measurements to be performed, as shown in Figure 

1.5 in a study of female incontinence [Fielding00, Dumanli00]. 
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Figure 1.5. Volumetric Analysis and Studies of Dynamics 3D models of the female 
pelvis such as bones (white), bladder/urethra (yellow), vagina (blue), uterus (green), 
rectum (gray), and the levator ani muscle (pink) can be visualized and quantified in 3D 
space – independent of the orientation of the slice acquisition. The purple line between 
two blue markers is measuring the distance of the pubococcygeal line (level of the 
pelvic floor, and minimum width of the birth canal). 

 

1.1.4 Time Series Analysis 

Certain forms of quantitative analysis are not performed at a single snapshot in time, but 

rather, over a series of many imaging exams covering several days or decades.  Example 

studies include responsivity of pathology to pharmacutical treatments, effects of exercise 

on certain tissues, and the time course of disease such as schizophrenia and Alzheimer’s 

disease [Guttmann99]. 

1.1.5 Computer Aided Diagnosis 

While the applications listed above have focused on treatment, computational analysis 

has recently begun to focus on computer-aided diagnosis (CAD) as well. Particular 

attention has been given to breast and respiratory system lesions, and we refer the reader 

to [Giger00, Ginneken02] for survey articles pertaining to each of these two applications. 

Technological trends suggest that the need for CAD will expand beyond such niche 

applications. CT scanners have recently progressed from scanning not one slice at a time, 

but 16 slices concurrently. Similarly, commercial MR scanners have progressed from 
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having two independent receivers to currently featuring eight or more. These advances in 

data acquisition enable unprecedented applications such as 4-D cardiac exams and non-

invasive, rapid, whole-body screening. As a corollary to Moore’s law for the growth of 

semiconductor chip densities, the amount of medical data is growing exponentially 

despite the fact that the human brain – and therefore a radiologist’s capacity – does not 

adhere to Moore’s law. Understanding such massive amounts of data will eventually 

become too costly and time-consuming, or even impossible, for human radiologists. With 

the number of US radiologists growing a mere 3% annually [BusinessWeek02], we 

believe the future of CAD will align less with attempting to perform tasks at which 

human radiologists excel, and more with performing tasks that humans simply cannot do.  

1.2 Brain Tumor Segmentation 

All the applications discussed thus far have relied on computers embodying the capability 

to understand the image data as a result of performing segmentation. Widespread clinical 

use of segmentation is hindered by two shortcomings:  the inordinate amount of a user’s 

time required to generate the segmentations, and the inter- and intra-operator variability. 

For example, the 3D figures displayed above each required several hours of an operator’s 

time to manually trace the outline of each anatomic structure on every slice – typically 

124 per volume. Figure 1.6 details this painstakingly long process. There is a significant 

amount (~15%) of both inter- and intra-operator variability resulting in an inconsistency 

between experts, and a lack of repeatability for a single expert. Therefore, automatic and 

nearly automatic techniques can potentially assist clinicians by greatly reducing the 

requisite time while increasing the repeatability.  
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Figure 1.6. Manual Tumor Segmentation Process for 3D Surface Generation (Top 
Left) The operatator traces the outline of the tumor boundary, (Top Right) and repeats 
this process on every slice in the volume. (Bottom Left:) A 3D surface is then generated 
to encompass the segmentation [Lorensen87] (Bottom Right) and smoothed to remove 
digitazation artifacts [Schroeder92]. 

1.2.1 Related Work 

The literature is rich with techniques for segmenting healthy brains – a task simplified by 

the predictable appearance, size, and shape of healthy structures. See [Clarke95, 

Pham00b] for survey articles.  Many of these methods fail in the presence of pathology – 

the very focus of segmentation for image-guided surgery.  Furthermore, the techniques 

that are intended for tumors leave significant room for increased automation and 

applicability.  

Specifically, we consider the task of segmenting large brain tumors such as gliomas, 

meningiomas, astrocytomas, glioblastoma multiforme, cavernomas, and Arteriovenous 

Malformations (AVM).  In practice, segmentation of this class of tumors continues to 

rely on a combination of manual tracing and semi-automation using low-level computer 

vision tools such as thresholds, morphological operations, and connective component 

analysis. Automatic techniques tend to be either region- or contour-based.  (Note that the 
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term “automatic” has been applied very liberally in the literature. Automatic algorithms 

greatly reduce, but rarely completely remove, user interaction.)   

Region-based methods seek out clusters of voxels that share some measure of 

similarity. Most methods reduce operator interaction by automating some aspects of 

applying low-level operations. From early on, these methods were grounded in a 

statistical modeling of each tissue class, combined with morphological operations such as 

smoothing and connectivity [Cline87, Cline90]. Threshold selection can be assisted 

through histogram analysis [Joe99], and logic can be applied to the application of low-

level vision techniques through a set of rules to form a knowledge-based system 

[Clark98]. Another approach is to perform unsupervised clustering with the intention that 

the tumor voxels will congeal into their own cluster [Capelle00].  Such methods, 

although fully automatic, only apply to enhancing tumor, that is, tumor that appears 

markedly hyper-intense on MRI following admission of a contrast agent such as 

gadolinium. Since statistical classification alone may not allow differentiation between 

non-enhancing tumor and normal tissue, anatomic information derived from a digital 

atlas has been used to identify normal anatomic structures. Of these approaches, the most 

successful has been the iteration of statistical classification and template matching as 

developed in [Warfield95, Warfield00, Kaus01]. However, there remains a reliance on 

several minutes of the operator’s time for patient-specific training.  For good results, the 

template needs to be closely similar to the patient’s anatomy, and the tumors must be 

homogenous. The use of morphological operations has the drawback of making a very 

crude assumption about the radius parameter that is both application-dependent 

(anatomy) and scan-dependent (voxel size). Furthermore, such operations destroy fine 

details and commit to irreversible decisions at too low of a level to benefit from all the 

available information – thus violating Marr’s principle of least commitment [Marr82]. 

Contour-based methods evolve a curve based on internal forces (e.g. curvature) and 

external forces (e.g. image gradients) to delineate the boundary of a tumor.  Since they 

experience similar drawbacks as the region-based approaches, methods that claim to be 

fully automatic can do so only because they apply to tumors that are easily separable 

from their surroundings. (See [Zhu97] for an example using a Hopfield neural network to 

evolve a snaking contour). Level set based curve evolution [Kichenassamy95, Yezzi97] 
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has the advantage over region-based approaches in that the connectivity constraint is 

imposed implicitly rather than through morphological operations. However, 3D level-sets 

find limited use in medical practice due to their reliance on the operator to somehow set 

the sensitive parameters that govern the evolution’s stopping criteria. Furthermore, the 

more heterogeneous a tumor may be, the more user interaction is required. 

Both region- and contour-based segmentation methods have ignored the bias field, or 

patient-specific, signal inhomogeneity present in MRI. While acceptable for small 

tumors, an accurate segmentation method cannot overlook the bias. One reason it is 

overlooked is the difficulty in computing an inhomogeneous field over an 

inhomogeneous tumor (and the fact that inhomogeneous tumors have been largely 

overlooked due to their difficulty anyway). Regardless, the bias field is slowly varying, 

and therefore its computation from the regions of healthy tissue could be extrapolated 

over tumor tissue to provide some degree of benefit. Methods for segmenting healthy 

brains have incorporated the EM algorithm [Dempster77] to simultaneously arrive at both 

a bias field and a segmentation into healthy tissue classes [Wells96b]. There have been 

several extensions, such as collecting all non-brain tissue into a single class 

[Guillemaud97], handling salt and pepper noise with Markov random fields [Held97], 

using a mean-field solution to the Markov random fields [Kapur99], incorporating 

geometric constraints [Kapur99], using a digital brain atlas as a spatially-varying prior 

[Leemput99a], automating the determination of the tissue class parameters 

[Leemput99b], and identifying MS lesions as hyper-intense outliers from white matter 

[Leemput01a].  Coincident with our work in [Gering02b], [Moon02] also extended EM-

based segmentation to apply to brain tumors, but only those that enhance with 

administration of contrast agents. The technique does not apply to the single-spectrum 

MRI considered in our study. 

1.3 Contributions 

The two primary contributions of this thesis are the approach of recognizing deviations 

from normalcy, and the framework for a contextual dependency network that 

incorporates context – both immediate and broad. 
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1.3.1 Recognizing Deviations from Normalcy 

In contrast to the aforementioned methods for tumor segmentation, the novel hypothesis 

underlying this thesis is that we can segment brain tumors by focusing not on what 

typically represents pathology, but on what typically represents healthy tissue. Therefore 

all training is performed exclusively on healthy brains, and all other forms of a priori 

knowledge that are embedded into the algorithm represent descriptors of normal 

anatomy. Our method extends the EM-based segmentation to compute a fitness map over 

the image to be associated with the probability of pathology. That is, we extend the 

segmentation algorithms for healthy brains in order to make progress toward solving the 

recognition problem encountered when segmenting tumors. Indeed, the entire motivation 

behind the Live Wire semi-automatic approach [Falcao98, Falcao00, O’Donnell01] was 

an acknowledgement that segmentation tightly couples two processes: recognition and 

delineation. While computers have been adept at delineation (specifying the precise 

spatial extent of an object), humans – by nature of their global knowledge – are far better 

suited for recognition (roughly identifying an object’s whereabouts). Rather than leaving 

that aspect for humans, the goal of this thesis is to improve the computer’s capability for 

recognizing brain tumors, and thereby address the drawbacks to the existing region- and 

contour-based methods. 

1.3.2 Contextual Dependency Networks (CDN) 

We designed a framework for Contextual Dependency Networks that incorporate context, 

both immediate and broad. We extended EM-based segmentation with region-level 

properties such as shape descriptors, and we derived a novel multi-level MRF approach. 

Inherent ambiguity necessitates the incorporation of contextual information into the 

brain segmentation process. Consider the example of non-enhancing tumor tissue that 

mimics the intensity of healthy gray matter, but is too thick to be gray matter. An 

algorithm’s low-level computer vision techniques could first classify the tissue as gray 

matter, and a higher-level stage – through its broader understanding of context – could 

correct the classifications of the first-pass. This example motivates the introduction of 

hierarchical context into the segmentation process. A voxel’s classification could be 

considered on several levels: the voxel itself, the voxel’s immediate (Markov) 
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neighborhood, the voxel’s region (entire connected structure), the global setting (position 

of the voxel’s structure relative to other structures), and user guidance. Just as a voxel-

wise classification must be computed prior to a neighborhood-wise refinement, a voxel’s 

region must be classified before features regarding the size and shape (or other intrinsic 

properties) of that region can be computed.  

 

Table 1.1. A Contextual Dependency Network is a framework that features no 
decisions made by certain layers that permanently (and perhaps adversely) affect other 
layers. Information flows between the layers (bidirectionally depending on 
implementation details) while converging toward a solution 

# Layer Definition Our Simple Computation 
5 User 

(oracle) 
Spatially specific points clicked 
on by the user on the fly as 
corrective action. 

Mouse clicks trigger re-
iteration. 

4 Inter-structure 
(global) 

Relative position of a voxel’s 
structure to other structures. 

Distance from other region 
boundaries. 

3 Intra-structure 
(region) 

Relative position of a voxel 
within its own structure. 

Distance from own 
boundary.  

2 Neighborhood 
(local) 

Classification of a voxel’s 
immediate neighbors. 

Mean Field MRF 

1 Voxel 
(point) 

Classification based on voxel’s 
intensity. 

EM, ML or MAP 

 

Figure 1.7 previews the results from Chapter 6 to demonstrate that by recognizing 

deviations from normalcy, the same algorithm can identify both hyper-intense and hypo-

intense tumors. 
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Figure 1.7. Preview of Results. The original input images on top were segmented to 
produce the results on the bottom. The algorithm has knowledge of the expected 
properties, with respect to both intensity and shape, of healthy tissues only. Colors 
represent tumor (green), white matter (white), gray matter (gray), CSF (blue), and 
vessels (red). 

 

 

1.4 Roadmap 

In the next two chapters, we develop the rationale for our unique approach to tumor 

segmentation. And in the following three chapters, we present the enabling technology. 

In all, this thesis exhibits the following organization by chapter: 
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Chapter 1: Introduction 

Motivations, brain tumor segmentation, contributions, roadmap 

Chapter 2: Imaging Model 

Imaging model, experimental data 

Chapter 3: Recognizing Deviations from Normalcy 

Feature detection vs. anomaly detection, deviations from normalcy, nearest 

neighbor pattern matching, contextual dependency networks 

Chapter 4: CDN Layer 1: Voxel Classification 

Mathematical background, robust bias estimation, spatially-varying priors, 

computing a probability of pathology, and generative models 

Chapter 5: CDN Layer 2: Neighborhood Classification 

Markov and Gibbs random fields, MRF design, MRF optimization, factorizing the 

joint distribution, algorithmic comparisons, recognizing deviations from normalcy 

Chapter 6: CDN Layers 3-5: Intra-structure and Inter-structure Classification 

The ACME segmenter, multi-layer MRF, correcting misclassified voxels, 

correcting misclassified structures, user interaction, and results on real data 

Chapter 7: Conclusions and Future Work 

Summary, future work 

 



 

Chapter 2 

Imaging Model 

 
To set the stage for the experiments ahead, this chapter introduces our imaging model and 

the data sets used throughout this thesis. 

2.1 Imaging Model 

Before we begin experimenting, we need to model the image generation process. There 

are four reasons to construct such a model: 

 

1. The image generation process is incredibly complex, but minor subtleties can be 

ignored, resulting in much greater simplicity. Constructing a model is our process 

for discerning which aspects to include, and which to exclude, from our 

algorithm. 

2. The model will support all assumptions that we make while deriving algorithms 

throughout this thesis. 

3. The model will be computer-simulated to generate synthetic data to use in 

experimentation. Although synthetic data should not be used for final validation 

of an algorithm designed for real data, it is very useful for the designer to have 

control over various image aspects in order to better explore both the problem and 

its solution. 

4. Because ground truth is known, model-generated data is useful for validating the 

correctness of the software implementation of an algorithm. 
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The image generation process consists of two main components: an object 

function that describes the spatial extent of the object with perfect resolution, and a 

mapping function that maps object space to image space. This mapping function is 

essentially the image acquisition process, taking an object as input, and producing an 

image as output, as shown in Figure 2.1. 

 

 
Figure 2.1. Image Acquisition Process. The image acquisition process performs a 
mapping from the object function to image space. 

 

The mapping function’s components are depicted in Figure 2.2, and each will be 

described in detail below. Recall that this is intended to be our working model, but not a 

fully accurate description of the real process. 

 

 
Figure 2.2. Image Generation Process. The image acquisition process combines 
functions of space (x), tissue type (w), and discretization (n). 

 

 The first step in the image acquisition process is to convolve the object function   

with a system response function , which is also referred to as a point spread 

)(xO

)(xh
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function. This convolution operation models the system’s limited resolution by blurring 

the object so that sufficiently fine structures become unresolvable. Note that if  were 

the impulse function, then image voxels would be statistically independent. However, 

MR scanners physically perform the Fourier transform, so image reconstruction involves 

applying the inverse transform to recover an image. Finite and discrete computation 

results in sinc-shaped Gibbs ringing surrounding each voxel’s signal. Scanning protocol 

parameters (including voxel size described in a later stage of this acquisition process) are 

chosen to minimize the signal’s spread over neighboring voxels, but a very small quantity 

of correlation does exist. 

)(xh

The second step in the imaging process is the sampling that produces a discrete 

lattice of image voxels. This digitization of a continuous function is responsible for 

introducing partial volume artifacts, which we will examine in Chapter 6.  

The next stage in the process introduces additive white noise with tissue-

dependent variances. Noise in MR images has peculiarities caused by rectification during 

image reconstruction. MR signal detection is performed in quadrature, producing real and 

imaginary signals. Medical images are produced by taking the magnitude of these signals, 

which rectifies both the signal and the noise: 

 

magnitude image = SQRT[(real signal + real noise)2 + (imag. signal + imag. noise)2] 

 

 As a result that is elegantly derived in [Henkelman85], the noise in the presence 

of strong signal has a nearly Gaussian distribution [Simmons96], but noise near low 

signal, such as in the background, is best modeled with a Raleigh distribution 

[Haacke99]. 

The final stage in the pipeline involves combination with a multiplicative bias 

field  to model spatial inhomogeneity. Present in every medical imaging modality, 

the cause of the bias field varies greatly. For example, the bias field is attributed to 

dissipation with depth in Ultrasound, Compton scattering in CT, and asymmetric 

positioning of reception coils, among other effects, in MRI [Simmons94, Sled98]. 

)(xb

The above imaging model will form the basis for making a number of 

assumptions throughout this thesis. The model reveals that the problem of classifying 

  23



image voxels is very ill-posed. According to [Tikhonov77], a problem is mathematically 

ill-posed if its solution does not exist, is not unique, or does not depend continuously on 

the initial data. In our case, the solution is not unique because the model accounts for five 

major voxel intensity modifiers, as summarized in Table 2.1. Therefore, additional 

constraints are needed to guarantee the uniqueness of the solution, and convert this ill-

posed problem into a well-posed one. Computer vision algorithms have long relied on 

regularization to make a problem well-posed, as surveyed in [Poggio85]. The approach 

taken by this thesis will be to impose the typical smoothness constraints in addition to 

novel contextual constraints. Observe that an approach of searching for deviations from 

normalcy renders an ill-posed problem to be even more ill-posed because an extra voxel 

modifier of pathology is effectively added to Table 2.1. Regardless, this approach has the 

benefit of allowing general tumor recognition, so we will confront the challenge of 

making the problem well-posed by adding contextual constraints. 

 

Table 2.1. Voxel Intensity Modifiers 

Effect Cause 
Tissue heterogeneity  Object Function 
Voxel correlation  System Response Function 
Nonuniformity  Bias Field 
Partial volume artifacts  Sampling Function 
Additive noise Detector noise, and rectification 

 

2.2 Experimental Data 

This section introduces the data sets that will be used for experimentation throughout this 

thesis. 

2.2.1 Synthetic Data 

Synthetic data will be shown to be useful in the experiments of the subsequent chapters. 

This is because the ground truth is known, and vast amounts of data can be easily 

produced. We must be careful to ensure that the synthetic data spans an interesting and 

important space of possible cases. Therefore, we generated the synthetic data set by 

simulating each stage of the pipeline developed in Section 2.1.  
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2.2.1.1 Synthetic Object Function 

The object function for 2-D brains was simulated by generating white matter that was 

shaped as a disc with its radius modulated by a sine wave. The white matter was then 

surrounded with a layer of cortical gray matter, which was surrounded with a coating of 

CSF, which was enveloped by a perimeter of scalp. Then, subcortical gray matter, the left 

ventricle, and the right ventricle were each added as overlapping discs near the brain 

center. Finally, vessels were added as arcs. With uniform distributions governing the 

parameters for shape and position, there are 2.5x1017 equally probable “healthy brains” 

from the object function. Figure 2.3 depicts several examples to demonstrate the 

variability. Furthermore, 5.8x105 different circular tumors can be randomly added. 
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Figure 2.3. Synthetic Object Function. Several examples drawn at random from the 
simulated Object Function are shown as ground truth segmentations. Color coding: 
white matter (white), gray matter (gray), CSF (blue), scalp (tan), vessel (red). 

 

2.2.1.2 Synthetic Imaging Function 

Given a tissue labeling from the object function, the imaging process is simulated by 

adding Gaussian-distributed intensities to form an image. Statistical parameters for each 

tissue class were measured from computing the mean and variance of voxels in one of the 

scans in the real data set. To prevent partial volume artifacts from corrupting the 

measurements, the tissue was segmented, and then the segmentation was eroded to 

remove boundary voxels (Figure 2.4). Table 2.2 lists the resultant measurements both 

  26



before and after erosion. We will reference this table again in the discussion of handling 

partial volume artifacts in Chapter 6. 

 

 
Figure 2.4. Measuring Statistical Parameters. Parameters were measured from a real 
scan (left) by segmenting a tissue (center) and eroding its boundary (right). Pictures are 
shown for CSF in the ventricle, and Table 2.2 lists the results for all tissue types. 

 

Table 2.2. Statistical Measurments for Synthetic Data. The model used the values 
obtained without partial volume artifacts (PVA) to avoid inaccurately inflated variances. 

Tissue Type With PVA Without PVA 
 Mean Variance Mean Variance 

White matter  117 55 120 33
Gray matter  91 43 90 29
CSF 32 97 28 48
Scalp  198 1919 217 1150
Vessel 179 631 183 200

 

Using the mean values shown in the right side of Table 2.2, a 512x512, high-

resolution, intensity image is produced from the object function’s label map. Then, to 

simulate the system response function, this image is convolved along each dimension 

with a Gaussian kernel (1,4,6,4,1), and down-sampled to form a 256x256 image. Figure 

2.5 reveals that the result accurately depicts the limited resolution and partial volume 

artifacts of real scanners. Next, additive white noise is simulated by adding random 

samples drawn from a 0-mean, Gaussian process. (For convenience, we used the same 

variance of 36 for all tissues, where this value was chosen based on inspection of the 

right side of Table 2.2.) 
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Figure 2.5. Partial Volume Artifacts. Close-ups of the portion of the synthetic brain 
where ventricle, subcortical gray matter, and white matter converge are shown. An 
image with PVA (right) is computed as a blurred, down-sampled version of a high-
resolution image without PVA (left). 

 

Furthermore, spatially-varying bias fields are included by modulating the image 

with a smoothly varying function. We experimented with a linear ramp and a low-

frequency sinusoidal wave, as pictured in Figure 2.6. 
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Figure 2.6. Bias Field. Synthetically generated bias fields that vary linearly (top left) 
and sinusoidally (top right) are applied to an original image (bottom left) to produce the 
bottom center and right images, respectively. 

 

2.2.2 Real Data 

Besides using synthetic data, experiments were performed on a publicly available 

database of 10 tumor scans [BWHSPL]. To understand this data set, we briefly describe 

the nature of multi-spectral MRI. 

2.2.2.1 MRI 

MR imaging is performed by measuring the radio signal emitted by magnetic dipoles 

(hydrogen nuclei) as they relax back to their equilibrium position following excitation by 

a momentarily-applied magnetic field. The dipoles cannot merely align themselves with 

the magnetic field as little bar magnets would, because the laws of quantum physics 

restrict these dipoles to be in one of two states. They precess like spinning tops, and the 

"tops" can make one of two angles with the axis of rotation. The applied magnetic field 
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excites approximately one in a million of the dipoles to flip states, and the total sum of all 

these miniature magnets is a magnetization that decays once the field ceases to be 

applied.   

This decay has two separate components referred to as T1 and T2 relaxation. T1 

relaxation occurs as the dipoles return their orientation to the equilibrium position, and 

T2 relaxation results from the precession of the dipoles falling out of phase with each 

other. The rate of T1 and T2 decay varies depending on the molecular chemistry of the 

tissue inhabited by the hydrogen nuclei.  Scanning parameters can be set so that the 

source of image contrast (light and dark regions) is weighted more toward either the T1 

or T2 relaxations.  

In many instances, physicians acquire both T1- and T2-weighted MRI. For 

example, extracting a well-defined tumor boundary from diagnostic images may be  

hindered by surrounding edema. Edema, or liquid diffused between cells, spreads finger-

like into the white matter, while avoiding the gray matter and cortex whose cell packing 

is too dense to harbor as much fluid [Youmans96]. The extra-cellular fluid of edema and 

increased intra-cellular fluid of tumors can be confused when ascertaining the 

tumor/tissue interface. Ambiguity can be diminished by having both T2-weighted MR 

images and T1-weighted MR images with contrast. A contrast medium (liquid that 

appears bright on MRI) is administered to the patient, and taken up more by the areas of 

active tumor tissue.  The contrast agent forms a hyperintense region on MRI where the 

agent leaks out of vasculature into tissue.  This occurs where the blood-brain barrier 

breaks down, and is thus an indication of a high grade, rather than a low grade, glioma (a 

mass created in the brain by the growth of abnormal cells, or the uncontrolled 

proliferation of cells). 

Brain segmentation techniques have long exploited the increased soft-tissue 

contrast available from multi-channel MRI [Vannier85]. Standard diagnostic protocols 

involve collection of proton density, T2-weighted, T1-weighted pre-contrast, and T1-

weighted post-contrast images. Therefore, if we can demonstrate our framework to 

function reasonably well given only noisy, single-channel data, then results will be that 

much better on better data. The fact remains that humans can easily recognize tumors to a 

large degree from noisy, single-channel MRI. For example, although edema is 
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remarkably clear given both T1- and T2-weighted scans, radiologists do tend to identify 

edema from T1-weighed imagery alone. Our motivation is to progress toward endowing 

computers this human-like ability.  

2.2.2.2 Tumorbase 

The tumorbase [BWHSPL] is an especially difficult data set with which to work because 

it contains only single-channel, post-contrast MRI with poor gray-matter / white-matter 

contrast. For performing validation, one slice of each scan was segmented by 4 different 

experts, and the entire volumes were segmented by one expert. Table 2.3 lists the patient 

characteristics. The acquisition protocol was: 
SPGR T1 POST GAD 
resolution: 256x256x124 
pixel size: 0.9375 x 0.9375 mm 
slice thickness: 1.5 mm 
slice gap: 0.0 mm 
acquisition order: LR 
 

Table 2.3 Tumorbase 

Case # Tumor Type Tumor Location Slice # 
1 Meningioma Left frontal 44 
2 Meningioma Left parasellar 58 
3 Meningioma Right parietal 78 
4 Low grade glioma Left frontal 35 
5 Astrocytoma Right frontal 92 
6 Low grade glioma Right frontal 81 
7 Astrocytoma Right frontal 92 
8 Astrocytoma Left temporal 39 
9 Astrocytoma Left frontotemporal 31 

10 Low grade glioma Left temporal 35 
 

 The slices listed in the righthand column of the above table are depicted in Figure 

2.7. 
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Figure 2.7. Tumorbase The central tumor slice of each of 10 scans 
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Chapter 3 

Recognizing Deviations from Normalcy 

 
In this chapter, we develop the rationale for our unique approach to tumor segmentation. 

By viewing the problem from a general perspective, we describe tumor recognition as a 

form of anomaly detection rather than feature detection.  By taking this posture, we 

position ourselves to derive our method for diagonalized nearest neighbor pattern 

recognition, and also our framework for contextual dependency networks.  

3.1 Feature Detection vs. Anomaly Detection 

3.1.1 Tumor Segmentation Based on Feature Detection 

Much of the related work in tumor segmentation reviewed in Chapter 1 can be classified 

as signal processing and pattern recognition. Signals, taking the form of imagery, are 

generally processed through a three-stage pipeline consisting of preprocessing, feature 

extraction, and classification [Duda01]. Stages are sometimes combined, or applied in 

iteration, such that intermediate results are fed back into earlier stages for re-processing. 

Nonetheless, in general, each stage serves to simplify the operations of the subsequent 

stage.  

The first stage, preprocessing, simplifies feature extraction by reducing noise or 

inhomogeneity.  Some algorithms perform nonlinear filtering designed to reduce noise 

while preserving object edges [Gerig92]. We cited several methods in Chapter 1 that 

correct for the non-uniform bias field present in MRI.  Others require scaling images in 

intensity or extent to match certain templates.  
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The second stage, feature extraction, strives to reduce the amount of data passed 

on to the classifier. This data reduction is achieved by measuring features, or properties, 

that characterize the objects to be recognized. The measurements are chosen so that 

measurement values are similar for objects that share the same class membership, but are 

quite different for objects belonging to other classes. The goal, then, is to identify 

features that are both distinguishing, and invariant to irrelevant transformations of the 

data. Due to their ease of computation, segmentation features are typically intensities and 

distances. 

The third stage, the classifier, decides the class membership of each object. While 

the final segmentation may display the assignment of each object to a single class, the 

classifier typically solves the more general problem of computing the probability of 

membership of each object with each class. If the features are ideally chosen to linearly 

separate the object classes in feature space, then the design of the classifier can be as 

simple as a threshold. On the other hand, a poorly designed feature extractor requires a 

more intelligent classifier, as illustrated in Figure 3.1. 

 

Figure 3.1. Features and Classifiers 

A common task used in the literature to 
evaluate a segmentation method is to 
discern buildings from trees and shrubs. 
However, consider this photograph from 
Boston’s historic Beacon Hill district. Its 
sheer complexity suggests a need for an 
extremely intelligent classifier.  
 
However, if one were to photograph it 
again in early autumn (after the tree leaves 
have turned bright yellow while the vine 
remains deep green), and again in late 
autumn (after the vine has also lost its 
leaves), the three images would comprise 
a feature vector of colors. Only a simple 
classifier would be required to operate on 
this feature vector because the objects 
(building, vine, and tree) are easily 
separable across the new dimension of 
time. 
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3.1.2 Tumor Segmentation Based on Anomaly Detection 

Existing work in tumor segmentation has tended to reduce the problem to a form of 

pattern recognition, with a focus on feature extraction. Given this stance, the central 

question that the algorithm designer seeks to answer is: 

 

1.) “What features will separate tumors from their surroundings?”   

 

Given the answer to this question, the designer subsequently asks: 

 

2.) “What preprocessing is required to facilitate extraction of these features?”  

3.) “Which classifier will perform best on this feature set?” 

 

However, the goal of this thesis was to shift the focus from the features to the classifier, 

and to consider the problem not just as pattern recognition, but within the more general 

scope of artificial intelligence. Consequently, we replaced the above questions with the 

following: 

 

1.) “How does a doctor recognize tumors?” 

 

While answers may vary, we believe that a doctor’s knowledge of normal anatomy 

permits recognition of any form of pathology. As before, the answer to the first question 

leads us to two follow-up questions: 

 

2.) “What is normal?” 

3.) “How is abnormality measured?” 

 

These are the two questions on which we will focus in considerable detail as we 

develop our framework for a tumor segmentation system.  
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3.2 Deviations from Normalcy 

3.2.1 Expressing Abnormality 

Given a univariate, normally-distributed, random process, the answers to our two guiding 

questions are straightforward: normalcy is defined as the population mean, and 

abnormality is measured as some distance from the mean. The units of measurement for 

this distance should be standard deviations because a Gaussian process is fully 

characterized by its mean and standard deviation. For variable x with mean µ and 

standard deviation σ, expressing distance in this way is commonly known as the 

Mahalonobis distance: 
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Next, consider a multivariate process of n independent variables. Like a Euclidean 

distance for Cartesian space, abnormality can be expressed as the square root of the sum 

of squared Mahalonobis distances for each variable: 
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Finally, consider a multivariate process of correlated variables. The expression for 

abnormality begins as above, but contains additional cross-terms under the radical. 

Combining the variances and covariances into a convariance matrix Σ, we have: 

)()( 1 µxΣµx −−= −T
nd  

(3.3)

With medical applications, however, access to all variables is rarely obtainable. 

For example, physical health could be expressed as a single quantity using the above 

equation for distance from normalcy. Such a distance could be computed from the set of 

status and DNA contents of each cell, yet the normalcy of newborn babies is merely 

expressed with the five non-invasive measurements of the Apgar Score [Sears93]: heart 

rate, breathing effort, color, muscle tone, and response to stimulation. That is, all the 

possible axes of variation are reduced to a very small and manageable feature set. 
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 This analogy shares two similarities with MRI. First, we do not have access to the 

complete condition of the brain; we have only the measurements expressed as the 

intensities of the image voxels. Brains do not have voxels; images do. Given that the 

image itself is a non-ideal representation of the brain, it is reasonable to consider further 

representational abstractions for convenient computation. Second, all the axes of 

variation can be compressed into a small and manageable set, which we will explore next.  

We can regard an MR image as a set of voxels that specify the Cartesian 

coordinates of a point with respect to a set of axes – one axis per voxel. In this 

interpretation, each image can be thought of as a point in an abstract space of images. A 

set of N images represents a cloud of N points in image space. We can perform data 

dimensionality-reduction by deriving a set of degrees of freedom which may be adjusted 

to reproduce much of the variability observed within a training set. (Informally, imagine 

creating a small set of knobs which may be turned to generate reconstructions of all the 

image instances.)   

Brains, being similar in overall configuration, will not be randomly distributed 

throughout a huge image space, and thus can be described by a relatively low 

dimensional subspace. For example, consider having a stack of brain images that could 

be ordered in such a way that when viewed in rapid succession, they formed a nearly 

seamless movie. Whenever this is achievable, then those images lie along a continuous 

curve through image space. Generating the entire sequence of images can be achieved by 

altering only one degree of freedom, the curve’s parameterization. That is, brain 

variability is reduced to a one-dimensional curve that is embedded in a high-dimensional 

image space, where the number of dimensions is equal to the number of voxels per 

image. By reducing the data dimensionality of normal brains to one, the expression of 

abnormality becomes simple: the distance from the curve. When one dimension is not 

sufficient to capture an adequate amount of variability, several may be used, producing 

not just a curve, but a surface or manifold in image space. We next examine very briefly 

how to discover such a manifold. 

While newborn measurements were chosen partly for convenience, the axes of 

variability for brain images can be found automatically given a training set. There are 

several mathematical methods [Chatfield80, Turk91, Bregler95, Hinton95, Basri98, 
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Tenenbaum00, Roweis00, Cox01] that can discover the underlying structure of brain 

images (different from that of cardiac images, for example) in order to map a given data 

set of high-dimensional points into a surrogate low-dimensional space:  

dD ℜ∈⇒ℜ∈ YX ,    d << D (3.4)

For example, Principle Component Analysis (PCA) replaces the original variables of a 

data set with a smaller number of uncorrelated variables called the principle components. 

If the original data set of dimension D contains highly correlated variables, then there is 

an effective dimensionality d < D that explains most of the data. This representation has 

two advantages. First, the fact that the new variables are uncorrelated means that equation 

3.2 can be used instead of equation 3.3. Second, the presence of only a few components 

of d results in more efficient computation, and it makes it easier to label each dimension 

with an intuitive meaning, such as “height”. The earliest descriptions of PCA were 

presented in [Pearson1901] and [Hotelling33], and we refer the reader to [Gering02b] for 

detailed derivations and comparisons of both linear and non-linear data dimensionality 

methods.  

3.2.2 Partitioning Abnormality 

To summarize the discussion thus far, we have concluded that computing the 

Mahalonobis distance using every MR image voxel would be too cumbersome, and we 

therefore wish to reduce the data dimensionality. However, we cannot simple run PCA on 

a vast training set of brain images because we are not seeking to measure the total 

abnormality of a brain. Rather, we aim to recognize the abnormal tissue within a brain, 

and label those areas as pathology. Thus, our goal is to partition the space into healthy 

and diseased regions.  

Partitioning can be achieved through concentrating on local image patches. If we 

divide the brain into a large number of sub-regions, PCA (or a similar variant) could be 

performed on each local patch. However, this approach faces the two hurdles of 

somehow reconciling a given brain sample with some appropriately chosen subdivision 

process, and training on an extensive set of brain imagery. How should the image be 

subdivided into local patches? We will answer this question during our development of 

nearest-neighbor pattern matching in the next section.  
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3.2.3 Defining Normal using Symmetry 

Throughout the above discussion, answers to the questions of what is normal, and how to 

measure abnormality, were dependent on possessing a training set of example instances 

of normal images. In the absence of an extensive training population, a definition for 

normal can be derived from an exploitation of symmetry. For example, it has been 

proposed that computer-aided diagnosis algorithms for detecting breast and respiratory 

lesions could exploit left/right symmetry to define normal as the healthy breast or lung. 

(See [Giger00] for a survey article). In practice, however, texture from a single healthy 

breast has been insufficient to capture all the variability, requiring a training set of many 

scans. We perform experiments here to judge how well normal brain anatomy can be 

defined as the healthy hemisphere. The problem of recognizing brain tumors may be 

better suited to exploiting symmetry because the application is for treatment planning 

rather than screening. Consequently, while breast tumors can appear minutely small on a 

routine screen, brain tumors tend to not be scanned until their size has grown sufficiently 

large to become symptomatic. 

With symmetry providing examples of normal texture, abnormality can be 

measured using an appropriate distance metric such as the sum-of-squares distances for a 

Euclidean space. This leads us naturally to the method of nearest neighbor pattern 

recognition, developed below. 

3.3 Nearest Neighbor Pattern Matching 

In this section, we experiment with applying nearest neighbor pattern matching (NNPM) 

to segmenting brain tumors. This method forms the basis of an initial study for measuring 

deviations from normalcy in our application. The results represent a baseline against 

which we can benchmark the more sophisticated methods developed during the 

remainder of this thesis.  

The main idea is to compute a map of the probability of pathology, and then 

segment this map instead of the original input intensity image. Alternatively, the map 

could be used as a feature channel in an existing tumor segmentation method, such as 

[Kaus00]. Figure 3.2 illustrates the concept of segmentation based on an abnormality map 

computed as the set of Mahalonobis distances. 
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Figure 3.2. Segmenting Abnormality Maps instead of Intensity Images.  Top: basic 
semi-automatic segmentation steps applied in sequence to an intensity image. From left 
to right: threshold, internal island removal, external island removal, erosion/dilation. 
Bottom: same sequence of steps applied to the map of abnormality computed using  
NNPM with a database of 300 normal images. 

 

3.3.1 NNPM Algorithm 

As diagrammed in Figure 3.3, a simple pattern matcher can be constructed from two 

elements: a container and a comparator. The container holds a set of template patterns, 

and the comparator computes a distance value, according to an appropriate metric, 

between each template and the sample under study. The template with the smallest 

distance is the nearest neighbor to the sample. Classification can be accomplished with 

NNPM by classifying the sample by assigning it the label associated with its nearest 

neighbor [Duda01]. We will adapt NNPM for use as a means of measuring deviations 

from normalcy. 
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Figure 3.3. NNPM Pattern Matcher 
 

For our application, define a sample to be a small rectangular window surrounding 

a certain voxel of the patient’s image. Let there be a different container Ci of templates Tj 

for each sample Si in the patient image. Then perform the following algorithm: 

 
For each sample Si in the patient image: 
  For each template Tj in container Ci: 
    Compute disparity between Si and Tj 
  Record the lowest distance as pixel i of the result 
 

We next consider how NNPM can be used to answer our two guiding questions of what is 

normal, and how to measure abnormality. 

3.3.2 Measuring Abnormality with NNPM 

Let us express the above algorithm mathematically. The method searches for the template 

with the smallest distance:  

ijCji dd
i∈

= min  (3.5)

We next need to define dij: the distance between the iTH sample in the image, and the jTH 

template in Ci. If we were to treat each variable within a window as independent, we 
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could adapt equation 3.2. Then, in place of the mean value representing “normal” in 

equation 3.2, we use the reference value. Instead of normalizing with standard deviations, 

we normalize with window size W to accommodate comparing the results achieved using 

various window sizes.  These substitutions result in the following equation, which is 

essentially the root-mean-squared error. Let Si[k] represent the kTH voxel of the iTH 

sample, and let Tj[k] represent the corresponding voxel in the jTH template. 
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Combining the above two equations produces a mathematical expression of the 

algorithm, given our metric for measuring abnormality: 
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3.3.3 Defining Normal with NNPM 

NNPM defines normal as the set of templates in each container Ci. Each template is an 

example of normal texture that one would expect to find within the window of W pixels 

surrounding the iTH voxel of the patient’s image. Since no probability distributions are fit 

to these templates, building collections of them is straightforward. However, enough 

templates must be gathered into each container to sufficiently span the space of normal 

variation within a window, and none must be examples of abnormal texture near voxel i. 

This can be a significant task given that the variation within a window is comprised from 

variation in both anatomy and the bias field. The next few paragraphs examine how to fill 

these containers. 

 Consider the simple case of defining all Ci to identically contain all windows 

within a reference image of a healthy brain. The algorithm would effectively search an 

entire reference image for the template window that best fits a given window in the 

patient image. However, by searching the entire reference image, spatial information – 

the location of voxel i – is ignored. For example, if the reference image contained a dark 

window anywhere, then the algorithm would consider any dark windows in the patient 
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image to be permissible. However, it should be considered abnormal to find a dark 

window where one would expect a light window, so this approach fails as a search for 

deviations from normalcy.  

 Therefore, a more plausible choice of Ci would be the window surrounding the 

one voxel of the reference image that exhibits the best correspondence with voxel i of the 

patient image. Correspondence would need to be established by defining a mapping from 

voxels in the patient image to voxels in the reference image. Such a mapping could be 

computed as a linear or affine transform using rigid registration, or as a polynomial 

function or vector displacement field using non-rigid registration. Either way, robustness 

to registration errors could be introduced by expanding Ci to include all windows 

centered around the small set of neighboring voxels surrounding the one voxel with the 

best correspondence. The algorithmic time complexity would then be O(NMW), where N 

is the image size, W is the window size, and M is the neighborhood size, and M,W < N. 

How well does a single reference image capture the extent of normal variation 

within a population? The sample on the left of Figure 3.4 looks little like the reference on 

the right. With this thought in mind, perhaps a better approach to defining Ci would 

involve not one reference image, but a set of images that have been selected to be 

representative of the complete population. Call this the training set of images, and define 

Ci to include all templates defined as follows: 

• For each image t of the training set: 

• For the one voxel j in image t that exhibits the best correspondence with 

voxel i of the patient’s image: 

• For each voxel k in the neighborhood {jN} surrounding j: 

• Create a template as the window {kW} surrounding voxel k. 

 

The time complexity of this algorithm scales linearly with the training set size: 

O(NMWT). Figure 3.4 illustrates the difference between using a single reference image, 

and an extensive training set. Observe that the larger atlas alleviates the need for a larger 

search neighborhood. No search neighborhood is as good as a more complete atlas, 

especially for expressing concepts such as the vessels which rarely appear in exactly the 

same place on any two scans, but always occur in the same general area. 
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Figure 3.5 presents a measurement of the algorithm’s reliance on all the images in 

the training set. A spatial map was generated by setting each voxel’s value to the index of 

the atlas image (1-300) where the nearest neighbor was found. For example, if all the 

nearest neighbors had been found in the same atlas image, the spatial map would appear 

as a constant gray. Instead, the map appears quite speckled. The map on the right is less 

homogenous than the map on the left because the search space was expanded to include 

the 9x9 neighborhood the best corresponding pixel of each image in the atlas (instead of 

just 1x1). Note how the tumor is conspicuous by its homogeneity – testifying to its 

distance from the cluster of healthy atlas patches.  
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Figure 3.4  Atlas Size and Search Space. (Top:) The “sample” image is on the left, and 
one “reference” image is on the right. (Middle:) Results of running NNPM on the 
“sample” using an atlas of 300 scans. From left to right, are the results of searching a 
square neighborhood around the best corresponding pixel with radius 0, 2, and 16. 
(Bottom:) Inferior results of NNPM using the single “reference” image instead of an 
atlas of 300.  
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Figure 3.5. Nearest Neighor Distribution within an Atlas of 256 Scans. (Top:) A 
spatial map was generated by setting each voxel’s value to the index of the atlas image 
(1-300) where the nearest neighbor was found. On the left, is the result of using 1x1 
neighborhoods, and the right is the result of searching 9x9 neighborhoods. (Bottom:) 
Histogram of indices for the top left image demonstrating the breadth of the distribution. 
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3.3.4 Selecting Window Size 

Consider selection of the window size W. For the foregoing discussion, define micro-

texture to refer to the normal intensity patterns found over small regions, and macro-

texture to refer to the patterns spread over large areas.  

The optimal choice of window size is application-dependent, as it varies with the 

interplay between micro- and macro-textures. Selecting a small window size would be 

adequate to incorporate the context necessary to recognize normal micro-texture, and run 

times would also be favorable. Large windows, on the other hand, would have the 

advantage of capturing macro-texture, but they would situate the micro-texture within the 

macro-texture. That is, if a certain micro-texture pattern could normally be found 

anywhere, than enough macro templates would be required to express this fact by 

exhibiting the certain micro texture in various situations. Thus, the run-time of the 

algorithm that correctly uses large window sizes would be dramatically lengthened for 

two reasons: more time is required to process larger windows, and more template 

windows are required to encode more situations. We will refer to this as the double 

trouble with large window sizes. 

 One way to handle this dilemma would be to isolate the searches for micro- and 

macro-texture.  This will be our goal in the next two subsections, as we derive our novel 

diagonalized NNPM. 

3.3.5 Multi-scale NNPM 

As we seek a means to somehow isolate the searches for micro- and macro-patterns, we 

acknowledge that there has been much experience within the computer vision community 

with multi-scale algorithms. We employ such a tactic in Chapter 4, for example, when we 

automatically align patient images to atlas images by maximizing mutual information 

[Wells96a]. Our implementation applies the same algorithm to several different 

resolutions of the input data. The objective of this approach is for greedy algorithms to 

have greater scope to avoid local minima, as well as faster convergence toward a 

solution.  Coarse solutions can be reached very quickly given an input data size that is 

merely a small fraction of the original.  Then, finer processing can refine the coarser 

solutions using progressively larger input data sizes.  
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For our purposes within this chapter, we seek to exploit multi-scale computation 

not to aid greedy searches or minimize time to convergence, but rather to separate micro- 

and macro-texture. When the input data set is downsampled to halve the size of each 

dimension, 3-D computation with the same window size proceeds 8 times more quickly, 

and incorporates context from a region 8 times larger. More importantly, at progressively 

smaller image dimensions, micro-textures become blurred out, allowing the computation 

to concentrate on macro-textures alone. Figure 3.6 displays one of our synthetically-

generated brains at multiple resolutions. 

 

Figure 3.6. Multi-scale Computation. The top row displays each downsampled image 
at actual size, while the bottom rows displays the same images scaled for equal 
comparison of detail. At small scale (left), note the disappearance of micro-texture 
(vessels) and preservation of macro-texture (CSF divides scalp from white matter).  

 

Downsampling must be performed properly to avoid the artificial introduction of 

spurious features, as shown in Figure 3.7. This is the purpose of scale-space theory, and 

in particular, the scaling theorem. Multi-scale analysis for extracting features from a 

continuum of scales was initiated by [Rosenfeld71], and followed by the well-known 
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work of Ellen Hildreth and David Marr [Marr80]. The scaling theorem arose when 

[Witkin83] analyzed zero crossings over a range of scales simultaneously by plotting the 

zero crossings of a Gaussian-smoothed signal over a continuum of scales. The resulting 

contours form either lines or bowls as the scale progressed from small to large. Thus, the 

transformation from a fine scale to a coarse scale can be regarded as a simplification. 

Fine-scale features disappear monotonically with increasing scale such that no new 

artificial structures are created at coarser scales. Otherwise, it would be impossible to 

determine if coarse-scale features corresponded to important fine-scale features, or 

artifacts of the transformation. In what is known as the scaling theorem, [Koenderink84], 

[Bebaud86], and [Yuille86] each proved that the Gaussian kernel uniquely holds this 

remarkable property. 

 

Figure 3.7. The Scaling Theorem. From left to right, progressive downsampling of an 
image. The bottom row depicts results using Guassian smoothing, while the top row 
does not. Observe the introduction of high-frequency spurious features in the third 
image from the left, top row. 

 

3.3.6 Diagonalized NNPM 

All that remains in completing our derivation of multi-scale NNPM is some means of 

combining the results found using fine and coarse scales. The output of NNPM is a 

spatial map of distances from normalcy. We create a probability of pathology by 

normalizing this map to scale from 0 to 1. Let us define the following: 

 

 P(A) = probability of pathology at the highest resolution 
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 P(B) = probability of pathology at intermediate resolution 

P(C) = probability of pathology at the lowest resolution 

P(A,B,C) = probability of pathology 

 

Operating on the assumption that using multiple scales is successful in isolating 

micro- and macro-texture, we treat the probabilities of pathology at each resolution as if 

they were independent. (Although not true in practice, we make this assumption for 

tractability.) Thus, we can combine the results obtained at each resolution by scaling each 

result to become a probability map, and then multiplying all the maps: 

)()()(),,( CPBPAPCBAP =  (3.8)

Finally, we must determine the value of the window size parameter, W. Imagine a 

matrix with a vertical axis of image resolution, and a horizontal axis of window width 

(2*r+1). Figure 3.8 arranges the resultant images from running NNPM into such a matrix. 

Instead of using identical window sizes at all scales (such as the red oval in figure 

indicates for a window radius of 2), we will prove that the diagonal blue oval is a better 

choice for us. We label this algorithm, where the window size increases monotonically 

with decreasing resolution, diagonalized NNPM. 
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Figure 3.8. Diagonalized NNPM. The red oval represents basic multi-scale NNPM for 
a window size with radius 2, while the blue oval depicts diagonalized NNPM. 
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Statement:  

In the Diagonalized NNPM algorithm, window size increases monotonically with 

decreasing resolution, resulting in larger windows at coarser resolutions. 

Reasoning: 

• Diagonalized NNPM combines the results obtained at each resolution by scaling 

each result to become a probability map, and then multiplying all the maps: 

)()()(),,( CPBPAPCBAP =  (3.9)

• The validity of this operation depends on the independence of each map. 

• The independence of each map depends on the separation between micro- and 

macro-texture. 

• Micro-texture is most isolated with a small window so that the Gaussian 

smoothing obscures the micro-features. 

• Macro-texture is most isolated with a large window so that a given micro-feature 

within the window cannot exert a significant influence in the calculation of 

abnormality (equation 3.7). 

• Thus, multiplicative combination of the maps is best achieved with window sizes 

that increase with coarser resolutions. 

QED 

Figure 3.9 demonstrates empirical results of applying this theorem to the synthetic 

data from Figure 3.4. Although it is dangerous to compare images that have been 

manually segmented and window/leveled, we would like to make an observation, 

regardless. The non-diagonalized result contains artifacts and an artificially larger tumor 

because the boundaries are more blurred. This is a consequence of failing to isolate the 

fine structure of boundary localization from the coarse structure of general tumor 

presence. 
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Figure 3.9. Diagonalized NNPM. The top row of images uses a probability map for 
pathology computed using the red oval in Figure 2.9, while the bottom row uses the blue 
oval corresponding with Diagonalized NNPM. From left to right, the 3 images are the 
map itself, segmentation using a threshold, and final segmentation following basic 
morphological operations.  

 

3.3.7 NNPM Results on Real Data 

We performed experiments by running diagonalized NNPM on every case in the 

tumorbase in addition to a healthy volunteer. The depicted results were generated by 

defining normal as the two best corresponding slices from the healthy hemisphere of the 

same patient. The diagonalization is performed using the following set of window radii 

from fine to coarse resolution: {1, 1, 2, 2}. The segmentation is performed fully 

automatically by applying a threshold to the 1% level of the map, and then keeping the 

largest island in the intracranial cavity. The layout of each of the next several figures is as 

follows: 

• Left:   Diagonalization matrix (same format as Figure 3.8) 

• Upper right: Single abnormality map computed from the diagonalization matrix 

• Lower right: Segmentation computed from the abnormality map 
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Figure 3.10. Defining Normal by Symmetry. For the first 4 cases in the tumorbase, the 
top row shows the central slice of the tumor, and the bottom row shows the 
corresponding slice in the other healthy hemisphere of the same patient. 

 

Figure 3.11. Healthy Volunteer. Mostly successful, although the fixed threshold 
detected a variation in cortical sulci. 
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Figure 3.12. Meningiomas. Case 1 (top) and 2 (bottom) have hypointense tumors that 
are easily recognized as abnormal. Perfect boundary delineation needs user interaction. 
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Figure 3.13. Low Grade Glioma. The hypointense tumors of cases 3-4 are segmented 
as well as the hyperintense ones, displaying the advantage of not training on tumors.  

 

  56



Figure 3.14. Astrocytomas. Cases 5 and 7 failed to produce suffient abnormality to 
cross the fixed threshold used for automatic segmentation of all cases. 
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Figure 3.15. Heterogeneity. Cases 6 and 9 have very heterogenous tumors. Recognition 
of the entire tumor is possible on certain cases, which is at least superior to thresholds. 
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Figure 3.16. Cases 8 and 10 are typical of the fairly good results with lowgrade gliomas. 
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3.3.8 Discussion of Results for Diagonalized NNPM 

In every one of the real data cases, the results of fully automatic segmentation using 

diagonalized NNPM are too inaccurate for clinical use. Regardless, the results are 

encouraging given the goal of this thesis, which is to solve the recognition problem for 

brain tumors. As described in Chapter 1, existing methods have largely focused on 

boundary delineation, leaving the recognition task for humans. With the exception of case 

#7, diagonalized NNPM correctly recognized the tumor well enough to initiate the 

boundary delineation process using one of the existing methods. For example, NNPM 

could be used to define a region of interest for applying a threshold, a seed point for 

region growing, or an initial boundary contour for curve evolution. Together, 

diagonalized NNPM and these methods can form an end-to-end solution for automatic 

recognition and delineation of brain tumors. 

 There is room for improvement following our initial experiments, and future work 

is described in Chapter 7. Most notably, Figure 3.4 demonstrated that remarkably better 

results can be achieved with synthetic data when a training set of 300 scans are used 

instead of 1. Meanwhile, our real data experiments were performed using only 2 slices 

from the healthy hemisphere. 

 Even with diagonalization, NNPM, as we have implemented it, is an imperfect 

solution to the simultaneous incorporation of context at all possible scales. We will 

attempt to improve on this shortcoming with our development of contextual dependency 

networks in the next section. 

3.4 Contextual Dependency Network 

The goal of this section is to build on our introduction of diagonalized NNPM to derive 

our Contextual Dependency Network (CDN). In applying multi-scale NNPM, we 

encountered the same frustrations – manifested as imprecise tumor boundaries – as 

described by  [Stansfield80] in an MIT AI Lab project to create an artificial commodity 

expert: 

 

Unfortunately, smoothing a graph results in an information loss. While smoothing 

does highlight large-scale features, the location of their boundaries is obscured. 
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What I had hoped for was a series of progressively more abstract descriptions of a 

graph. The high levels of abstraction would describe only the major features and 

the lower levels would fill out the details. 

 

3.4.1 Multiple Levels of Context 

Recall the results of experimenting with various window sizes, which varied the breadth 

of the context incorporated by the algorithm. In computer vision, experiments such as this 

one are typically run to search a parameter space – window size, in this case. After 

finding the optimal parameter value using a training set, the algorithm is ready to be 

employed on the sample data sets. However, we discovered that no single window size 

produces adequate results with NNPM. Moreover, we discovered the double trouble that 

comes with increasing window size: larger windows imply more windows. This is 

because incorporating macro-texture also involves situating micro-texture. 

Consequently, acknowledging that the primary shortcoming of NNPM is its limitation 

of being able to consider context on only one level at a time, we explored a multi-scale 

implementation of NNPM. Our goal was to isolate micro- and macro-texture in order to 

deal with each independently. However, multi-scale vision does not service all of our 

needs. We need to incorporate context at multiple levels in a manner conducive to 

answering our two questions of what is normal, and how to measure abnormality. Multi-

scale methods force the coordinate system into the inference processing, but as we 

referred to earlier, images have voxels, brains do not. In the words of William James, 

“We must be careful not to confuse the data with the abstractions we use to analyze 

them.” [Rice95] We would therefore rather compute measurements of normality on 

actual brain structures, such as cortical gray matter, than on some rectangular sub-regions 

of the image lattice. 

3.4.2 NNPM with Non-rectangular Windows 

One approach would be to relax the constraint that windows are shaped as rectangles. 

Then, each container of templates would be occupied by shapes with various sizes and 

orientations. In the spirit of multi-scale algorithms, the scope of these templates would 

vary as well. Some would describe detailed structures present at full resolution, while 
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others would characterize macro properties best analyzed with downsampled images. The 

determination of non-rectangular windows would be quite application-dependent and 

complex to train, so we seek another solution. 

3.4.3 Hierarchy of Layers 

Diagonalized NNPM was shown to possess broad recognition capabilities, but poor 

precise boundary localization.  We seek a new system that meets both requirements, so 

we propose a solution with multiple levels: some for breadth, and some for precision. 

Beginning with the smallest possible region, and extending outward, we propose 

considering the levels of context listed in Table 3.1. The rightmost column lists the 

definitions of normalcy associated with each level. Our central argument in favor of such 

a framework is how conveniently these definitions accommodate reasonable answers to 

our two guiding questions.  

 

Table 3.1. Levels of context that accomodate answering the two questions of what is 
normal, and how is abnormality measured. 

# Level of 

Context 

Meaning of 

Context 

Characterization of Normalcy 

1 Voxel 

(point) 
Intensity Gaussian distributions over voxel value intensity.

2 Neighborhood 

(local) 
Compatability Gibbs distributions over compatability. 

3 Intra-structure 
(region) 

Shape Gaussian distributions over shape descriptors, 
such as relative position of a voxel within its 
own structure. 

4 Inter-structure 

(global) 
Situation Gaussian distributions over situational 

descriptors, such as relative position of a voxel’s 
structure to other structures. 

 

Ambiguity necessitates the incorporation of contextual information into the brain 

segmentation process. Consider the example of non-enhancing tumor tissue that mimics 

the intensity of healthy gray matter, but is too thick to be gray matter. The lowest level of 

context could first classify the tissue as gray matter, and a higher-level stage – through its 
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broader understanding of context – could correct the classifications of the lower level. 

Just as a voxel-wise classification must be computed prior to a neighborhood-wise 

refinement, a voxel’s region must be classified before features regarding the size and 

shape (or other intrinsic properties) of that region can be computed. This is a concept of 

predicated context, where high-level vision is performed based on aggregated 

information from low-level vision. Therefore, we organize our levels of context into a 

hierarchical network, and label it as a Contextual Dependency Network (CDN). 

Furthermore, to accommodate intelligent interaction with users, we add a fifth layer on 

top, as shown in Table 3.2. Note that NNPM has difficulty with expressing predicated 

context. How does one express that edema always borders tumor, but tumors, and 

subsequently, edema, can be situated almost anywhere? 

 

Table 3.2. A Contextual Dependency Network is a framework that features no 
decisions made by certain layers that permanently (and perhaps adversely) affect other 
layers. Information flows between the layers bidirectionally while converging toward a 
solution. (Rows are reversed in order from Table 3.1 to situate “high-level“ layers above 
“low-level“ layers.) 

# Layer Definition Our Simple Computation 
5 User 

(oracle) 
Spatially specific points clicked 
on by the user on the fly as 
corrective action. 

Mouse clicks trigger re-
iteration. 

4 Inter-structure 
(global) 

Relative position of a voxel’s 
structure to other structures. 

Distance from other region 
boundaries. 

3 Intra-structure 
(region) 

Relative position of a voxel 
within its own structure. 

Distance from own 
boundary.  

2 Neighborhood 
(local) 

Classification of a voxel’s 
immediate neighbors. 

Mean Field MRF 

1 Voxel 
(point) 

Classification based on voxel’s 
intensity. 

EM, ML or MAP 

 

3.4.4 Comparing CDN with Multi-Scale Vision 

Our levels of context distinguish themselves in several important ways from traditional 

multi-scale vision, such as segmentation of image texture [Bouman91] or scale-space 

approaches to mammography [Karssemeijer95]. We have already mentioned that CDN 

carries greater independence from the coordinate system than traditional multi-scale 

vision. Moreover, unlike multi-scale vision that applies essentially the same processing at 
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each level such that the only differences are in resolution and perhaps parameters, CDN 

encourages entirely different algorithms to be applied at each level. Furthermore, unlike 

multi-scale vision where processing can proceed each level simultaneously, CDN levels 

are based on predication. That is, a given level cannot perform its processing until the 

level beneath it completes its processing. The reason is that the higher level processing is 

predicated on the lower level output. Finally, multi-scale vision is not designed to be 

iterated, which implies that information flows only one direction – from lower resolutions 

to higher resolutions. CDN can iterate to propagate information bi-directionally; after a 

higher level corrects a lower level’s mistakes, the lower levels can be recomputed given 

their new high-level information. These distinctions are summarized in Table 3.3. In fact, 

CDN can be implemented in scale space. That is, a certain layer can perform its 

processing using multiple resolutions of the data. 

 

Table 3.3. Constrasts between multi-scale vision and CDN. 

Multi-scale Vision Contextual Dependency Network 

Region definitions are coordinate 
system dependent 

Region definitions are object dependent 

Identical processing at each level Unique processing at each level 

Levels can be computed 
simultaneously 

Higher levels are predicated on lower levels 

Information flows one direction Iteration allows bidirectional information flow 

 

3.5 Chapter Summary 

The aim of this chapter was to revisit the image segmentation problem in hope of 

developing a more generally applicable approach. In contrast to treating the tumor 

segmentation problem as an exercise in discovering distinguishing features, we derived 

our unique approach for recognizing deviations from normalcy. Beginning with NNPM, 

we developed a framework for Contextual Dependency Networks that can incorporate 

context at multiple levels. Subsequent chapters will develop our first implementation of 

such a framework. This implementation is designed to be a simple proof of concept. Our 
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hope is that smarter components, when inserted into our framework, will further improve 

its effectiveness. To summarize the important principles asserted in this chapter: 

 

3.1 For general applicability, tumor segmentation systems could recognize 

deviations from normalcy, rather than identifying known features of tumors. 

3.2 Systems that recognize deviations from normalcy must answer the following two 

questions: 

1.) What is normal? 

2.) How is abnormality measured? 

3.3 In NNPM, double trouble comes with increasing window size: larger windows 

imply more windows. This is because incorporating macro-texture also involves 

situating micro-texture. 

3.4 In the Diagonalized NNPM algorithm, window size increases monotonically 

with decreasing resolution. 

3.5 CDN incorporates multiple levels of predicated context as a step toward the goal 

of achieving recognition capabilities that are both broad and precise. 

 



 

Chapter 4 

CDN Layer 1:  Voxel Classification 

 
In this chapter, we introduce the first layer of our framework for a contextual dependency 

network. The role of the first layer is to produce a preliminary classification of each voxel 

so that the next layer has a starting point from which to consider immediate context. 

Without an initial context, the voxels must be considered in isolation, but the only 

information offered by individual voxels is their intensity. Hence, we seek answers to our 

two guiding questions of how to define what is normal, and how to measure the degree of 

abnormality, based only on intensity.  

This chapter is organized to review the mathematical background for Bayesian 

classification and the expectation maximization (EM) algorithm, and then to address the 

difficulties encountered when applying these techniques to pathological, rather than 

healthy, brains. Specifically, we modify EM segmentation to avoid confusing the bias 

field with pathology. Then, we examine spatially varying priors and generalize their 

concept into probabilistic mappings between image space and model space. We then base 

the processing for each layer of CDN on these mappings. Next, we develop a method for 

computing a probability of pathology for CDN Layer #1. Finally, we conclude by 

evaluating our analytical models by inverting them to produce generative models. 

4.1 Mathematical Background for Model-Based Classification 

Understanding what is normal involves possessing some model of what should be 

expected, so we are interested in model-based mathematical techniques. As discussed in 

Chapter 3, Gaussian distributions handle these questions most elegantly, provided they 
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are applicable, which was shown in Chapter 2 to be the case for MRI signals with 

intensities well above the noise floor. We will therefore rely on Gaussian distributions for 

intensity models, and this section will discuss their application within classifiers. 

4.1.1 Bayesian Classification 

Bayesian classification provides a probabilistic approach to weighting the evidence 

supporting alternative hypotheses. The probability of a hypothesis is determined from 

both the observed data and prior knowledge, and these can be characterized by 

probability distributions. This prior knowledge can be represented in either, or both, of 

two ways: 

• The prior P(h) for each candidate hypothesis is the probability of that hypothesis 

being true prior to observing any data D. 

• The likelihood P(D|h) of each candidate hypothesis is the conditional probability, 

or likelihood, of the data given the hypothesis. This term is also referred to as the 

measurement model because we can measure it a priori in order to construct 

application-specific models. 

 

Bayes’ Theorem provides a quantitative method for computing the posterior probability 

from the prior and the likelihood: 

)(
)()|()|(

Dp
hphDpDhp =  

(4.1)

Using this equation, we can address the classification problem by searching for the 

maximum a posteriori (MAP) hypothesis from the set H of all candidate hypotheses: 

)()|(maxarg)|(maxarg hphDpDhph
HhHhMAP ∈∈

==  (4.2)

When the priors are unavailable, or every hypothesis is equally probable, we can instead 

search for the maximum likelihood (ML) hypothesis. This is the hypothesis under which 

the observed data would be most likely to appear: 

)|(maxarg hDph
HhML ∈

=  (4.3)
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Because the logarithm function is monotonic, we can equivalently maximize the log 

likelihood: 

)|(log)( hDphL ≡  (4.4)

This is attractive because it makes the math more tractable in two ways. First, if the 

likelihood factors into multiplicative terms, then the effect of the logarithm is to separate 

the factors into additive terms that can be maximized independently – effectively 

decoupling the classification problem. Second, likelihoods tend to take exponential 

forms, such as Gaussian and Binomial distributions, and the logarithm operation 

conveniently converts exponents into multiplicative factors. The caveat is that p(D|h) 

must be everywhere nonzero, which we can ensure in practice by substituting the smallest 

representable positive number for zero. 

4.1.2 The EM Algorithm 

Consider the problem of determining the probability densities that generated a certain 

data set. Given the general form of the densities, their governing parameters can be 

estimated using ML to maximize the likelihood of the data. Suppose, however, that some 

of the data is missing, hidden, or represented by latent random variables. Since we cannot 

compute the likelihood of unseen data, we instead compute its expected value, and 

maximize this expectation. Therefore, the name of this general approach is expectation-

maximization (EM). 

Following the notation of the original EM paper, [Dempster77], let the current set 

of parameters be denoted by φ, and a revised set that we are seeking to compute be 

denoted by φ’. Suppose that we have observable data y and latent data x that is not 

observed directly, but only indirectly through y. We would like to choose the parameters 

φ’ that maximize log p(x,y | φ’), but we do not know  p(x,y | φ’) because x is unobserved. 

Consider what we do know, which is the marginal probability of the visible data y. The 

marginal density is found by integrating the joint density over all possible values of x: 

∑=
x

yxpyp )'|,(log)'|(log φφ  (4.5)
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Given that x is a random variable, we can average the log likelihood log p(x,y | φ’) over 

all possible values of x, weighting each according to its probability. This is accomplished 

by inserting a term for the probability of x into the summation in equation 4.5. (We 

express this probability as p(x| y,φ) instead of p(x) to denote its conditional dependence.) 

∑=
x

yxpyxpyxp )'|,(log),|()'|,(log φφφ  (4.6)

Observe that equation 4.6 represents the expected value of the log likelihood. The 

expectation is performed over the probability of the hidden variables, and another 

notation is:  

)'|,(log)'|,(log
),|(

φφ
φ

yxpEyxp
yxp

=  (4.7)

We repeat equation 4.7 once again just to use the notation of [Dempster77]. The authors 

label the expectation with the term Q(φ’|φ) to denote that we are searching for a revised 

hypothesis φ’ given the current hypothesis φ. 

],|)'|,([log)|'( φφφφ yyxpEQ =  (4.8)

We can then choose a new φ to maximize this expectation: 

)|'(maxarg'
'

φφφ
φ

Q←  (4.9)

Thus, the parameters φ’ are set to the values that would make the complete data most 

likely. However, observe the circularity of the computation, and therefore the need for 

iteration. The probability of the hidden variables p(x | y,φ) is calculated using the 

observed data y and the belief that the current parameter hypothesis φ is correct. But 

equation 4.9 then updates φ, which alters that belief. Once φ has been improved, we can 

re-compute the expectation to better “fill-in” the hidden x. That, in turn, will allow us to 

recalculate a better φ. Iteration can continue between the following 2 steps until a local 

maximum has been reached.  

 

E-Step: 

Compute the Expectation, Q(φ’|φ), using the current φ and visible data y. 
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M-Step: 

Perform the Maximization to replace φ by the φ’ that maximizes Q(φ’|φ). 

 

While this completes the general description of the EM algorithm, we would like to make 

some comments regarding its use in practice. First, while the theoretical goal of the E-

Step is to compute the full expectation, in efficient implementations, we need only 

compute the probabilities of the hidden variables p(x | y,φ’) for use by the M-Step.  

Second, to allow the M-Step the freedom to contain computationally simpler steps (with 

the penalty of slower convergence), it may compute a better φ, but not necessarily the one 

that maximizes Q. Such an approach is referred to as Generalized EM (GEM). A 

corresponding idea to partial maximization in the M-Step is to partially perform the E-

Step as proven in [Neal98]. 

4.1.3 EM Segmentation 

The EM algorithm was first applied to medical imaging to achieve image reconstruction. 

SPECT images can be computed by finding the most probable image that is consistent 

with the observed projection data [Lange84]. Later, [Wells96b] applied EM to medical 

image segmentation to simultaneously classify MR images while correcting for the 

magnetic field inhomogeneities. In this domain, the visible variables are the image 

intensities, the hidden variables are the tissue classifications, and the parameters govern 

the bias field that models the inhomogeneities. If the bias field were known, then the 

tissue classes could be estimated directly from the intensity-corrected image. On the other 

hand, if the tissue classifications were known, then the bias field could be estimated from 

the difference between the observed and predicted intensities. Therefore, the EM 

algorithm iterates as follows: 

  70



E-Step: 

Compute the expected values of the tissue classifications assuming that the current 

estimate of the bias field is correct. 

 

M-Step: 

Calculate the bias field assuming that the tissue classifications are correct. 

 

Although the calculation of the bias field is dependent on tissue classifications, we 

include it in layer 1 of CDN. The reason is that the bias field is computed to correct voxel 

intensities rather than add to the understanding of their meaning. If the bias field could be 

corrected for as a preprocessing step, then classification could proceed normally through 

the CDN.  

[Wells96b] derived the EM segmentation algorithm from the standpoint of a MAP 

estimator of the bias field. In the appendix of this thesis, we present a slightly different 

derivation by deriving EM segmentation directly from [Dempter77]’s definition of EM 

based on ML estimation. Additionally, our derivation uses our imaging model from 

Chapter 2 to explain the validity of the various assumptions. 

4.2 Robust Bias Estimation 

4.2.1 Bias Correction 

The bias field is most pronounced when surface coils are used, but brain scanning is 

typically performed with a birdcage head coil [Dongfeng91] that results in minimal bias 

effects. In this section, we will exaggerate the bias field on synthetic data to clearly 

illustrate how the algorithm negotiates these signal inhomogeneities. The bias field was 

simulated with linear and sinusoidal patterns as depicted in Figure 2.6. Figure 4.1 

demonstrates that the impact of the bias field is that tissue classes cease to be linearly 

separable. Note that although the bias field is only marginally apparent in the original 

scan, it greatly corrupts the correctness of the segmentation. 
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Figure 4.1. Effects of the Bias Field. We experimented with applying a threshold to 
segment white matter as blue. While this worked well with the original image (top left), 
the two images on the bottom show that attempts to threshold the biased image (top 
right) result in either misclassifying upper-right gray matter or lower left white matter.  

 

Figure 4.2 demonstrates the impact of the bias field on the segmentation by showing the 

intermediate segmented results after several different iterations of the EM algorithm. For 

variety, the sinusoidally varying bias field was applied to these images. 
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Figure 4.2. EM Bias Correction. (Top) From left to right are the corrupted original, the 
correcting image after performing EM segmentation, and the recovered bias field. 
(Bottom) From left to right are intermediate segmentation results after 1, 2, 3, and 10 
iterations of the EM algorithm. Observe how the full extent of the white matter (white) 
is correctly discovered after 10 iterations. 

 

4.2.2 Bias Correction Influenced by Pathology 

Recall the six voxel intensity modifiers identified in Chapter 2 that cause the 

segmentation problem to be ill-posed. If we run the EM segmentation algorithm on a scan 

that contains pathology, then EM will attempt to remove the pathology by adjusting the 

bias field. To combat this, we weight each voxel’s contribution to the bias field 

estimation according to its measurement of abnormality.  Thus, voxels with high 

typicality contribute strongly to the estimation, while voxels that are almost certainly 

tumor are ignored. The degree of weighting can be set with a single parameter, or the 

parameter’s value can change according to a schedule through the course of iterations. 

Figure 4.3 shows that such a weighting is not perfect, but it is an improvement toward 

resolving the ambiguity between bias and pathology. For the most part, bias is a very 

smooth, very slowly varying phenomenon, while tumors are not. 
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Figure 4.3. Weighting the Bias Computation with the Probability of Pathology. 
The image on the left is the result of running 10 EM iterations on a synthetic scan with a 
tumor but no bias field. The algorithm mistakes the tumor for a supposed bias. The 
image on the right is the bias computed after 10 iterations when the bias computation is 
weighted by the probability of pathology.  

 

4.3 Spatially Varying Priors 

Since Bayesian classification includes a term for a priori knowledge of tissue class 

likelihood, we desire meaningful values for this term. A stationary prior is a priori 

knowledge that is not spatially varying. Table 4.1 lists the prior computed from 300 

synthetic brains by counting the number of voxels belonging to each tissue class. The 

final tallies were normalized to sum to 1 in order to express probabilities.  

 

Table 4.1. Stationary Priors computed from 300 synthetic scans. 

Tissue Class Stationary Probability 
Scalp 0.178
White matter 0.442
Gray matter 0.196
CSF 0.179
Vessel 0.005

 

Instead of keeping total counts, a localization model that is commonly known as a 

spatially varying prior can be computed by keeping separate counts for each voxel. The 

prior shown in Figure 4.4 was computed from the label maps of 300 synthetic brains by 
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counting the number of occurrences of each tissue class at each location, and then 

normalizing the result to form probabilities. That is, at each voxel location, the 

contributions from the 6 images of Figure 4.4 sum to 1. 

 

 
Figure 4.4. Spatially Varying Prior. Each image represents the probability of 
occurance of a certain tissue class at each voxel location. From top left to bottom right, 
are scalp, white matter, gray matter, CSF, vessels, and background. 

 

Figure 4.5 illustrates the impact of applying the atlas depicted in Figure 4.4. Observe 

how EM classification errors decrease from left to right (top to bottom in Table 4.2). 

Apparent errors include mistaking scalp for vessel, white matter for gray matter, and 

tumor for CSF.  

 

Table 4.2. Impact of Priors computed from results of Figure 4.6. 

Prior # Misclassified Voxels 
None 2150 
Stationary 2070 
Spatially Varying 1529 
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Figure 4.5. Stationary vs Spatially Varying Priors (Left:) EM results with no priors. 
(Center:) Results with stationary priors computed from a training set. (Right) Results 
with the spatially varying priors computed from the same training set of 300 images. 

 

The literature argues that the incorporation of spatially varying priors adds 

context into the classification process. However, we include spatially varying priors here 

in CDN layer #1 because their usage is not dependent on an initial classification. It may 

add context, but it does not add predicated context. For example, a statistical atlas is 

aligned using a registration step that is based on the gray-level images, before any 

classification is performed. As another example, in [Kapur99]’s approach of using 

distance to major landmarks, the distances are computed before any initial classification 

is performed. This is possible because the major landmarks, such as skin and ventricles, 

may be easily segmented as a preprocessing step before the brain tissues of interest are 

brought into consideration. 

There are at least four different approaches for replacing the stationary tissue class 

prior with a spatially varying prior in the calculation of the posterior probabilities: 

 

1.) [Kapur99] localized anatomical structures relative to landmark anatomical structures 

within the same patient. Specifically, she used a joint probability distribution based on 

distances from ventricles and skin. By avoiding registration with an atlas, the method has 

the advantage of avoiding the dependence on the quality of the registration and on the 

similarity between the patient and the atlas – a notion that can change considerably in the 

presence of large pathology. 

 

2.) A rigidly registered digital atlas has the advantage of adding a richer understanding of 

context to the computation then can be achieved using relative position to the patient’s 
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own landmark structures. Such an atlas can be constructed from a highly detailed 

segmentation of a single scan [Kikinis96], or an average of a very large collection of 

scans [Evans93, SPM], as depicted in Figure 4.6.  

 

3.) [Fischl02] used a hybrid approach to overcome the deficiencies of the first two 

methods. The atlas was constructed from only a few scans to avoid the blurring of fine 

structures in an averaged atlas, yet was not as susceptible to specific irregularities present 

in a single scan. 

 

4.) [Pohl02, Rexilius01, Warfield01, Warfield98b] use a non-rigidly registered digital 

atlas because of the need for local agreement between the atlas and patient. This is an 

attempt to overcome the shortcomings of the first two methods. In this application 

however, non-rigid registration would incorrectly attempt to morph the healthy anatomy 

of the atlas to conform to the unusual morphology of the patient’s pathology. Instead, we 

desire the atlas to provide the spatially dependent tissue probabilities as if the patient 

were healthy. One possible method would modify the non-rigid registration algorithm 

[Thirion98] to reduce the degree of warping in the presence of pathology. The rough 

location of the tumor can be identified very quickly through a first-pass of the 

segmentation algorithm using rigid registration. This information would then bias the 

non-rigid registration routine. 
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Figure 4.6. Spatially varying priors computed by averaging 305 scans. Clockwise 
from the top left: average scan, probability of CSF, probability of GM, probability of 
WM. 

 

4.4 A Computational Paradigm for every CDN Layer 

In this section, we examine the use of spatially varying priors for incorporating context, 

and we demonstrate why they are insufficient in meeting our requirements. To propose a 

solution using CDN, we generalize the concept of these priors into probabilistic 

mappings between image space and model space. We then base the processing for each 

layer of CDN on these mappings. 

4.4.1 Mean Samples vs. Typical Samples 

Consider spatially varying priors as a localization model. We can construct an intensity 

model in the exact same manner: for every voxel location, compute the mean intensity 
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across an ensemble of images. Figure 4.7 depicts such a model computed from the 

training set of 300 synthetic brain images. In addition to computing the mean, we also 

computed the variance at every voxel to form a voxel-wise Gaussian model. Could this 

intensity model be used to answer our two guiding questions? That is, does the mean 

image define “normal”, and does the variance image enable measuring abnormality? 

 

  
Figure 4.7. Voxel-wise Gaussian Model. The mean (left) and relative deviation (right) 
of 300 synthetic images. Relative deviation is the variance normalized by the mean for 
better display. The red arrow points out the faint glow of vessels that covers the outer 
half of the white matter anulus. 

 

The peculiarity of this model becomes immediately apparent upon inspection of 

Figure 4.8. To state it bluntly, no synthetic brain looks like that. More formally, by 

defining normal to be the statistical average of all brains, normal is an impossible 

achievement. For example, whereas vessels are thin tubular structures of very bright 

intensity, they appear as a thick, very faint, ghostly glow in Figure 4.7. Consequently, 

using the above model causes any normal vessels to be identified as abnormal. Figure 4.8 

demonstrates the results of using this model to measure abnormality on healthy and 

diseased synthetic brains. In addition to the vessel anomaly, observe that the outermost 

fringes of the healthy brain were measured to be nearly as abnormal as the tumor of the 

diseased brain. Thus, the model is too insensitive to the rare extent of the gyral 

protrusions of the healthy brain.  
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Figure 4.8. Measuring Abnormality with a Voxel-wise Model. (Top:) the input 
synthetic scans, one healthy and one diseased with a dark gray, circular tumor. 
(Bottom:) Mahalanobis distance measured using the model of Figure 4.7. The central 
issue that we wished to expose is that the vessels (thin bright arc subtending 40 degrees), 
regardless how healthy, are always recognized as abnormal by this model. 
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Figure 4.9. Average is Not Normal. Martha’s Vineyard has a spinning light with one 
side red and one side white. While the average color is pink alright, that’s the flower -- 
never the light. 

 

Figure 4.9 suggests the same simple solution as that provided by spatially varying 

priors. An observer needs to map his/her observation to a model space consisting of two 

distinct models: red and white. The mapping exists to separate time and color. Instead of 

expecting pink light at all times, red light is expected to be emanating from the lighthouse 

during the first half of its rotary cycle, and white light from the second. Similarly, 

spatially varying priors separate intensity and location. Vessels would not be mistakenly 

labeled abnormal in Figure 4.8 if there were one model for their bright intensity, and 

another model for their expected whereabouts. 

However, we argue that spatially varying priors suffer from the same problem that 

they purport to solve. Once intensity and location have been separated, there remains a 

need to also separate out size and/or shape. For example, the spatially varying prior of 

Figure 4.4 may solve the vessel anomaly of Figure 4.8, but it would also treat vessels 

several times too thick as completely normal, as illustrated in Figure 4.10.  The reason is 

that the lighthouse analogy applies again, only at another level. Our voxel-wise Gaussian 

intensity model of Figure 4.7 failed because it relied on average intensity, and average is 

not normal. Similarly, a spatially varying prior relies on average position, and average is 

not normal. 
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Figure 4.10. “Lighthouse anamoly“ on Another Level. (Left:) A synthetic brain is 
generated with an unusually sized vessel (bright arc in lower right quadrant). (Right:) 
Similar to why the vessels, regardless how healthy, were always recognized as abnormal 
in Figure 4.8, wide vessels, regardless how abnormal, are always recognized as healthy 
here. (The vessel boundary is labeled abnormal due to partial volume artifacts, but not 
the vessel interior.) 

 

In summary, we have defined spatially varying priors as a solution to the 

“lighthouse anomaly”, but we have simultaneously criticized them for suffering from the 

same problem, but on another level. The solution that we propose in this thesis is to 

generalize the concept of a spatially varying prior, and apply it at more levels. These 

“levels” are naturally related to the CDN layers. Following the intuitive arguments of this 

section, the next section formally defines this generalization. 

4.4.2 Probabilistic Mapping from Image Space to Model Space 

Consider a general processing paradigm that consists of the following three elements: 

1. Define image space to be the input data. 

2. Define model space to be a set of distinct models such that the dimensionality 

of model space is less than or equal to that of image space. 

3. Situate a probabilistic mapping between image space and model space. 

 

Consider casting CDN Layer #1 into this paradigm. Let image space be the set of input 

voxel intensities, and model space be the set of Gaussian intensity distributions. To 

establish the dimensionality of model space, recall from our imaging model of Chapter 2 
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that the MR scan parameters are set so as to resolve all structures of interest. We thus 

know that each anatomical structure occupies multiple voxels, alleviating the need to 

have a separate intensity model for each voxel. As a direct implication, model space 

should have significantly lower dimensionality than image space. Specifically, if we 

assign one dimension of model space to correspond with each interesting tissue class, 

then model space becomes the set of parameters for a few Gaussian distributions (eg. 

{ΦWM, ΦGM, ΦCSF, ΦVessel, ΦScalp}). Then, the probabilistic mapping becomes the spatially 

varying prior of Figure 4.4. Interestingly, our experiment in Figure 4.7 with a Gaussian 

intensity model for each voxel location also represents an instantiation of this paradigm. 

Observe the relation between these two examples in Figure 4.11. 
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Figure 4.11. Mapping from Image Space to Model Space. (Top:) One-to-one 
mapping such as in Figure 4.7. (Bottom:) Probablistic mapping such as in Figure 4.4, 
which is a generalization of one-to-one mapping. Two abstractions were made in 
transitioning from the top paradigm to the bottom one. First, the dimensionality of 
model space was reduced to less than that of image space. Second, the one-to-one 
mapping was relaxed to be a probabilistic mapping between a single element of image 
space and every element of model space.  

 

Next, let us examine the space complexity of the two example paradigms of 

Figure 4.11. Given an image dimensionality N, and model dimensionality M, the top 

paradigm requires O(N) space since M=N. The bottom paradigm, on the other hand, 

requires significantly more space: O(MN). The bottom’s model space is smaller than the 

top’s, but the top’s mapping is trivial while the bottom’s mapping acts as a seat of 

knowledge. Inference becomes possible based on this intelligent mapping. For example, 

the bottom paradigm can answer questions such as “Where can one expect to find white 
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matter?” or “Do vessels ever exist in the scalp?” but the top paradigm is incapable of 

performing such reasoning. 

This general paradigm of situating a probabilistic mapping between an image 

space and a model space will frame the computation at every layer of CDN. For example, 

in CDN layer #1, the probabilistic mapping will be implemented as the spatially varying 

prior of Figure 4.4. Other layers in our implementation will be based on abstractions 

somewhere between the top and bottom paradigms of Figure 4.11. Model space will have 

different dimensionality and content for each layer. While model space contains models 

for intensity in layer #1, it will contain models for neighborhood interactions in layer #2, 

models for shape descriptors in layer #3, and models for inter-structure relationships in 

layer #4. 

We conclude this section with a look at how the existing works in the field of 

normal brain segmentation can be described using our abstract paradigm. Table 4.3 

categorizes several works referenced thus far in this thesis, and a brief discussion follows. 

 

Table 4.3. Using the Paradigm of Probablistic Mapping to situate various works in the 
field. 

Type of Mapping (image-to-model) Common Name Example 
One-to-One  Figure 4.7 
All-to-One Homogenous MRF, Chapter 5 
Many-to-One Heterogeneous MRF, Chapter 5 
Many-to-Many Grid [Fischl02] 
Many-to-All Spatially varying prior [Leemput99b] 
All-to-All, equally probable No prior [Cline90] 
All-to-All, unequally probable Stationary prior [Wells96b] 

 

Distinct Paradigm Instantiations: 

• One-to-One: There is a unique model for each voxel of image space such that the 

mapping is one-to-one and onto. We proposed this in Figure 4.7 for illustrative 

purposes. 

• All-to-One: One model applies to all elements of image space. Chapter 5 will 

discuss the example of a homogenous Markov random field where the model is a 

matrix of probabilities of tissue class interactions. 
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• Many-to-One: There are multiple models, and each one applies to a distinct 

subset of image space. Chapter 5 describes the example of a heterogenous MRF.  

• Many-to-Many: Similar to Many-to-One except that the mapping is probabilistic. 

Multiple elements of image space map with some probability to each of multiple, 

but not all, elements of model space. For example, [Fischl02] is a heterogenous 

MRF with a model space of such large dimensionality that allowing each image 

voxel to map to all elements of model space would be too computationally 

intensive, especially with regard to space. 

• Many-to-All: Similar to Many-to-Many except that multiple elements of image 

space map probabilistically to all elements of model space. This is feasible for 

model spaces of very small dimensionality, such as a typical spatially varying 

prior that characterizes only a handful of tissue classes. 

• All-to-All: All image voxels have a non-zero probability of mapping to each 

element of model space. Examples include stationary priors in MAP classification 

and the lack of a prior in ML prior. The lack of a prior is the degenerate case of 

equal probabilities. 

4.5 Computing a Probability of Pathology 

The previous sections have explored how to assign probabilities of tissue class 

membership to each voxel. The probabilities are derived from statistical models of 

healthy tissues. However, we need a method for assigning a probability of pathology, for 

which no model is available. In this section, we define such a method. 

4.5.1 Computing Abnormality 

A probability of pathology can be computed based on the inadequacy of model 

space to explain the appearance of the voxel. In our case, the model space for voxel 

intensity is a multi-modal Gaussian distribution, with the typical profile from training 

data graphed in Figure 4.13. (Although partial volume artifacts (PVA) have the effect of 

“filling” in the valleys between the pure Gaussian distributions, we ignore this fact in 

CDN Layer #1 because CDN Layer #4 will address PVA.) We can use such a distribution 

to compute the probability that a given sample was not generated from the distribution. 
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Since the figure illustrates that there is negligible overlap of the tails of the distributions, 

we can simply the computation by calculating the probability that a given sample was not 

generated by the closest univariate Gaussian model.  

 

Figure 4.12. Typical Intensity Distribution for Post-Contrast Brain MRI.  From left 
to right, are the Gaussian intensity distributions for CSF, gray matter, white matter, and 
vessels. 
 

Let M denote Mahalonobis distance as defined in equation 3.1, then the 

probability of abnormality is defined as integrating the area under the Gaussian curve 

between +/-M of the mean, divided by the total area under the curve [Rice95]. This 

nonlinear function has the advantage of asymptotic growth, graphed in Figure 4.13, and 

it’s desirable for expressing the abnormality measurement as a probability. Linear 

functions fail to express the fact that there is a point at which “very abnormal” becomes 

no different from “very, very abnormal”. 
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Figure 4.13. Asymptotic Growth of the probability of tenths of Mahalanobis distances. 

 

The equations below summarize this calculation, where pi(T) represents the 

probability of tumor at voxel i, and P<(M) represents the probability of occurrence of a 

Mahalanobis distance of M or less. Let L denote the set of all possible labels, x the bias-

corrected intensity, and λ the shift from the origin in terms of standard deviations. 
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The logic underlying the inclusion of the offset λ is that there exists some small 

distance from the mean within which we are comfortable considering the sample to be 

entirely normal. This is justified based on the asymptotic equipartition property 

[Cover91] that enables us to divide a sequence of samples into two sets: the typical set 

and non-typical set. 

We are now prepared to perform segmentation that incorporates measurement of 

abnormality. Figure 4.14 displays results using the spatially varying priors of Figure 4.4 

and the intensity models of Chapter 2. Classification of healthy tissues is performed by 

selecting the maximum likely tissue class at each voxel. Pathology is included by labeling 

a voxel as tumor (rendering it green) whenever the probability of pathology exceeds that 

of all healthy tissue classes. 
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Figure 4.14. Asymptotic Abnormality.  The top images are the probability of 
Mahalanobis distance, and the bottom images are the corresponding segmented label 
maps. Tissue classes include pathology (green), white matter (white), gray matter (gray), 
CSF (blue), vessels (red), and scalp (tan). The left side was generated using a baseline of 
0 standard deviations, and the right side was generated using a baseline of 2 standard 
deviations. The apparent abnormality produced by the presence of partial volume 
artifacts will be handled in Chapter 6. For all subsequent experiments in this thesis, we 
used a baseline of 2 standard deviations for measuring intensity abnormality, and 0 for 
shape abnormality (Chapter 6). These parameter values were determined from running 
the algorithm on a healthy scan. 
 

4.5.2 Comparing NNPM with Probabilistic Models 

As an aside, we run an experiment in this section to compare computing abnormality 

based on NNPM vs. Gaussian models. Recall that NNPM defines normal as a set of 

example templates, and the abnormality of a sample is measured by the distance between 

the sample and the nearest template. Since the performance of the algorithm is critically 

dependent on the selection of the members of the training set, we ran an experiment to 

measure its sensitivity to training set size for images of size 1 voxel. Table 4.4 lists the 

results in a manner conducive to making comparisons with probabilistic models.  
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The experiment involved analyzing the set of samples in the first column using 

NNPM. The experiment was repeated with 4 different training set sizes: 1, 10, 100, and 

1000.  The templates that populated each training set were drawn from a random 

sampling of a white matter distribution with mean 120 and variance 33.  

Upon inspection of the table, NNPM’s shortcoming of treating all templates as 

equally normal is clearly evident. With only one template, the measured abnormality 

merely grows linearly with distance. As the number of templates increases, the 

measurement’s linear march begins from an increasingly larger initial distance from the 

mean value of 120 (10 for 10 templates, 15 for 100 templates, and 20 for 1000 

templates). 

 

Table 4.4. Sensitivity of NNPM to Training Set Size. In the righthand columns, M 
stands for Mahalanobis distance, and P<(M) represents the probability of occurrence of a 
Mahalanobis distance of M or less. 

Measured Abnormality with NNPM  
(RMS error) 

Measured 
Abnormality with 
Gaussian Model 

Sample 
Values 

1 
template 

10 
templates 

100 
templates 

1000 
templates 

M P<(M) P<(M-2) 

120 0 0.9 0.0 0.0 0.0 0.00 0.00
115 5 0.0 0.3 0.0 0.9 0.63 0.00
110 10 0.8 0.3 0.0 1.7 0.91 0.00
105 15 5.8 0.9 0.3 2.6 0.99 0.45
100 20 10.8 5.9 1.6 3.5 1.00 0.84
95 25 15.8 10.9 6.6 4.4 1.00 0.98

 

From the results in the “1000 templates” column of Table 4.4, observe that 

NNPM treats “slightly abnormal” (sample value of 115 or 110) as effectively normal. 

This “shifting from the origin” is similar to our use of λ in equation 4.10. In contrast to 

NNPM, the right-hand side of Table 4.4 exhibits results of employing a Gaussian model. 

As with RMS error, the Mahalanobis distance also increases linearly with deviation from 

the mean. But because the distribution is known, these distances can be fit with a 

probability measurement. The probability is computed as the area under the Gaussian 

curve between +/-M of the mean, divided by the total area under the curve [Rice95].  

  90



From this discussion, we observe that subtracting some small number of standard 

deviations from the Mahalanobis distance before computing the probability is a way of 

combining the advantages of both NNPM and Gaussian model-based approaches by. As a 

result, the two gray columns in Table 4.4 appear more similar than the comparison 

between any other Gaussian model column and the gray NNPM column. 

 

Figure 4.15. An Abnormality Function that is Shifted from the Origin, 
Exponentially Rising, and Asymptotic. Along the Maine coast, the photographer 
selected a rock on which to stand where splashes were an abnormal occurrence. Small 
sprays were perfectly acceptable, but larger spashes were greeted with rising 
intolerance. Once soaked by a wave, however, becoming any more wet was irrelevant. 

 

4.6 Generative Models of Normal Anatomy  

How can we assess how well our models encode descriptions of normal anatomy? One 

answer is to reverse the recognition process from being an analytical one to being a 

generative one. It is not clear that recognizing deviations from normalcy necessarily 

requires the computer to have some notion of a “generative model” of the brain. 

Regardless, it is instructive to consider the impacts that variations in the degree of context 

have in producing a generative model.  

Toward this end, we experimented with inverting the analytical process of CDN 

layer #1 by using Monte Carlo simulations [Papoulis91]. In each experiment, the 
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generation proceeded at each voxel location by drawing a tissue class at random given the 

prior probabilities, and then generating an intensity using the Gaussian distribution for 

the selected class. Figure 4.17 displays the results, from which a number of observations 

can be made. Most apparent is the impact realized through the addition of context. 

Furthermore, it is evident that higher CDN layer #1 has no knowledge of the sizes and 

shapes of structures. Observe how the vessel is scattered into isolated points rather than a 

tube. As another comparison, Figure 4.16 includes the results of the generative model 

produced by the one-to-one mapping paradigm of Figure 4.7. 

 

  
Figure 4.16. Generative Models: Paradigm Comparison. Generative models 
computed from the top paradigm of Figure 4.11 (right) and bottom paradigm (left). Note 
that the image on the left has no discernable vessel voxels, and there is no means of 
generating a companion label map as was done for Figure 4.15. This is because of the 
absence of the ”seat of knowledge” represented by having a probablistic mapping. 
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Figure 4.17. Generative Models of the Brain. The generative model produced the 
intensity images on the left, and segmentation on the right. The top row used no prior, 
the center row used a stationary prior, the bottom row used the spatially varying prior. 

  93



  94

 

 

4.7 Chapter Summary 

Within this chapter, we introduced the first layer of our framework for a contextual 

dependency network. The role of the first layer is to produce a preliminary classification 

of each voxel so that the next layer has a starting point from which to consider immediate 

context. After reviewing Bayesian classification and EM segmentation, we examined the 

“lighthouse anomaly” to explain a fundamental flaw in the field’s trend of developing 

spatially varying priors. To propose a solution using CDN, we generalized the concept of 

these priors into probabilistic mappings between image space and model space. We then 

based the processing for each layer of CDN on the abstract concept of these mappings. 

Finally, we defined a method for computing a probability of pathology based on the 

inadequacy of model space to explain the appearance of the voxel. 

To summarize the important principles asserted in this chapter: 

 

4.1 Each voxel’s contribution to the EM-based bias estimation is weighted by its 

typicality in order to produce an estimation that is robust to pathology. 

4.2 Recognizing deviations from normalcy using statistical models requires 

separating intensity information from location. 

4.3 Model-based segmentation methods can be described as some form of 

probabilistic mapping between image space and model space. 

4.4 Our imaging model specifies that model space should have lower dimensionality 

than image space. 

4.5 A function for computing a probability of pathology is based on integrating the 

area under the tails of Gaussian distributions, and is thus shifted from the origin, 

exponentially rising, and asymptotic. 

 



 

Chapter 5 

CDN Layer 2: Neighborhood Classification 

 
In this chapter, we introduce the second layer of our framework for Contextual 

Dependency Networks. While the first layer classified voxels in isolation, the second 

through fourth layers will add the consideration of context – immediate and broad. 

Immediate context will be the subject of this chapter, as we will consider the 

classification of each voxel’s neighbors. This approach resolves some of the residual 

ambiguity remaining after classifying voxels based strictly on the basis of visual, rather 

than spatial, information.  

Consider a segmented image, or a collection of labeled voxels, to be a collection 

of random variables – one per voxel. Specifying how probabilities should be computed 

for events involving subsets of these random variables requires a probabilistic model. 

Layer #1 adopted a naively simple probabilistic model: statistical independence between 

subsets of size 1. In layer #2, we will be specifying contextual constraints using a 

probabilistic model referred to as a Markov Random Field (MRF).  MRFs conveniently 

model the mutual influence between voxels systematically using rational principles rather 

than ad hoc heuristics.  

This chapter is organized to introduce the foundations of MRFs, derive iterated 

condition modes, and the mean-field approximation, experiment to contrast these two 

techniques, and finally apply to EM segmentation of pathological brains. 
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5.1 Foundations of Markov and Gibbs Random Fields 

5.1.1 Random Fields and the Labeling Problem 

A random field F is a collection of random variables Fi defined on a discrete lattice S 

such that there is one random variable corresponding to each site in S. Given a set of 

labels L, the labeling problem involves finding a many-to-one mapping,  that 

assigns a label w

LSf →: ,

i to each random variable. Such a realization, w of F, is referred to as a 

configuration, and the set of all possible configurations is the configuration space W. 

Given M labels and a lattice of m nodes, the formal definitions are as follows: 

 

Lattice:                       }..1|{ miiS ∈=  

Random Field:           }|{ SiFF i ∈=  

Labels:                        }}..1{|{ MwwL ii ∈=  

Configuration:            },{},|{ 21 mii wwwLwSiww K=∈∈=    

Configuration Space:  W  mLxLLxLxL == ...

(5.1)

 

Furthermore, let N be a neighborhood system for S that specifies which sites are 

“neighbors” of each site. Then the pair {S, N} defines a graph with nodes for each site in 

S, and links between neighbors. Define a clique to be any subset c  where c is either 

a single site, or a set of sites such that every pair of distinct sites in c are neighbors. 

Formal definitions are listed below, and Figure 5.1 depicts an example. 

S⊆

 

Neighborhood of site i:   },,|{ ji NiijSjjN ∈≠∈=   

Neighborhood System:   }|{ SiNN i ∈=  

Local Configuration:       }|{ iiN Niww
i

∈=    

Set of cliques of size 1:   }|{1 SiiC ∈=    

Set of cliques of size 2:   },|},{{2 iNjSijiC ∈∈=    

Set of all cliques:               L21 CCC ∪=    

(5.2)

  96



  
Figure 5.1. Cliques in 2-D. (Left:) A red site and its blue neighbors. (Right:) Set of 
cliques of size 1 and 2.  

5.1.2 Probabilistic Approach to Incorporating Context 

5.1.2.1 Local vs. Global Contextual Constraints 

Contextual constraints that consider the likelihood of labelings of voxels can be 

expressed either locally or globally. Local expressions of contextual constraints are cast 

in the form of conditional distributions  relating the label of a given voxel 

 to its surroundings (every other voxel in the image) . Global expressions 

involve the entire image, whose likelihood is represented by the joint distribution , 

which asserts the probability of the joint event 

)|( }{iSi wwP −

( 1FP

iw }{iSw −

,2w

)(wP

),, 21 mm wFFw === L .  

 

Table 5.1. Contextual Constraints 

Scope Distribution Expression 
Local Conditional )|( }{iSi wwP −  
Global Joint )(wP  
 

5.1.2.2 Conditional vs. Statistical Independence 

CDN layer #1 ignored mutual influences between voxels by considering the likelihood of 

the label of a given voxel  independent of the labeling of all other voxels. This 

assumption of statistical independence permitted the joint distribution to be computed as 

the product of the conditional probabilities: 

)( iwP

∏
∈

−

=

=

Si
i

iiSi

wPwP

wPwwP

)()(

)()( }{
 

(5.3)
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Consequently, the computation of Bayesian classification given the image data x could be 

computed in a very straightforward manner because maximizing the global MAP 

classification was equivalent to maximizing each local (one voxel) MAP classification. 

)()(
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)()|()(

ii
Si

i

i
Si

i
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i

wPwxP

wPwxP
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=
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














=

=

 

(5.4)

The two assumptions that support the middle line of equation 5.4 are summarized in 

Table 5.2. Based on our imaging model in Chapter 2, we know it is safe to assume the 

conditional independence of  because MR scan parameters are set to restrict the 

Gibbs ringing that would cause a voxel’s intensity to be influenced by that of its 

neighbors. Although a voxel’s intensity is dependent on only it’s own classification, it’s 

classification is dependent on the classifications of its neighbors. This is because MR 

scan parameters are set to resolve the structures of interest, resulting in some degree of 

voxel homogeneity. Hence, this chapter must strive to relax the assumption of statistical 

independence of . 

)|( wxP

)(wP

 

Table 5.2. Conditional vs. Statistical Independence. When the assumption of 
independence is valid, we can substitute the expression under the heading “Equivalence 
when Independent“ in place of the expression under “Distribution“. The column labeled 
“Imaging Model“ indicates whether our imaging model specifies that the given type of 
independence is valid in our application. 

Independence Distribution Equivalence when Independent Imaging Model
Conditional )|( wxP  )( i

Si
i wxP∏

∈

 Valid 

Statistical )(wP  )( i
Si

wP∏
∈

 Invalid 

 

As a consequence, two challenges arise: 

1. There is no obvious method to deduce the joint distribution  from the set of 

conditional probabilities , which are subject to interlocking 

consistency conditions.  

)(wP

)|( }{iSi wwP −
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2. Conditional priors must be available with neighborhoods large enough to model 

interesting classes of images, but small enough to ensure trainability and feasible 

computational loads.  

The first challenge has been addressed through a means of specifying the joint 

distribution directly as a Gibbs distribution, which is equivalent to modeling F as a 

Markov Random Field. In the next subsection, we will present this mathematical 

formalism for modeling the a priori probability of contextual dependent patterns. This 

will permit global inferences to be made based on local properties, which are more 

directly observed than global information. 

Regarding the second challenge, consider a practical example of a problem with 

exponential time complexity. Given a typical MRI scan consisting of 124 slices with 

256x256 resolution, the segmentation problem with M tissue classes yields M8,126,463 

distinct surroundings . (We define “surroundings” using this notation as the 

labeling of every voxel in the image other than the one at location i.) Even with 

spectacular computing speed, fitting a distribution to each of these possible surroundings 

in such a way as to avoid sampling error, would require a formidable amount of training 

data. Regardless, Figure 5.2 offers a visual appreciation of the benefit of context. In this 

thesis, we will overcome the second challenge by restricting the neighborhood size, and 

relying on higher levels of CDN to resolve some of the associated deficiencies.  

}{iSw −
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Figure 5.2. Benefit of Context. Mapping a single voxel’s gray level to one of a set of 
discrete labels encounters ambiguity that can be resolved by incorporating neighborhood 
information. From left to right: ( , , and ( , where the first two 
are enlarged. Imagine asking yourself what the center voxel (outlined in red) represents 
given the surroundings shown.  

)iw )|(
iNi ww )| }{iSi ww −

 

5.1.3 Markov Random Fields 

A Markov Random Field (MRF) is a multidimensional generalization of Markov chains 

defined by conditional probabilities associated with spatial neighborhoods. A random 

field, F, is a Markov Random Field on a lattice S with respect to a neighborhood system 

N if and only if the following two conditions are satisfied. The first condition, 

representing Markovinaity, asserts that a variable’s dependence on all other sites is 

equivalent to its dependence on only its neighbors. The second condition, positivity, is 

simply a computational formality. 

Markovinaity:                   )|()|( }{ iNiiSi wwPwwP =−  (5.5)

Positivity:                      ,      0)( >wP Ww ∈∀  (5.6)
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An MRF is homogeneous if  is independent of the location of site i within the 

lattice. We will revisit this concept in Section 5.2.3. 

)|(
iNi wwP

 

Figure 5.3. MRFs at Sea. Lobster bouys, similar to those adorning the wall of 
Rockport, Massachusetts’ “Motif #1“, are colored according to the scheme uniquely 
registered by their owner. Dense arrays of bouys can often be seen peppering the sea off 
the New England coastline to denote the ownership of the attached lobster traps. The 
network of bouys can be conceptualized as a Markov random field because neighboring 
bouys are likely to be colored similarly, but knowing the color scheme of distant buoys 
is unhelpful in discerning those close at hand. 

 

5.1.4 Gibbs Random Fields 

A random field, F, is a Gibbs Random Field (GRF) on a lattice S with respect to a 

neighborhood system N if and only if its configurations satisfy the Gibbs distribution. 

Through its formulation as a negative exponential, the Gibbs distribution exerts that 

configurations with lower energy U(w) are significantly more probable.  The distribution 

also allows for an external source to dictate a control parameter called temperature T, 
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which is a holdover from its origins in modeling molecular systems in statistical physics.  

T remains useful in computer vision for controlling the sharpness of the distributions 

during simulated annealing schemes [Geman84]. For example, all configurations have 

nearly equal probabilities when T >> max(U(w)), but the distributions concentrate on the 

global energy minima as  T approaches 0. 
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(5.7)

The denominator, often denoted by Z and referred to as the partition function in the 

literature, is a summation over all possible configurations in order to make the 

probabilities sum to 1. The energy of a configuration is defined as the sum of clique 

potentials over C, the set of all cliques on S.  

∑
∈

=
Cc

c wVwU )()(  (5.8)

Since the V  depends on only those sites i for which i)(wc c∈ , we expand this equation 

below for the case of cliques of size 1 and 2. The last line of the equation below is true 

for cliques of any size. This fact is the key to computability: the joint energy is the sum of 

the energy at each site. 
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(5.9)

For convenient future reference, we express the local energy separately: 

∑
∈

+=
i

i
Nj

jiiNii wwVwVwwU ),()()|( 21  (5.10)
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The value of each clique potential is determined from application-specific modeling. 

Observe that V  can take on a finite set of values when there exists a finite set of label 

values. A GRF is said to be homogenous if V  is independent of the position of clique 

c within the lattice, and it is isotropic if V  is independent of the orientation of c.  

)(wc

)(wc

)w(c

5.1.5 Markov-Gibbs Equivalence 

Although an MRF is characterized by local properties (Markovinaity for wi) and a GRF is 

characterized by global properties (Gibbs distribution for w), the two were shown to be 

equivalent by the Hammersley-Clifford theorem [Besag74].  Both components of the 

MRF-GRF equivalence are exploited for computing (MRF) and modeling (GRF). The 

Markovinaity property permits massively parallel computation with one processor per 

voxel, while the Gibbs distribution provides a convenient formalism for specifying the 

joint probability  by specifying clique potentials V  to encode a priori 

knowledge about interactions. Because the major topic for designers is defining the forms 

and parameters of V , it is insightful to reproduce one direction of the proof here 

based on [Li01], and we refer the reader to [Besag74] for the other. 

)(wP

(wc

)(wc

)

Theorem:  

F is a MRF on lattice S with respect to neighborhood system N if and only if  

F is a GRF on S with respect to N. 

Proof of GRF MRF: ⇒

Let  denote a configuration that is identical to 

configuration w except perhaps at site i. Then using Bayes’ Rule: 
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Let  be a Gibbs distribution, and let A be the subset of cliques in C that 

contain site i, and let B be the subset of C that excludes i: 
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Since  for any clique that excludes i, the rightmost exponentials 

cancel, producing a Gibbs distribution dependent only on neighbors of i: 
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(5.13)

QED 

 

For future reference, we wish to rewrite equation 5.13 in terms of the local, conditional 

energy from equation 5.10: 
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5.2 MRF Design 

We have seen that the Hammersly-Clifford theorem reveals that the conditional MRF 

distributions  are synonymous with modeling the joint  as a Gibbs 

distribution. The question, then, is how should one go about designing the clique 

potentials for the Gibbs energy function?  MRF models favor certain classes of patterns 

encoded by the designer into the MRF to be associated with higher probabilities. One 

could argue that this leaves an opportunity for ad hoc methods to specify V  to 

achieve the desired system behavior. Indeed, as in any optimization problem, the designer 

selects models or distributions, and solves for the parameters that optimize the solution 

given the particular model. With respect to the model itself, however, [Geman84] 

suggests “a general theory of interactive, self-adjusting models that is practical and 

mathematically coherent may lie far ahead.” Unfortunately, any Bayesian classification 

scheme that employs invalid assumptions of statistical or conditional independence in 

order to circumvent the computation of the joint likelihood may be considered ad hoc.  

)|(
iNi wwP )(wP

)(wc

Given a model, determining its optimal parameters can be achieved through 

incorporating knowledge accumulated from one or more of the following sources: 

• The designer’s knowledge of the imaging process 

• An EM-based approach to unsupervised segmentation 

• Training on manually labeled images 

The latter two deserve more discussion, and will be covered next. 

5.2.1 MRF Parameter Estimation 

[Zhang92] and [Langan92] pioneered the use of mean-field approximations (described 

later) within an EM-based approach for model-based image segmentation. The idea was 

that parameters for the Gaussian image intensity model Φ  are 

independent of the parameters for the MRF model . This allows the M-step to 

separate the processes of finding the ML estimate of each set of parameters. To state this 

}|),{( 2 Llll ∈= σµx

wΦ
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mathematically, the stochastic model based on the composite parameter vector 

 can be expressed as: T],[ wx ΦΦΦ =

)|(),|()|,( wx ΦΦΦ wPwxPwxP =  (5.15)

Then the M-step separately finds the ML estimate of the parameters for the intensity data: 
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and the MRF: 
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(5.17)

Where UMF and ZMF are the mean field approximations to U and Z that will be derived 

later. 

5.2.2 MRF Parameter Training 

While the previous section entertained unsupervised image segmentation, our application 

of recognizing deviations from normalcy requires collecting a priori knowledge of 

normalcy. Therefore, the parameters for our MRF model are derived through training on 

a manually labeled image. Our model emphasizes continuity, but instead of unilaterally 

discouraging pairs of differing labels, we will allow pairs to have a certain labeling 

according to its observed presence in the training population. Following the literature’s 

notation of reserving J to denote “bond strength”, define J to be the pairwise interaction 

matrix. (For clarity of function, we can refer to it informally as the “Jives with” matrix.) 

The square matrix J contains one row for each label, where each row i contains the 
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probabilities of the given label occurring in a clique with various other labels. (The index 

i here refers to an index into matrix J, not an image). 

)|(),( ji wwPji =J  (5.18)

The probabilities within J are discovered through training on example data. Training 

consists of incrementing as expressed below, followed by normalizing each row to sum to 

1. 
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Note that J is not symmetric, as proven in Figure 5.4.  
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Figure 5.4. Assymetric J. Pairwise interaction matrices computed from the images on 
the left and right, are displayed to the right of their respective images. The were 
generated at random with a 9:1 probability ratio. The experiment demonstrates that the 
more blob-like an image is, the more J approaches the identity matrix. 
 

Because low Gibbs energy corresponds to likely configurations, the pairwise clique 

potential can be expressed as a function of the inverse of the probabilities encoded into J. 

The logic underlying our selection of f() for our CDN implementation will be discussed 

in Section 5.5.  

)),((),(2 jifwwV ji J−=  (5.20)
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For intractably large neighborhood sizes, an efficient approximation was proposed by 

[Pickard77] to estimate the joint probability of a large neighborhood by assuming 

conditional independence: 

∏
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(5.21)

 

5.2.3 Mapping Image Space to Model Space 

We now describe the framework of CDN layer #2 in terms of Chapter 4’s paradigm of 

probabilistic mappings between image space and model space. In layer #2, the models are 

the class interaction matrices. If there is one J for the entire image, as in [Kapur99], then 

the literature refers to it as a “homogenous MRF”. From our vantage point described in 

Table 4.3, we refer to it as an “all-to-one” mapping from image space to model space. 

Alternatively, an MRF with multiple matrices, where one particular matrix is specified 

for each image partition, is considered a “heterogeneous MRF” in the literature. This 

corresponds to the “many-to-one” mapping in Table 4.3.  

 The results of training a “many-to-one” mapping compared to an “all-to-one” 

mapping are demonstrated in Figures 5.5 and 5.6. The image is roughly partitioned into 

two regions: cortex and sub-cortex. The mapping is computed respective to CDN layer 

1’s mapping (the spatially varying prior). So in our implementation, it is brought into 

correspondence with the image during the same rigid registration step. Since ventricles 

border white matter in the anterior portions, and gray matter in the posterior regions, 

more accurate classifications would result with more than two class interaction matrices, 

which we leave for future work in Chapter 7. 
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Figure 5.5. Many-to-One Mapping. A heterogenous MRF is implemented by mapping 
image space to model space (the set of class interaction matrices). Compare the J’s 
computed from the portions of the image shaded red in the top row (complete), middle 
row (cortex) and bottom row (subcortex). The tissue classes included were scalp (SCA), 
white matter (WM), gray matter (GM), cereobro-spinal fluid (CSF), and vessel (VES). 
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Figure 5.6. Impact of Heterogeneity. The results of using a heterogenous MRF (right) 
show improvement over using a MAP classification (left) by correcting 
misclassifications in the white matter, gray matter, and tumor. However, the 
heterogenous MRF showed little improvement over the homogenous MRF in this case. 
Greater benefit would be realized by using a model space with higher dimensionality. 

 

5.3 MRF Optimization 

The goal of optimization is to find the most probable configuration  of a given MRF, 

which is equivalently the lowest energy configuration of a GRF: 

ŵ

MRF:       w )(maxargˆ wP
Ww∈

=  (5.22)

GRF:       )(minargˆ wUw
Ww∈

=  (5.23)

5.3.1 Optimization Methods 

Finding the global minimum often requires an exhaustive search to find all of the local 

minima, followed by a comparison of these from which to select the global minimum. In 

MRF optimization, a brute force search would compute  for each permissible 

configuration w, and select the instantiation corresponding with the highest . Brute 

force search is intractable due to this problem’s combinatorial search space: m voxels 

each with M possible labels. Therefore, a wide variety of approximate methods have been 
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applied, and we refer the reader to [Li01] for a comprehensive review. In general, 

optimization techniques vary depending on the following four categories: 

• Constrained or Unconstrained – constrained techniques are limited to 

searching a subspace of the total search space 

• Continuous or Discrete – techniques that optimize a continuous set of 

labels can compute and descend the gradient of the energy function such 

that the next configuration w’ is displaced from the current configuration f 

by a fractional step λ along the energy gradient: Eww ∇−← λ'  

• Deterministic or Stochastic – stochastic methods generate the next 

configuration at random from sampling a distribution over w  iN

• Locally or Globally Optimal – locally optimal, or greedy, methods seek a 

lower energy configuration at each step by requiring . 

Globally optimal methods relax this requirement subject to certain 

conditions. In this way, they allow for an escape mechanism out of local 

minima. 

)()'( wEwE <

5.3.2 Optimization of MAP-MRF Problems 

Note that solving equation 5.22 or 5.23 would determine the most probable a prior 

configuration. But within the context of this thesis, the object of optimization is to find 

the maximum a posteriori configuration. Hence, consider the posterior probability to be a 

single Gibbs distribution: 
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(5.24)

The last line is clearly a Gibbs distribution, and it energy function is: 

)|(log)()|( wxPwUxwU −=  (5.25)

Therefore, maximizing the posterior probability can be equivalently formulated as 

minimizing the posterior energy, which is derived from combining the likelihood and 

prior energies. We can now recast equation 5.23 to solve for the maximum a posteriori 

configuration instead of the a prior configuration. We will refer back to this equation: 

[ ])()|(minarg

)|(minargˆ

wUwxU

xwUw

Ww

Ww

+=

=

∈

∈  
(5.26)

5.4 Factorizing the Joint Distribution 

As mentioned earlier, solving equation 5.26 is an exponentially complex problem 

because there exist a combinatorial number of elements in configuration space W. 

Therefore, we are interested in approximations that factorize the joint probability into a 

product of local conditional probabilities. Table 5.3 summarizes three approaches to 

factorization, which requires decoupling the interactions between sites. While the first 

technique considers no neighborhood interactions, the next two techniques solve the 

consistency relations between different variables through an iterative scheme. Given an 

initial configuration, the values of each variable are updated sequentially as if they were 

decoupled from the other variables. These two techniques will be covered next. 
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Table 5.3. Approximations for Factorizing the Joint Distribution 

Assumption Local Conditional Joint Prior 

Statistical Independence )()|( }{ iiSi wPwwP =−  ∏
∈

=
Si

iwPwP )()(  

Iterated Condition Modes )|()|( }{ iNiiSi wwPwwP =−  ∏
∈

≈
Si

Ni i
wwPwP )|()(  

Mean Field Approximation )|()|( }{ iNiiSi wwPwwP =−  ∏
∈

≈
Si

Ni i
wwPwP )|()(  

 

5.4.1 Iterated Condition Modes 

[Besag86] developed Iterated Condition Modes (ICM) as a computationally efficient 

alternative to the stochastic and globally optimal method of simulated annealing in 

[Geman84]. The idea is to iteratively update the current labeling at voxel i in light of all 

available information, which includes the image data x and the current labeling elsewhere 

. We derive the following update equation using Bayes’ rule, the assumption of 

conditional independence in equation 5.4, and the assumption of Markovinaity in 

equation 5.5: 

}{iSw −

)|()|(

)|()|(

)|()|(

)|()|(
)|(),|(),(

}{

}{

}{

}{}{}{

iNiii

iSiii

iSi
Si

ii

iSi

iSiiSiiSi

wwPwxP

wwPwxP

wwPwxP

wwPwxP
wwPwwxPwxwP

=

∝









=

=

∝

−

−
∈

−

−−−

∏  

(5.27)

  113



Therefore, ICM sidesteps the combinatorial computation of maximizing the joint 

probability , in favor of maximizing the local conditional probabilities 

 sequentially.  As a consequence, ICM is a deterministic, greedy search 

algorithm that converges to a local minimum.  

)|( xwP

)
i

,|( Nii wxwP

5.4.2 Mean Field Approximation 

Interestingly, the origin of MRFs within statistical physics suggests insightful analogies 

with CDN-based image segmentation. We note these parallels by adding the italicized 

text to the following from [Parisi88]: 

 

The aim of statistical mechanics (image segmentation) is to derive 

thermodynamic properties (classifications) of macroscopic bodies (image regions 

or neighborhoods) starting from a description of the motion (intensity) of 

microscopic components (voxels). This would be an impossible and hopeless task 

if one took the normal approach of mechanics (brute-force search), since the 

number of degrees of freedom (size of configuration space) is so huge: 

probabilistic methods are mandatory. The problem can be divided into two parts: 

(a) Find the probability distribution of microscopic components (local conditional 

distributions). (b) Compute the macroscopic properties of the system (image) 

from the microscopic probability distributions. 

 

Given these similarities, it is appropriate to adopt the mean field approximation from 

statistical physics. The intuition behind mean field theory is that within dense random 

fields, each random variable is subject to influences from several other variables. If each 

influence is weak, and the influences are additive (such as the noise in our imaging model 

from Chapter 2), then fluctuations from different sites tend to cancel each other, as shown 

here for weak fluctuations α  at neighboring sites A and B: 

Additive fluctuations:             BABA +=−++ )()( αα  

Multiplicative fluctuations:    errorBABBAA ++=−++ )()( αα  
(5.28)

This permits each variable to be roughly characterized by its mean value. Because the 

mean value of each variable is unknown and related to the mean values of other variables, 
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finding the mean field at site i requires finding the mean field at its neighbors. Solving 

these consistency relations between different variables can be accomplished through 

iteration. 

Figure 5.7. Smooth Sailing with the Mean Field Approximation.  MIT sailors begin 
forming a long, straight line of boats across the Charles River. The Markov approach 
would advise a sailor to match course by monitoring only the 2 boats immediately fore 
and aft. Since each boat experiences different instantaneous wind and waves, exactly 
mimicing the steering moves of neighboring boats would fail to hold the line. Instead, 
sailors rely on the mean field approximation by matching course with the average 
observed headings of their neighboring boats. 

 

To summarize these ideas mathematically, the mean field approximation assumes 

that the influence of  can be approximated by the influence of ijw j ≠, jw . This permits 

the factoring of the joint probability in Table 5.3, and changes equation 5.10 to: 

∑
∈

+=
i

i
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Subsequently, equation 5.14 changes to: 
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Next, we need to compute the statistical average at each site, for which we can rely on the 

formula for expected value: 

∑
∈

=
Ww

wwPw )(  (5.31)

Then we apply the mean field approximation stated in Table 5.3, and exploit the 

factorization that it allows: 

∑
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i
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Regarding representation, this thesis will adopt the standard convention in the 

literature of utilizing indicator vectors. Then w  denotes one of the basis vectors that 

completely span the orthogonal state space L of M-dimensional indicator vectors:  
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Therefore, the kTH component ikw  of iw  represents the probability that site i is a member 

of the kTH class. Given this representation, we can complete our derivation of a mean 

field update equation by substituting equation 5.30 into 5.32: 
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For further reading on mean field theory, refer to books by [Chandler87] and 

[Parisi88]. In addition to mean values, computations of correlations and moments are 

derived in [Elfadel93]. For globally optimal image segmentations, simulated annealing 

schemes that employ the mean field approximation are presented in [Lin97], [Noda99], 

and [Cho00]. 

5.5 Experimental Comparisons 

In this section, we evaluate the efficacy of the algorithms presented in this chapter. 

Experiments will showcase the differences between ICM and mean field approximations, 

explore the sensitivity to MRF model parameters, and demonstrate the value of MRF 

theory relative to simple smoothing.  

5.5.1 Simple Smoothing 

For comparison with MRF theory, we experiment with an unsophisticated method that is 

conceptually appealing for its simplicity. A plausible approach to smoothing a discrete 

labeling might involve taking a majority vote of the labels within each neighborhood: 

)(maxarg lvw iLli ∈
←  (5.35)

Where the voting function is: 

∑
∪∈

−=
}{

)()(
iNj

ji
i

wllv δ  (5.36)

Where we employ the discrete Dirac delta function: 







 =

=
else

x
x

,0
0,1

)(δ  
(5.37)

Observe that simple smoothing considers only the hard classifications as if the image data 

had been discarded after the first iteration. Consequently, running for a sufficient number 

of iterations will result in a complete “filling-in” of all gaps between structures (see 

Figure 5.8). While this could be useful prior to performing operations such as CDN layer 

#3’s computation of shape descriptors, there is a tendency to make gross classification 

errors. 
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5.5.2 ICM 

In contrast to simple smoothing, we now seek a solution grounded in MRF theory. Given 

the ICM optimization algorithm, we need only design the clique potentials. We will base 

our design on that which will accommodate convenient comparisons with MAP 

classification and simple smoothing. 

Beginning with an initial labeling that was computed without neighborhood 

interactions, the ICM iteration proceeds to update the label at each voxel sequentially. 

We derive this update equation by beginning with equation 5.27, and substituting 

equation 5.14 and 5.10: 
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Observe that this would perform MAP classification given the following designs of the 

clique potentials: 
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(5.40)

Given the above choice for V1, we observe that a non-zero choice for V2 effectively 

appends an additional term for prior knowledge about neighborhoods to the MAP 

classification equation: 

∝),(
iNii wxwP (likelihood) * (singleton prior) * (neighborhood prior) (5.41)

To conceptualize how these terms influence the computation, let us revisit our choice for 

the design of V1. Setting V1 to be the negative prior probability would have resulted in a 

middle term of equation 5.39 that varies exponentially within the range of [1,e]. By 

instead choosing the negative log probability, the term varies linearly on [0,1]. The form 
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of variation – exponential or linear – is of minor importance as long as the variation is 

monotonic. Those seeking efficient implementations might prefer the linear design to 

avoid the expensive computation of the exponential function. More importantly, the 

critical difference in the two designs is that the latter has the ability to “sink” the total 

posterior probability to zero – a multiplicative singularity. We believe the “sinking” 

property is desirable for the singleton prior because our spatially varying priors from 

Chapter 4 contain zeros to express impossible locations for certain tissues. We do not, 

however, desire the “sinking” property for our neighborhood prior, so we will keep its 

exponential form. Alternatively, we could have followed the implementation of 

[Kapur99] to introduce a parameter α on [0,1) that controls the strength of the influence 

of the neighborhood prior by replacing it with the following term: 

(1-α + α* (neighborhood prior)) (5.42)

 

Now that we have examined the differences between ICM and MAP, we wish to 

compare ICM with simple smoothing. Toward this end, we seek a design for V2 that 

allows for the closest comparison possible. We optimize based on equation 5.26: 
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Where Soft() denotes a function of the “soft” values of probabilities rather than the “hard” 

values of a discrete delta function. Given this form, we can now solve for V2: 
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Comparing this result with equation 5.36 reveals that the advantage of ICM over simple 

smoothing is that ICM’s iterations continue to use “soft” values (likelihood and prior 

probabilities) for the single-site potentials. ICM also continues to include the image data 

at every iteration in contrast to simple smoothing, which discards the image following the 

initial classification step.  

Simple smoothing:    ∑
∈

∈
−−−−←

iNj
jiLli wlwlw )()(minarg δδ  

ICM:                         ∑
∈

∈
−−−←

iNj
jiiLli wlxwlSoftw )(),,(minarg δ  

(5.46)

 

As a further step away from simple smoothing, we can replace the “hard” version of V2 

with the “soft” probabilities gathered from the training data. We elect not to use ln(J) to 

deny the neighborhood term the “sinking” property. Then: 
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Similarly, we will next see how mean field techniques use “soft” values at the 

neighboring sites instead of ICM’s use of hard classifications there. 

5.5.3 Mean Field 

For the closest comparison with ICM, we will adopt the following model to express 

equation 5.29 (mean field version of 5.10): 
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Where the quadratic product can be expanded using  to denote the w
iwJ i

TH row of J: 
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Beginning with an initial labeling that was computed without neighborhood 

interactions, the iteration proceeds to update the label at each voxel sequentially. We 
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derive this update equation very similarly to how we derived it for ICM in equation 5.39, 

except that now we substitute equation 5.30 (mean field version of 5.14): 
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We then optimize based on equation 5.34 (which is the mean-field version of 5.26 for 

ICM). This is a major departure from equation 5.46 for ICM and simple smoothing 

optimization, and the reason is that we are computing a mean, rather than a maximum or 

minimum, configuration. 

∑ ∑

∑

∈ ∈

∈



















←

Ll
l

w

wJll

wJww

i

i

i

Nj
j

T
i

Nj
j

T
iii

ik

PxP

PxP
w

exp)()|(

exp)()|(
 

(5.53)

Table 5.4 summarizes the formulation of the Simple Smoothing, ICM, and Mean Field 

approximations. Table 5.5 and Figure 5.8 compare the results on synthetic data where 

ground truth is known. 

 

Table 5.4. Comparison of MRF Algorithms. Consider a hard function to be a delta 
function instead of a probability, and a hard function parameter to be a classification 
instead of a probability. 

Algorithm Single site Neighborhood Function Neighborhood 
Parameters 

Simple Smoothing Hard Hard Hard 
ICM without training Soft Hard Hard 
ICM with training Soft Soft Hard 
Mean Field with training Soft Soft Soft 
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Table 5.5. Comparison of MRF Results. Calculations are made from Figure 5.8. 

Algorithm # Incorrect 
Voxels 

% of 
MAP 

# Incorrect 
Excluding PVA 

% of 
MAP 

Time 
(ms) 

% of 
MAP 

MAP 1908 100 313 100 120 100 
Simple Smooth 1069 56 83 27 270 225 
ICM 1614 84 128 41 400 333 
ICM trained 1627 85 140 45 400 333 
MF 1606 84 127 41 1270 1058 
MF trained 1617 85 136 43 1270 1058 
 

The above table reveals that Simple Smoothing outperformed ICM and MF in both 

accuracy and run time. The reason for this surprising performance is that these are the 

“healthy” phantoms exhibiting tissues of perfect piecewise homogeneity. While simple 

smoothing excels in simple applications, mean field will be the algorithm of choice for 

our application in Chapter 6. Figure 5.8 demonstrates the difference in the spatial 

distribution of the misclassifications. While Simple Smoothing created a block of 

misclassified white matter, ICM and MF left speckle by being more sensitive to the 

original gray values. Additionally, we note that training over large global regions 

produced no measurable improvement in correcting local misclassifications. 
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Figure 5.8. MRF Results. The input image used was the one corrupted with a linear 
bias ramp to produce more salt-and-pepper noise. (Top Left:) classification using 
Chapter 4’s MAP. (Top Right:) Simple smoothing has filled in all gaps between 
structures, producing a very smooth, albeit erroneous segmentation. (Bottom Left:) ICM 
corrects without making the errors that SS does. (Bottom Right:) Mean field is only 
slightly better than ICM, yet runs several times slower (to perform the inner product at 
each voxel). 

 

5.6 Recognizing Deviations from Normalcy 

Armed with the second layer of CDN, we can now revisit the results of Chapter 4 

computed with only one layer. The main improvement is that the consideration of context 

on the neighborhood level serves the following two purposes: 
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1. Reduces the “salt and pepper” noise. This is critical for preparing the data for 

Layer #3’s analysis of region-level properties, which are sensitive to 

misclassification. 

2. Corrects misclassifications caused by partial volume artifacts.  

 

 Naturally, it is desirable to achieve the aforementioned two improvements on the 

classification of pathology as well as healthy tissue. To include pathology in the MRF 

processing, we add a class of “weights” as follows: 

 

1. Compute the soft weights for M healthy tissues as in Chapter 4. 

2. Compute the probability of pathology as in Chapter 4. 

3. Combine these two sets of (M+1) weights, and renormalize them. 

4. Perform MRF processing on the complete set of weights. 

 

Furthermore, to facilitate bi-directional communication between the two CDN layers, 

we perform a few “Outer Iterations”. Within each such iterations, a number of EM 

iterations are performed followed by a few MRF iterations. We converged on the 

iteration schedule reported in Table 5.5 to maximize both efficacy and efficiency.  

 

Table 5.6. Bi-directional Communication between CDN Layers. Layer #1 passes its 
result to Layer #2, which returns its result back for re-processing by Layer #1. 

Outer Iteration # EM Iterations MRF Iterations 
1 10 3 
2 1 3 
3 1 3 
 

Figure 5.9 showcases the impact of Layer #2, and Figures 5.10-5.12 depict the results 

at each iteration to offer insight into the origin of the results of Figure 5.9.  
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Figure 5.9. Summary of Impact of Second Layer of CDN. (Left:) Original input 
image that has been corrupted by a sinusoidally-varying bias field. (Center:) Result of 
segmentation using only Layer #1. (Right:) Result of integrating Layer #1 with Layer 
#2. Observe the strong reduction of noisy scatter. 

 

Figure 5.10 shows the stages of intermediate results encountered during the computation 

of the center image of Figure 5.9. The processing is performed by a system consisting 

only of CDN Layer #1. At each EM iteration, the tissue classification, bias field 

estimation, and probability of pathology are computed. The probability of pathology 

weights the bias field estimation during the next iteration. Observe that the bias field is 

correctly characterized except at the object fringes. The fringe artifacts are the result of 

our computational speed-up where we perform no processing outside the patient’s scalp. 

This is an acceptable trade-off in our application where skin segmentation is irrelevant. 

 
Figure 5.10. EM Iterations with Layer #1 Only. From left to right, and top to bottom, 
are the results following EM iterations #1-7 and 10. Depicted are pathology (green), 
white matter (white), gray matter (gray), CSF (blue), and scalp (tan). 
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Figure 5.11 begins to illustrate the intermediate results of a system consisting of CDN 

Layers #1 and #2. As above, the system progressively discovers the full extent of the bias 

field based on the assumption that it is smoothly varying. Observe that the classification 

of the voxels within the tumor largely pass through these iterations unchanged. This is a 

combination of the facts that the tumor tissue is not slowly varying from healthy tissue, 

and that the tumor tissue’s deviation from normalcy is weighting the bias field 

computation. 

 

 
Figure 5.11. Outer Iteration #1, EM Iterations #1-10. From upper left to bottom right 
are the results after EM iterations 1,2,3,4,5,6,7,10. This is the first processing performed 
by Layer #1 before the probability of pathology is computed, and before Layer #2. 

 

Figure 5.12 completes the intermediate results of CDN Layer #1-2 that Figure 5.11 began 

to show. First, observe the twin components of the impact of the 3 iterations of Layer 2’s 

MRF. From left to right, the “salt and pepper” noise is reduced in the healthy tissues 

while the scattered distribution of abnormal voxels (green) coalesce into tumor masses. 

Second, observe the impact of Layer 2 providing feedback to Layer 1. This bi-directional 

communication is evident across the rows of the figure. The more correct classifications 

are enabling more correct bias field estimation, producing better tumor delineation. Flaws 

still remain in the ambiguity between bias field and pathology which is largely, but never 

completely, resolved. 
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Figure 5.12. MRF Iterations during each Outer Iteration. From left to right are the 
results following each MRF iteration of Layer #2. Each row corresponds to a different 
Outer Iteration, proceeding from top to bottom. Note the impact of Layer #2 
communicating back to Layer #1 (the difference between the top and bottom rows). 

 

5.7 Chapter Summary 

We presented a review of established techniques for taking a probabilistic approach to 

incorporating immediate context into the segmentation paradigm. We created the method 

of simple smoothing as a “straw man” for pointing out the benefit of the mathematical 

formalism of MRF modeling. We used the difference between ICM and simple 

smoothing as an analogy for understanding the difference between mean field 

approximations and ICM. Finally, we performed experiments to analyze the impact of the 

second layer of CDN. 

To summarize the important principles asserted in this chapter: 
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5.1 Our imaging model suggests assumptions of conditional independence, but not 

statistical independence. 

5.2 There are two main purposes of CDN layer #2: reduce “salt and pepper noise”, 

and correct misclassifications due to partial volume artifacts. 

5.3 The simple smoothing, ICM, and Mean Field approximations use progressively 

“softer” functions and function parameters – moving from discrete mathematics 

to probabilities. 

5.4 Pathology is included in layer #2 by relaxing the weights computed by 

normalizing the combination of the posterior probabilities and the probability of 

pathology. 

5.5 Bi-directional communication between layers #1 and #2 can be achieved with 2-

3 outer iterations. 

 



 

Chapter 6 

CDN Layers 3-5:  Intra-Structure, Inter-

Structure, and Supervisory Classification 

 
In this chapter, we introduce the top three layers of our framework for Contextual 

Dependency Networks. While the bottom two layers classify voxels based only on their 

immediate context, the top three layers consider much broader contextual information to 

see the “big picture”. 

Recall how Figure 5.2 illustrated the value of context in the image segmentation 

problem. We have already referred to its benefit in resolving ambiguity by converting an 

ill-posed problem to a well-posed one. Moreover, we especially need to rely on context 

given our approach of recognizing deviations from normalcy. Other methods train on 

tumors by learning from many examples. Although not applied to tumors, [Miller02] 

introduced a method of training from one example for hand-written character recognition. 

The idea was that by studying the variability of a set of known characters, a novel 

character could be recognized by assuming it had similar variability. By comparison, we 

are learning tumors not from many examples, and not from one example, but rather, we 

are learning from zero examples. Our algorithm must have sufficient knowledge of 

healthy brains to identify any pathology at first sight. This is akin to the FBI identifying 

counterfeit money not by studying all the possible instances of fakery, but by thoroughly 

studying the genuine article. 

Incorporating context is problematic in two aspects: knowledge representation 

and information processing.  In the present implementation of our framework, we seek 

both very compact representations, such as parametric probability densities, and very 
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efficient processing, such as algorithms with linear time complexity. Such simplicity 

hinders performance, but validates the framework to pave the way for future work. This 

chapter is organized to derive our theory for linear time complexity processing, called the 

“ACME Segmenter”, and then unveil each of the top three CDN layers. 

6.1 The “ACME Segmenter” 

6.1.1 The Complexity of Context 

Chapter 5 discussed the combinatorial limitations of incorporating context into the 

labeling problem. That is, a data set of N voxels and M tissue classes has MN possible 

distinct instantiations. A brute force maximum likelihood segmenter could compare an 

input image to each possible instance, and output the most likely instance given its 

compatibility with the input data. Such an approach is appealing because it classifies each 

voxel within the context of the entire image, but its exponential time complexity renders 

it impractical.  

Therefore, we modeled the image as a Markov random field in order to consider 

each voxel within a context smaller than the entire image. Our results of Chapter 5 

demonstrated that a very small neighborhood proved valuable in handling noise, but our 

experiments with Diagonalized NNPM in Chapter 3 revealed that a much larger 

neighborhood is required to recognize deviations from normalcy. The key difference 

between handling noise and recognizing abnormality is that the neighborhood size in 

handling noise was a constant, c, while the neighborhood size for recognition is some 

fraction, f, of the image size, N. This is clearly the case if the width of the white matter 

were to be a factor, for example. When every voxel considers information from just c 

other voxels, the time complexity is linear at O(cN), but considering information from fN 

other voxels advances the time complexity to polynomial at O(fN2).  

Therefore, we seek an algorithm that incorporates context as broad as a large-

neighborhood Markov random field would, but with linear time complexity. We derive 

such an algorithm in the next subsection, named the “ACME Segmenter”. 
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Table 6.1. The Complexity of Context 

Time Complexity O Algorithms 
Exponential O(MN) Brute force Maximum Likelihood 
Polynomial O(fN2) MRF with large neighborhoods 
Linear O(cN) MRF with small neighborhoods, and ACME 

 

6.1.2 Derivation of the “ACME Segmenter” 

In Chapter 1’s review of related work, we noted that many approaches in the literature 

incorporate context using morphological operations [Jain95] and/or a series of ad hoc 

heuristics. To avoid bringing such a criticism upon ourselves, we develop a theory that 

provides a formalism for performing these types of computation by organizing the 

operations in a logical manner. We propose adopting the computational model employed 

by the scientific community, which we define based on the following observations: 

 

1. Let the community perform parallel computation where each individual scientist 

represents a separate computational node. Proceeding in isolated parallelism, each 

computational node computes based on the information known uniquely to it, 

such as the sum of its experiences, interests, and education. 

2. The computational nodes communicate with one another. However, it is too 

inefficient for each node to communicate everything it knows to every other node, 

or even one other node.  

3. Neighboring nodes communicate more to each other than to distant nodes, 

producing a local coherence. (Researchers build on one another’s work within the 

same group.) 

4. While nodes keep some information entirely to themselves (rough notes and 

rough code), and share some with nearby neighbors (refined code and lab 

discussions), they submit an even smaller amount of information (conference 

submissions) to a global collection. 

5. Each node does not have access to the globally contributed information 

(submitted papers) of every other node. Instead, some processing occurs at a 

global level (peer reviews) to reduce the amount of information (reject papers) 
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and compute some metrics (award papers, citations) on the global information to 

better facilitate its usage by nodes everywhere. 

 

Figure 6.1 illustrates this computational model graphically. 

 
Figure 6.1. Academic Computation Model. Massively parallel computation exists 
where each node (N1, N2, N3) shares a subset of its knowledge with its neighbors, and an 
even smaller subset with the global community. However, unlike the direct sharing with 
neighbors, some processing occurs (by G) on the collection of globally contributed 
information before its dissemination. This is far more efficient that requiring that each 
node process the global information independently. 

 

 Consider reducing CDN to the academic model. Let there exist a separate 

computational node for each image voxel. Proceeding in isolated parallelism, each 

computational node computes the classification vector W based on the information 

known uniquely to it, such as the input image intensity at that voxel, and the spatially 

varying prior at that voxel. This was CDN Layer #1. Better results can be achieved when 

the computational nodes communicate with one another, as in CDN Layer #2. Since is 

too inefficient for each node to communicate everything it knows to each other node, 

neighboring nodes communicate a subset of their knowledge: their computed 

classification vectors W (in the case of a mean-field MRF), but not their input image 

intensities or spatially varying priors. 
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 Based on this reduction, we can conclude that broad context should be 

incorporated into CDN Layers #3 and #4 based on Figure 6.1. Since less information 

should be contributed to global processing than to neighborhood processing, we will 

allow each node to contribute its classification label, w, rather than its classification 

vector, W. As a result, the total “global contribution” is essentially a segmented image. 

Global processing by some function, G, drastically reduces the information that each 

node incorporates into its subsequent processing. Just as no researcher reads all scientific 

papers, ACME achieves linear time complexity by not forcing each node to consider the 

entire segmented image. The exact nature of the global processing to be performed by G 

on the segmented image, and how each node will incorporate the global information, will 

be developed in the next few sections. The time complexity of the total algorithm will be 

linear as long as the selected G has linear complexity. 

Based on the academic analogy, we could call this algorithm the “ACME 

Segmenter” as an acronym for the “Academic Computation Model for Efficiency”. 

Alternatively, since this computational model is arguably employed by corporate 

enterprises, commercial markets, financial markets, the military, politics, and throughout 

organized society, perhaps the acronym stands for “A Computational Model for 

Everything”. In this thesis, the true meaning of the acronym remains secret in accordance 

with the long tradition of ACME’s usage1. 

6.1.3 Incorporating the Globally Processed Information 

How should each node incorporate the output of G into its processing? The answer can be 

straightforward depending on the form of the nodal processing. For example, with an 

active contour, such as a snake or level set method, one can append an additive term to its 

energy function. With a Bayesian scheme, such as our implementation of CDN Layers 

                                                 
1 According to the American Heritage Dictionary, acme has Greek origin meaning “the point of utmost 

attainment; peak”. Apparently, early business school textbooks used Acme as a business name in some 

examples. Rumor has it that it was an acronym standing for “A Company Manufacturing Everything”. 

Sears-Roebuck used Acme as one of their in-house brand names in the early 1900s, just like they use 

"Craftsman" today. Warner Brothers supposedly took the name from Sears and used it for the mail-order 

company in the Road Runner and Wile E. Coyote cartoons. However, its meaning was never disclosed. 
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#1-2, one can append a multiplicative term to the prior. Recall that our analysis of MRFs 

in Chapter 5 led to deriving equation 5.41, which we repeat in more general terms below:  

(posterior) ∝ (likelihood)*(singleton prior)*(neighborhood prior)*(global prior) (6.1)

In essence, each layer provides the spatially varying prior for the layer below. Such an 

approach also circumvents the problems associated with atlas registration errors when 

spatially varying priors are required to resolve ambiguity. The expression is valid 

provided that the assumptions of conditional independence apply. 

6.1.4 Comparing ACME with other Methods 

We now compare other methods with the “ACME Segmenter”. 

6.1.4.1 High-Level Expert System 

[Clark98] presented a technique for segmenting brain tumors that relied upon a 

combination of morphological operations and a high-level expert system. As will be 

detailed in the next section, the ACME global processing (G in Figure 6.1) is not a rule-

based expert system that could be construed from a series of ad hoc heuristics.  Rather, G 

performs analytical computation, such as probabilistic treatment of shape descriptors.  

 More importantly, the ACME computation retains a “soft” nature by feeding the 

global output back into the local processing nodes. This is a stark contrast to a “hard” 

expert system that makes decisions that irreversibly discard information. 

6.1.4.2 MRF with Larger Neighborhood 

Consider endowing CDN Layer #2’s MRF with a neighborhood sized sufficiently large to 

encompass the largest structure radius. Motivations against this include the complexity 

argument presented in Section 6.1.1, and also the ease of measuring abnormality. Using 

MRF neighborhoods alone, the concept of normalcy would be captured more implicitly 

rather than explicitly. We would lose the benefit of being able to easily answer our two 

guiding questions from Chapter 2. Explicit high-level properties can be fit with 

probability distributions that allow us to define what is normal, and quantitatively 

measure abnormality. 

  134



6.1.4.3 Multiscale MRF 

[Leuttgen93] developed multiscale representations of Markov random fields. These are 

substantially more computationally efficient than well-known MRF models. As described 

in Chapter 3, the main shortcoming that we find with multiscale techniques is that we 

much prefer to carve up image space along structural boundaries rather than along 

arbitrary divisions of the lattice. ACME allows us to compute regional properties of 

structures with full resolution. 

6.1.4.4 ATM-SVC 

The ATM-SVC algorithm applied to brain tumors by [Kaus00] was briefly described in 

Chapter 1. It is similar to ACME in the sense that some global processing is performed 

after classification, and prior to another iteration of the complete algorithm. This is 

accomplished by warping a binary brain template to the binary output classification. 

However, it does not model the independent processing nodes as ACME does. As a 

KNN-based classifier, it ignores the bias field and assumes binomial distributions rather 

than Gaussian distributions in a Bayesian framework. Neighborhood intensity 

interactions are not considered. 

6.1.4.5 EM-MF 

Chapter 1 described several EM- and MRF-based methods for segmentation of brains 

without tumors ([Kapur99], [Leemput01b]) and with tumors ([Moon02]). Beyond the 

local MRF neighborhood, these methods incorporate context only through their use of a 

geometric prior. In the case of [Leemput01b] and [Moon02], the prior is the same one 

employed by our CDN Layer #1. In the case of [Kapur99], the prior was computed 

relative to the scalp and ventricles, but these were segmented a priori before any EM and 

MRF processing began. In summary, all of these methods do not acquire a concept of 

context from analyzing the image data itself. That is the central benefit of our CDN 

Layers #1-2 feeding into Layers #3-4. 

6.1.5 Designing the Global Processing 

Now that we have described the ACME model of Figure 6.1, we are positioned to 

develop Layers #3 and #4 of CDN in the next sections. Note that while every ACME 
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segmenter is a CDN, not every CDN is an ACME segmenter. For example, a CDN where 

nodes communicate all of their knowledge to a neighbor, or to G, would not be ACME-

compliant. As another example, a CDN that forced each node to perform its own global 

processing (often resulting in polynomial or even exponential time complexity) would 

not be an ACME segmenter.   

The purpose of the ACME model is to assist with our development of CDN 

Layers #3-4 so that their design is less arbitrary, and not as open to ad hoc heuristics and 

inefficient schemes. We therefore seek to constrain the search space over allowable 

functions for G. Toward this end, the CDN framework provides some assistance by 

forcing the designer to separately consider layers #3 and #4 – dividing the computation 

into what can be computed about a structure, and what can be computed about its 

relationship to other structures. As an additional constraint for this thesis, we will explore 

only implementations of G that result in solutions with linear time complexity. This 

restriction will hinder the quality of our results, but we will strive for the best results 

given efficient computation. 

6.2 CDN Layer 3:  Intra-Structure Classification 

Consider the example of non-enhancing tumor tissue that mimics the intensity of healthy 

gray matter, but is too thick to be gray matter. CDN Layers #1-2 would first classify the 

tissue as gray matter, but Layer #3 – through its broader understanding of context – could 

correct the misclassifications of the first two layers. In this example, tissue thickness is 

regarded as a region-level property. It is a metric computed over all voxels that share a 

certain tissue type. For such a metric to be computed, classification must first be 

performed by the CDN’s first two layers. That is, Layer #3 is predicated on Layer #2.  

6.2.1 Computation of Region-level Properties 

Shape is a region-level property, as intensity is a voxel-level property, and homogeneity 

is a neighborhood-level property.  By region-level property, we refer to any information 

describing the nature of aggregate collections of similar voxels. Since our goal in this 

thesis is to clearly present a framework, and demonstrate it with a simple, easily-

conceptualized implementation, we are manually selecting simple shape descriptors as 

our region-level properties. Future implementations of the framework can follow Chapter 
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2 in employing mathematical methods such as PCA to automatically discover underlying 

structure from training data.    

 Simple shape descriptors can take the form of coefficients for combining a series 

of basis functions, or as measurements of curvature, or as distances. Applying distances 

in the form of thickness requires definition of two separate surfaces between which to 

compute object thickness [Yezzi01]. Since such definitions are not clear for all brain 

structures, we first experiment using shortest distance-to-boundary of a given voxel’s 

structure. This metric is quite different from thickness, but readily computable. Note, for 

example, that all voxels within a sphere would have identical thickness properties, but the 

distance-to-boundary property varies radially. Therefore, we propose using an 

approximate thickness metric of maximum distance-to-boundary. This simplification 

applies when we assume spherical topologies for brain structures of interest. We select it 

over alternatives given its speed (run times listed in Table 6.2), compatibility with our 

framework (it suggests a form of G that introduces broad context for piecewise 

homogenous scenes), straightforward implementation,  and its empirical impact on results 

(nicely complements intensity and neighborhood coherence). 

The distance-to-boundary metric is computed by performing a distance transform 

on the segmented structures. There are generally two approaches available for performing 

distance transforms: approximate and absolute. The Chamfer distance [Borgefors86] 

presents an approximate algorithm that is favorable given that its run time is fast and 

consistent independent of the image topology. Chamfer distance is computed by 

convolving the segmented image with a triangular mask in the forward direction, and 

another in the backward direction. On the other hand, the fastest current algorithm for 

computing absolute Euclidean distance (square root of the sum of squares) for data of the 

extent typically encountered in medical imaging is [Saito94]. Table 6.2 lists the empirical 

results comparing run time for the two techniques on our specific 3-D domain, and Figure 

6.2 displays the results in pictorial form. 
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Figure 6.2. Distance Transforms (Left:) Euclidean distance to the ICC border outlined 
in tan. (Right) Chamfer distance with slight artifacts of radial streaking. 

 

Table 6.2. Distance Transforms: run time (seconds) on real 3-D brain atlas. Observe 
that Euclidean run time increases with increasing object sizes, while Chamfer run times 
are independent of object topology. 

Image Chamfer Euclidean (Saito) 
CSF 3.5 2.0 
White Matter 3.5 2.1 
Gray Matter 3.5 2.2 
ICC 3.5 2.6 

 

The per-class probability distributions for the distance to each structure’s own 

boundary, p(r|w) are readily computed from a sample segmented scan presented as 

training data, and results are given in Table 6.3 and Table 6.4. 

 

Table 6.3. Distance-to-Boundary measurements from a real brain atlas. 

Image Mean Standard Deviation 
CSF 2.67 2.73 
White matter 5.36 3.14 
Gray matter 1.89 1.06 
Vessel 1.03 0.11 
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The distribution for maximum distance-to-boundary cannot be computed from a single 

scan, but only from a large population. Without a suitable real data set available, we 

trained using synthetic data and empirical measurements of real data. Table 6.4 presents 

the values used during the experiments throughout the remainder of this thesis. 

 

Table 6.4. Maximum Distance-to-Boundary 

Image Synthetic Brains Real Brains 
Image Mean Standard Dev. Mean Standard Dev. 

Scalp 4 2 - - 
White matter 19 4 12 4 
Gray matter 9 4 4 2 
CSF 12 4 7 2 
Vessel 1.4 1 4 2 

 

6.2.2 A Probablistic, Topological Atlas in Addition to a Geometic Atlas 

The atlas used in Layer 1 (described in Section 3.5) can be regarded as a geometric atlas 

because it encodes the geometric relationships between brain structures. In contrast, 

Layer 3 can, in general terms, be thought of as incorporating a probabilistic, topological 

atlas. Such an atlas can be constructed by fitting probability distributions to spatially 

varying shape descriptors.  

Continuing with our simple example of using distances to structure boundaries, 

consider using different distributions for cortical gray matter than sub-cortical gray 

matter. The sheet-like nature of cortex would be represented by its very small distances, 

while the more spherical topology of sub-cortical structures would be encoded with a 

much broader distribution. Some geometric component is still required to map image 

space to atlas space. In the current example, atlas space would consist of two distinct 

distributions for gray matter, and the mapping from image space to atlas space would 

appear the same as depicted in Figure 5.5 for mapping to an atlas space of differing tissue 

class interaction matrices, J. 
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6.2.3 An Implemention of “G” Based on the Metric of Maximum Distance-
to-Boundary 

The role of G of an ACME segmenter is to instill each processing node with an 

understanding of its broad context while sparing it from performing computations of high 

complexity. We design a G3 and G4 to govern the 3rd and 4th CDN layers respectively. 

Our specific implementation of G3 for use in the following experiments performs the 

steps listed below. Recall that the information contributed to G3 from each node is its 

MAP classification (tissue label) computed from the results of CDN Layer #2. 

 

1. Run connected component analysis to produce a voxel-wise labeling of the 

islands of each tissue type (Fig 6.3: 2nd column, 2nd row). We used a 3-D 

neighborhood size of 6 for efficiency. 

2. Compute the distance transform on each island to produce a map of distance-to-

boundary (Fig 6.3: 2nd column, 1st row). We used the Euclidean distance 

algorithm of [Saito94]. 

3. For each island, find its maximum distance-to-boundary (Fig 6.3: 2nd column, 2nd 

row). Compute the probability of abnormality of this distance according to 

equation 4.12. Assign this probability to the value of every voxel in the island 

(Fig 6.3: 1st column, 3rd row) 

 

Figure 6.3 illustrates the technique by displaying the intermediate results from each step 

of G3’s processing. The processing applies to all tissue classes, although only gray matter 

results are shown for brevity. The synthetic case features a tumor with an intensity 

distribution identical to that of healthy gray matter, and therefore indistinguishable by 

intensity, but an outlier with respect to shape. 
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Figure 6.3. ACME G for Layer #3. Top row, left to right, are the input image, the 
posterior probability of gray matter computed by layers #1-2, and the segmentation 
following layer #2. The tumor is incorrectly classified as gray matter at this point, so 
layer #3 will create a spatially varying prior (SVP) to be applied in the next iteration of 
layers #1-2. The next rows show the intermediate steps of G: identification of gray 
matter islands (uniquely colored), distance transform of the islands, maximum distance 
found within each island, probability of this distance occuring in gray matter, and the 
spatially-varying prior computed from complement of this probability. Neighborhood 
interactions smooth out the effects of sharp priors. The last image is the probability of 
abnormality computed by layer #1, illustrating that tumor intensity appeared normal.  

6.2.4 Incorporating the Output of G3 

Following Figure 6.1 and equation 6.1, the output of G3 is incorporated into the next 

iteration of CDN layer #1 by creating a spatially varying prior for typicality. Since 
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typicality is the complement of abnormality, this prior appears as in the middle, bottom of 

Figure 6.3, and is computed simply as: 

:Ss∈∀      SVPShape(s) = 1 – PAbnormal L3(s) (6.2)

Figure 6.4 illustrates the impact that SVPShape has in conjunction with spatially varying 

prior on intensiy, SVPIntensity. 

:Ss∈∀      SVP (s) = SVPShape(s)* SVPIntensity(s) (6.3)

 

  
Figure 6.4. Patient-Specific SVP for Gray Matter. (Left:) Intensity SVP that would 
be used in layer #1 in the absense of layer #3. (Right:) New SVP used in the second 
iteration of layer #1 formed by combining information regarding both intensity and 
shape. Observe the dampening impact of the shape prior near the image top. 

 

The predication of layer #3 on layers #1-2 demands that the spatially varying shape 

prior not take effect until the second “outer iteration” (execution of all layers). We have 

not addressed, however, during which iterations the spatially varying intensity prior is 

valid. While the referenced related works depend on a spatially varying intensity prior 

from the outset, it would not be appropriate for us to do so within our framework. The 

intensity prior imposes localization information for healthy classes into the scene 

recognition process. Since pathology is not represented within the prior, the prior 

adversely affects its recognition. Figures 6.5-6 express this concept pictorially, and a 

mathematical derivation follows later. 
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Figure 6.5. Invalid Application of an Intensity SVP. (TOP:) CDN segments the input 
image on the left to produce the segmentation on the right. The segmentation divides the 
tumor into two parts of gray matter and white matter -- according to their respective 
positions within the intensity SVP (refer back to Figure 6.7 for the gray matter SVP). 
The only pathology (green) in the final segmentation is partial volume artifacts 
surrounding the ventricles (blue) and vessel (red).  

(BOTTOM:) The segmentation is performed using only stationary intensity priors on the 
left, which results in  spurious gray matter speckle within white matter, and vessel 
speckle within skin. The segmentation on the right, however, is correct except for PVA 
which will be corrected by CDN layer #4. The success of this segmentation is based on 
its use of a stationary intensity prior during the first outer iteration, and a spatially 
varying prior during the second outer iteration. In essense, the algorithm “peeks“ at the 
image before imposing its preconceptions. 
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Figure 6.6. Sequential Intensity Prior.  From top to bottom, left to right, are snapshots 
of intermediate results during the process of segmenting with a sequential intensity 
prior. The top row depicts the results of using a stationary prior during the first outer 
iteration, and the bottom row continues with the second outer iteration using a spatially 
varying prior. The left images are taken at the conclusion of layer #1, and those on the 
right reveal the results after layer #2. Observe that the voxels with the most abnormal 
intensities were identified as abnormal in layer #1, and because of their close 
relationship to other voxels in the tumor with respect to both intensity (through the input 
image intensities) and shape (through the shape SVP), the MRF propagated the 
pathology classification throughout the entire structure very rapidly. 

 

The above figure explored the case of pathology with an intensity profile identical to that 

of healthy tissue, but straddling the expected location of two different tissues. The next 

examples explore additional permutations. 
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Figure 6.7. More Examples of Impact of Layer #3. From left to right are the input 
images, segmentation following the first outer iteration, and segmentation following the 
second outer iteration. Colors represent tumor (green), vessel (red), CSF (blue), white 
matter (white), and gray matter (gray), and skin (tan).  

(TOP:) Pathology has mean intensity between that of gray matter and CSF, so the first 
iteration identifies some, but not all, of it as abnormal. Most of the tumor was originally 
labeled as CSF (blue) until corrected to green. 

(MIDDLE:) Pathology has identical intensity profile as a healthy vessel, and does not 
extend outside of a vessel’s expected location. This is a revisitation of the lighthouse 
anamoly case that was incorrectly segmented in Figure 4.10. Both intensity and location 
are insufficient to resolve ambiguity, requiring information regarding size/shape. 

(BOTTOM:) The algorithm fails when a tumor’s extreme heterogenaity results in a 
mixture of apparently normal intensities of sizes too small to measure shape. Texture 
recognition would be helpful in this case, as a future extension of the current framework.
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Figure 6.8. Ability to Communicate with User. The top set of images depict a 
sequence of intermediate results on a case with a bright tumor in addition to unusually 
large ventricles (blue). Observe that only the unusual portions of the ventricles were 
segmented as abnormal (green). To determine the reason behind this behavior, the user 
need only examine the various intermediate probability maps. Inspection of these in the 
bottom picture (intensity SVP, intensity abnormality, and shape abnormality) reveal that 
the unusually strong SVP overruled the spread of tumor classification into the ventricle 
interior. CDN’s organization as a layered, Bayesian network enables the computer to 
respond with answers to a user’s curiosity. 
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6.2.5 CDN without ACME 

Prior to the development of ACME, we implemented a CDN where the computational 

nodes communicated as much knowledge to G3 as to their neighbors [Gering02b]. For 

large structures – on the order of a percentage of the image size – the method has 

polynomial time complexity, but we include it below for completeness.  

Once region-level properties are computed, the question arises of how the 

computation should blend the high-level information with the low-level information. The 

high-level information is a voxel-by-voxel representation of some region-level properties, 

such as distance to structure boundary. The low-level information is the classification 

based on intensities of individual voxels and their neighbors. Given the following 

premises, we conclude with an approach that satisfied our goals, and we call it the Multi-

level MRF.  

 

Premise 1 Voxels of similar low-level classifications possess various values 

of the high-level metrics. 

Premise 2 Probability distributions can be associated with the high-level 

metrics. 

Premise 3 High-level distributions can be used to compute high-level 

classifications. 

Premise 4 Voxels of similar low-level classifications tend to possess similar 

high-level classifications. 

Conclusion High-level classifications should propagate to neighboring voxels 

with similar low-level classifications. 

 

Based on this conclusion, computation in the above example would proceed as follows. 

Voxels toward the center of the mass would be first classified as tumor based on their 

unusually high distance from their structure’s boundary. This tumor classification would 

subsequently flow outward throughout the mass over several iterations in a probabilistic 

flow. The flow is driven by our introduction of multi-layer Markov random fields, 

developed in the next subsection. In this way, a given voxel would change its high-level 

classification in the evolving presence of tumor if the attributes of lower-level layers 
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shared strong similarities. We now derive the multi-layer Markov random field proposed 

as a mechanism for propagating region-level properties.  

6.2.5.1 Review of First Two Layers of CDN 

We begin with a brief review of the two lowest layers to set the stage by providing a 

point of reference for the mathematics empowering the third layer. Recall that EM 

segmentation models the image intensities as visible variables, y, tissue classifications as 

hidden variables, w, and the bias field as governed by model parameters, b. We would 

like to choose the parameters that maximize the log likelihood of the data, log , 

but we do not know this likelihood because w’s invisibility renders  to be a 

random variable. Thus, although we cannot maximize it, we can maximize its expectation. 

This results in the following two iterative steps until convergence to a local minimum: 
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We then added Layer 2 to effectively relax Layer 1’s E-Step weights. The prior 

knowledge of spatial coherence over a configuration, w, of segmented voxels is modeled 

with a Gibbs distribution, P(w), which takes the following form, from equation 5.7: 
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This distribution’s energy function, U(w) is an Ising model generalized to the case of 

discrete, multi-valued labels, and we repeat it here from equation 5.10: 
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This energy function is composed of clique potentials, where V1 is the clique potential of 

all cliques of size 1. In other words, V1 encodes our prior knowledge about an isolated 

voxel prior to viewing the image data. This prior knowledge is the tissue class prior 

probability, which may be either stationary, or spatially-varying. V2 is the potential over 
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all cliques of size 2, and represents the tendency of two classified voxels to be neighbors. 

That tendency is encoded in the MxM Class Interaction Matrix, J, and it is computed 

from a segmented scan offered as training data. 

To make the computation tractable, we used the mean field approximation to 

factorize the joint probability into a product of local conditional probabilities: 

∏
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Then, computation is straightforward using the local clique potentials, which we repeat 

here for convenience from equation 5.48. Given M possible label values, let be an M-

length binary vector of classification at the voxel indexed by i. Then: 
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6.2.5.2 Multi-Level MRF 

We perform a Maximum A Posteriori (MAP) classification of the features (just radius at 

present) computed over Layer 2’s output. Recall that the EM algorithm of Layer 1 must 

compute p(w|y,b) at each E-Step. Since the distributions over region-level properties are 

independent of  the distributions over voxel-level properties (shape is not related to 

intensity or bias), p(w|y,b,r) can be computed with the same update equation except for 

an extra multiplicative term, p(r|w): 

)|(),|(),,|( rwpbywprbywp ∝  (6.8)

Therefore, the posterior probabilities for the Layer 3 MAP classification are equal 

to the relaxed weights of Layer 2 multiplied by this new likelihood. That is, the Layer 2 

weights provide the spatially varying prior for the Layer 3 MAP classification. Using 

superscripts to denote CDN layers, we repeat the MRF equations for Layer 2 below. 

There is a bar over w to denote that it is a vector of probabilities for the Mean Field 

approximation. 
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Next, we desire the MAP result (corrections to Layer 2’s classifications) to 

propagate over regions that are homogenous at Layer 2, as demonstrated in Figure 6.6. 

We introduce a multi-level Markov random field, and define the Gibb’s energy function 

to encode our prior knowledge of its behavior. Compare the equations below with their 

Layer 2 counterparts above: 
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(6.12)

The MxM square Similarity Matrix (SM), J3 is the Layer 3 counterpart of Layer 2’s 

Class Interaction Matrix (CIM), J2. The SM is chosen to drive voxels classified to 

structures with large radii to propagate over voxels associated with structures with small 

radii.  

6.2.5.3 Results 

Figure 6.7 shows results of experimenting on a toy data set where low-level classification 

failed to handle ambiguity, and the multi-layer MRF corrected the result. 
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Figure 6.9. Results. The “toy” volume consists of 2 small, dark spheres and 2 large 
bright ones corrupted with Gaussian noise. The top, somewhat dark, and large sphere is 
ambiguous, and it is classified incorrectly by the lower-level layers of MAP and MRF. 
The 3rd layer then identifies that the center voxels are too distant from the boundary, and 
corrects their classification. The multi-layer MRF propagates this information across the 
structure because its lower-level segmentation is mostly homogenous. From left to right: 
Original, Result after Layer 2, Result after 15 iterations of Layer 3’s multi-level MRF, 
Result after 50 iterations of Layer 3’s multi-level MRF 

 

6.3 CDN Layer 4:  Intra-Structure Classification 

While Layer #3 considered the context of a structure by itself, Layer #4 considers the 

context of multiple structures. Such consideration can yield two very different pieces of 

information. The first is whether a voxel is misclassified because it contains intensity 

information from not one, but multiple structures. The second is whether an entire 

structure is misclassified in a way that can be corrected based on its situation relative to 

other structures.  We being with a discussion of the former, called partial volume 

artifacts. 

6.3.1 Correcting Misclassified Voxels 

Partial Volume Artifacts (PVA) arise when voxels that contain tissue belonging to more 

than one tissue class display an intensity value along the linear combination of the 

classes’ distributions. While partial volume artifacts always present somewhat of an 

obstacle to segmentation, their effect becomes much more pronounced in our algorithm 

because the entire interface between structures incorrectly appears abnormal. 
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Figure 6.10. Autumn Artifacts.  When viewed from across New Hampshire’s Swift 
River, neighboring red and yellow leaves can easily be mistaken for orange. 

 

6.3.1.1 Related Work 

[Choi91] coined the term mixels to represent voxels that contain mixtures of multiple 

tissues. The quantity fil is the fraction of the volume at the location of voxel i that consists 

of constituent (tissue class) l. Given M tissue classes, a mixel is an M-dimensional 

random variable that satisfies, at each voxel i: },,,{ 21 iMiii ffff L=

∑
∈

=
Ll

ilf 1 (6.13)

Modeling each voxel as a mixel has straightforward implications for statistic analysis. 

For instance, the conditional probability for the observation xi at i, given the true mixel fi, 

is a Gaussian with mean  ∑
∈

=
Ll

lili fu µ

Since mixel constitution can be confused with image noise, [Choi91] used an 

MRF as a regularizer to convey that adjacent mixels are likely to have similar 

constituents. [Pham00a] and [Leemput01b] extended [Choi91] to favor pure mixels 

(homogenous voxels bordered by partial-volume mixels) either by using heuristics or by 

applying the MRF on the subvoxel level instead of the voxel level. [Santago95], 

[Jaggi98], and [Laidlaw98] took a different approach of using Bayesian classification to 
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match histograms by finding the mixture of materials most likely to have created the 

histograms.  Since these methods have the drawback of discarding spatial information, 

[Ruan00] combined the histogram approach with MRFs.  However, the search space was 

constrained by limiting the image model to contain only two mixture classes (CSF/GM 

and GM/WM) in addition to three pure classes. We note that such an approach would 

misclassify the voxels on the WM/CSF border of the lateral ventricles as GM. In fact, 

[Wang01], whose objective was to measure lateral ventricle volume, corrected for this 

using a scheme that performed morphological operations to identify candidate voxels for 

potential partial volume artifacts. 

6.3.1.2 Our Approach 

Given our novel approach of recognizing deviations from normalcy, we chart a different 

course for handling partial volume artifacts. With the exception of [Wang01], all 

references in the previous section pertained to unsupervised classification methods, 

where the statistical model parameters are determined automatically. In these approaches, 

the motivation for handling partial volume artifacts is to prevent the artifacts from 

widening the histograms of the true classes, thereby hindering the parameter estimation.  

Our motivation, on the other hand, is more like that of [Wang], where the artifacts are 

causing serious, erroneous classifications. 

 Our approach requires a means of resolving the ambiguity veiling whether a 

voxel’s intensity is being influenced by pathology or partial volume artifacts. Since MRI 

in-plane resolution (~0.9 mm) is smaller than the size of brain structures (cortical 

thickness is 3-6 mm), adjacent voxels are likely to have similar constituents. Thus, we 

can resolve this ambiguity by referring back to our imaging model in Chapter 2 to derive 

a spatially varying prior on the presence of artifacts similar to [Wang]. Observe that we 

have been opposed to the use of morphological operations throughout this thesis, partly 

because of their dependence on the image lattice size. However, an appropriate 

application for morphological operations is when the lattice size is the very issue. Since 

PVA is caused by the finite lattice size, lattice-size based operations of erosion/dilation 

are suitable for screening candidate PVA mixels. 
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This screening can be performed efficiently on a global level, so we desire a G4 

function for the ACME paradigm. Since every voxel on the boundaries between distinct 

structures is at risk for PVA, the role of G4 is to identify all voxels bordering structures, 

except those bordering substantial tumors. Define substantial tumors to be those of width 

greater than a single voxel. (The logic is that a PVA voxel labeled tumor by Layer #1 will 

not have sufficiently strong neighborhood coherence to be expanded by Layer #2.) 

Similar to G3, input to G4 is the labeling from CDN Layer #2, and the output is 

communicated back to CDN Layer #1 in the form of a spatially varying prior. While G3 

contributed a prior with respect to healthy tissues, G4 offers a prior for pathology that 

discourages PVA candidates from consideration as abnormal. Formally, G4 is defined as 

an SVP that is everywhere 1 except for 0’s at voxel set PC. Given M labels and a lattice 

of m nodes: 

 

Lattice:                            }..1|{ miiS ∈=  

Healthy Tissue Labels:  }}..1{|{ MllH ∈=  

Label for Tumor:            }1{ += MT  

All Labels:                     }{ THL ∪=  

Neighborhood of Site i: )}(,,|{ jneighboriijSjjNi =≠∈=   

Neighborhood System:  }|{ SiNN i ∈=  

Healthy Boundaries:      },,,,|{ jijii wwHwHwNjSiiHB ≠∈∈∈∈=  

Substantial Tumor:        },|{ TwSiiST i ∈∈= after eroding, dilating tumor 

PVA Candidates:          }|{ STHBiiPC ¬∩∈=  

(6.14)

 

 We used a 3-D neighborhood system of 26 neighbors in order to involve all 

immediate neighbors of a given voxels 6 faces, 8 corners, and 12 edges. Figure 6.11 

illustrates the intermediate and final result of handling PVA. 
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Figure 6.11. Handling of PVA.  Intermediate processing steps of G4 are shown in the 
top row, with HB (boundaries of healthy tissues) on the left, and PC (SVP with 0’s at 
candidate PVA locations on the right. Observe that the tumor boundary in HB does not 
appear in PC. This spares the tumor boundary from having errors as an artifact of 
correcting for PVA. This is the advantage of our algorithm over the customary, lossy 
operations of erosion/dilation. The bottom images represent results without (left) and 
with (right) PVA handling. Upon close inspection, the erroneous tumor classifications 
disappear from the ventricle/white matter interface and the scalp/CSF interface. 

6.3.2 Correcting Misclassified Structures 

Besides partial volume artifacts, another reason to consider the context of multiple 

structures is that an entire structure could be misclassified in a way that can be corrected 

based on its situation relative to other structures.  We illustrate this concept with an 

example of edema misclassified as gray matter. Edema, or liquid diffused between cells, 

spreads finger-like into the white matter, while avoiding the gray matter and cortex 
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whose cell packing is too dense to harbor as much fluid. The extra-cellular fluid of edema 

and increased intra-cellular fluid of tumors can be confused when ascertaining the 

tumor/tissue interface. By knowing that edema always borders both white matter and 

tumor, we can resolve ambiguity resulting from its similar appearance to gray matter on 

T1-weighted MRI. We suggest this application as future work in Chapter 7. 

6.4 Summary of CDN Layers #1-4 

6.4.1 System Diagram 

Figure 6.12 depicts the bi-directional communication between the first 4 layers of CDN. 

The factors involved in computing the healthy tissue posteriors are the image intensities, 

intensity prior, neighborhood prior, and shape prior. The factors involved in computing 

the tumor posterior are the probability of abnormality based on intensity, the complement 

of the shape prior, and the PVA prior. 

 

 
Figure 6.12. Bi-directional Information Flow.  Although not drawn explicitly, the 
predication of Layer #4 upon Layer #3 is realized by executing Layer #3 (and then 
Layers #1-2 again) before Layer #4.  
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6.4.2 System Dynamics 

The avoidance of race conditions was the motivation behind the hierarchy of predicated 

layers. The intent was for the predication to prevent any anomalous behavior due to 

unexpected critical dependence on the relative timing of events. Nonetheless, oscillations 

could occur when global and local forces exactly cancel, but such phenomena have not 

yet been observed in practice. Instead, the dominant shortcoming of the algorithm is 

convergence to local minima. Any input from the user is valuable in providing an 

initialization closer to a desirable minimum, which leads us to the 5th and final layer. 

6.5 CDN Layer 5:  Supervisory Classification 

CDN Layer #5 differs from the four lower layers in that it adds context derived not from 

the image, but the user. 

6.5.1 Intelligent Interaction 

As described in Chapter 3, one of our goals was to produce an algorithmic framework 

that facilitates intelligent interaction with the user throughout the segmentation process. 

A segmentation should not be just presented, but be responsive. For example, suppose the 

user wishes to suggest, “No computer, that’s not gray-matter, that’s edema.” If a human 

segmenter were told this, he or she would re-label not just the one voxel touched by the 

user, but all of the voxels whose classification should logically change in response. 

Obviously, this would include all neighboring voxels with the same properties as the first. 

But additionally, the presence of edema may have other ramifications. Since edema 

always borders tumor, some voxels whose classification had been borderline between 

tumor and gray-matter, may now be corrected with the new information that resolves the 

ambiguity. Thus, we seek a framework where a user’s assertion (at any time within the 

segmentation process) of a single voxel’s classification would have logical repercussions 

throughout the entire image. 

6.5.2 The Role of the Supervisor 

There are three reasons for segmentation systems to feature intelligent interaction with 

human users. The first one, described above, is corrective.  
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The second is prescriptive. Depending both on the nature of a patient’s ailment, and 

the stage of the treatment process, a medical professional may be looking for different 

information from the segmentation. What exactly should be segmented as tumor? Is it 

just the enhancing portion, or also non-enhancing areas? Necrotic areas and edema may 

be unimportant at first, but the user may then decide to isolate them upon seeing the first 

segmentation.  

The third reason is that different users have dissimilar definitions of how the 

segmentation boundaries should be drawn. One origin of the challenge for segmentation 

posed by inter-operator variability is user preference. Certain physicians prefer over-

segmenting (larger than normal) of tumors, while others prefer under-segmenting. Figure 

6.13 demonstrates the extreme differences displayed by the four experts applied to the 

tumorbase. We suggest more development of this application as future work in Chapter 7. 
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Figure 6.13. Intra-Operator Manual segmentations performed by the four different 
experts vary greatly, but systematically. 

 

6.6 Results on Real Data 

For analyzing algorithmic performance on real data, we return to the Tumorbase used in 

the experiments with Diagonalized NNPM. To produce training data, we augmented a 

publicly available anatomy atlas [BWHSPL], which is a healthy brain manually 

segmented into scores of structures. As shown in Figure 6.14, we reduced the number of 

structures to white matter, gray matter, and CSF for initial experiments. Future 

experiments can readily increase the number of modeled structures. For example, sub-
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cortical gray matter such as the thalamus (indicated with an arrow) feature intensity and 

maximum-distance-to-boundary profiles situated between those of cortical gray matter 

and white matter. It would be straightforward to add these structures to our model space 

in the same manner that we employed anisotropic Markov random fields in Chapter 5. 

 

Figure 6.14. Atlas (Left:) Scores of manually structures can be reduced to our desired 
size of model space. (Right:) The thalamus features intensity and maximum-distance-to-
boundary profiles situated between those of cortical gray matter and white matter, but is 
considered gray matter in many related works, including our initial experiments. 

 

Table 6.5. Stationary Priors computed from the atlas in the center of Figure 6.14. 
Vessels, not included in the atlas, were added manually. 

Tissue Class Stationary Probability 
White matter 0.28
Gray matter 0.50
CSF 0.21
Vessel 0.01

 

For spatially varying priors, we used the atlas of Figure 4.6. The atlas is rigidly registered 

to patient specific scans automatically2 by maximizing mutual information [Wells96a]. 

 

We experimented with both automatic, unsupervised segmentation, and supervised 

segmentation that requires a few seconds of the user’s time to draw a crude line on each 

structure of interest in order to collect sample prototype points. In all cases, the tissue 
                                                 
2 Some manual assistance is required when the atlas and patient data sets are not both 

whole-head scans. 
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class variances are taken a priori from the training data, but the tissue class means are 

adapted to individual patient scans. The reason, in the supervised case, is that a small set 

of prototype points are an insufficient sampling to produce an accurate variance 

measurement. The reason, in the unsupervised case, is that the Gaussian model 

parameters are updated during the M-Step of EM to form a Generalized EM as derived in 

section 5.2.1. Allowing variances to adapt influences the algorithm to converge more 

slowly, and more likely to an undesirable local minimum. To prevent tumor intensities 

from adversely affecting the unsupervised clustering, the voxel contributions were 

weighted by their probability of pathology in the exact same manner as they are weighted 

in computation of the bias field, described in Section 4.2.2. The best results, by a wide 

margin, were achieved using both: a few seconds of user initialization and unsupervised 

clustering within generalized EM. In all experiments, we used tissue class standard 

deviations of 6, except 25 for vessels, apparently due to being a product of contrast 

injection. The following iteration schedule was selected empirically by allowing the 

iterations to proceed at each level until convergence (nearly all voxels ceased changing 

value).  

 

Table 6.6. Bi-directional Communication between CDN Layers. Layer #1 passes its 
result to Layer #2, which passes its result to Layers #3-4, which return their results to 
Layer #1 in the form of spatially varying priors to. Layer #3 executes during the first 
outer iteration, and Layer #4 waits until the second in order to benefit from Layer #3’s 
contribution. 

Outer Iteration # EM Iterations MRF Iterations Higher Layer 
1 5 3 #3 
2 3 12 #4 

 

6.6.1 Results using Stationary Intensity Prior 

Figures 4.15-4.17 display the convergence of the algorithm pictorially. 
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Figure 6.15. Intermediate Results. The top row shows the sequence of results during 
the first outer iteration, and the next 2 rows display the second.  Observe how the 
spurious fragments of abnormality disappear except in the neck, which is irrelevant. 
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Figure 6.16. Dependence on Each Layer. This figure displays the final segmentation 
that results when a certain layer is absent from the framework. From top left to bottom 
right, are results missing EM, Layer #2, Layer #3, and Layer #4. Without EM, the 
parameters are not allowed to converge to a suitable explaination of the image. Without 
Layer #2, the probability of abnormality is unable to propogate across a structure. 
Without Layer #3, the abnormal shape is never recognized. And Without Layer #4, 
spurious tumor fragments remain as a partial volume artifact. 

As a reminder of the color scheme: tumor (green), vessel (red), CSF (blue), white matter 
(white), and gray matter (gray), and skin (tan).  
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Figure 6.17. Abnormality Maps.  From left to right are shown the input image, 
probability of abnormality based on Layer #1 and probability of abnormality based on 
Layer #2. Observe how the intensity information alone was nearly useless. 

 

6.6.2 Results using Spatially Varying Intensity Prior 

The complete atlas is composed of spatially varying probability maps for each healthy 

tissue class, in addition to a “brain mask” that restricts computation to occur within the 

approximate boundary of the ICC. Since the tumor is not represented in the probability 

maps, the probability maps are not applied during the first outer iteration. However, the 

brain mask is always applied – partly to speed the computation, but mostly to prevent 

structures outside the brain (which were not included in training) from interfering with 

the algorithm’s convergence. Figures 6.18-19 illustrate the results on the hyper-intense 

tumor as well as a hypo-intense one. 
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Figure 6.18. Results Using an Atlas. From top to bottom, left to right, is the sequence 
of results during convergence. Compared with the previous figure, the brain mask of the 
atlas prevents neck structures from corrupting the model parameter estimation. The 
probability maps of the atlas improve discernment of the interface between healthy 
structures, especially white matter and gray matter. This, in turn, produces better 
parameter estimation, which results in better tumor recognition. 
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Figure 6.19. Hypo-Intense Tumor. Since the algorithm has no knowledge of tumors, it 
applies unchanged to both hyper-intense and hypo-intense tumors. As an interesting 
note, the process of convergence for this case was quite different from the other. In the 
previous figure, the few most abnormal voxels first recognized their identity as tumor, 
and neighborhood coherence propogated this information throughout the structure of 
voxels sharing similarity with respect to other properties. However, in the current figure, 
the shape prior alone was sufficient to identify most voxels as belonging to tumor. 
Hence, an observer watching the convergence notices the tumor “pop out“ rather than 
evolve progressively. 
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Figure 6.20. Algorithm Failure. This is a case where the algorithm failed to recognize 
the tumor. The combination of the tumor’s vast size and intensity distribution caused the 
bias field to overcompensate. From the top to bottom and left to write are shown the 
input image, segmented image, estimated bias field, and probability of abnormality 
based on intensity (showing the effectiveness of the bias). Future work can overcome 
this challenge with more robust bias estimation and shape descriptors. 

 

6.7 Chapter Summary 

We presented the three high-level layers of CDN for incorporating context on a broad 

scale. First, we incorporated intra-structure properties by computing shape descriptors 

over the results of the first 2 layers. Second, we incorporated inter-shape properties by 

examining relationships between structures computed by the first 3 layers. Together, all 
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layers of the CDN compute a probability map for pathology, from which one can 

delineate tumor boundaries. 

To summarize the important principles asserted in this chapter: 

 

6.1 The ACME segmenter incorporates context using an algorithm of linear time 

complexity by restricting information flow between computational nodes. 

6.2 High-level layers can communicate to low-level layers via a Bayesian prior and 

an outer iteration. 

6.3 The factors involved in computing the healthy tissue posteriors are the image 

intensities, intensity prior, neighborhood prior, and shape prior. The factors 

involved in computing the tumor posterior are the probability of abnormality 

based on intensity, the complement of the shape prior, and the PVA prior. 

6.4 Morphological operations are appropriate when the image discretization is the 

very issue being addressed. 

 



 

Chapter 7 

Conclusion 

 

7.1 Contribution Summary 

The contributions of this thesis are two-fold. First, we proposed segmenting large brain 

tumors by training exclusively on healthy brains to recognize deviations from normalcy. 

Second, we designed a framework for a Contextual Dependency Network (CDN) that 

incorporates multiple levels of predicated context. This framework extends EM-based 

segmentation with region-level properties, and it allows information to flow bi-

directionally between layers using either ACME or a multi-level MRF. Experimental 

results demonstrated our framework to be superior to nearest neighbor pattern 

recognition. We also improved NNPM with our diagonalization method that makes an 

effort to isolate micro- and macro texture by monotonically increasing window size with 

decreasing resolution.  

The simple instantiation of the framework presented herein requires more 

sophisticated components to achieve clinically usable results. Regardless, the results are 

encouraging given the goal of this thesis, which is to solve the recognition problem for 

brain tumors. Existing methods have largely focused on boundary delineation, leaving the 

recognition task for humans. Together, this thesis and these methods could form an end-

to-end solution for automatic recognition and delineation of brain tumors. 

The specific findings of this thesis can be summarized with the principles 

tabulated in each of the chapter summaries. A brief review of these summaries is listed 

below: 
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Ch. 3 For general applicability, tumor segmentation systems should recognize 

deviations from normalcy, rather than identifying known features of tumors. 

They must answer the following two questions: 

1.) What is normal? 

2.) How is abnormality measured? 

Ch. 4 Each voxel’s contribution to the EM-based bias estimation is weighted by its 

typicality in order to produce an estimation that is robust to pathology. A 

function for computing a probability of pathology is based on integrating the 

area under the tails of Gaussian distributions, and is thus shifted from the origin, 

exponentially rising, and asymptotic. 

Ch. 5 The Simple Smoothing, ICM, and Mean Field approximations use progressively 

“softer” functions and function parameters – moving from discrete mathematics 

to probabilities. Pathology is included in CDN Layer #2 by relaxing the weights 

computed by normalizing the combination of the posterior probabilities and the 

probability of pathology. Bi-directional communication between layers #1 and 

#2 can be achieved with 2-3 outer iterations. 

Ch. 6 The ACME segmenter incorporates broad context using an algorithm of linear 

time complexity by restricting information flow between computational nodes. 

High-level layers communicate with low-level layers via a Bayesian prior and 

iteration. 

 

 Our approach of recognizing deviations from normalcy, rather than focusing on 

detecting specific features of certain pathology, holds promise for becoming more 

generally applicable in the broad, and rapidly growing, field of computer-aided medical 

image analysis. Toward this end, the next section presents several avenues of research for 

improving the ability of computers to assist patients along the road to recovery. 

7.2 Future Directions of Research 

7.2.1 Correcting Misclassified Structures 

Sections 6.3.2 suggested future work in correcting misclassified structures with edema as 

an example target.  CDN Layer #4 can be extended to leverage the information that 
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edema always borders both white matter and tumor, and this fact can be used to resolve 

ambiguity resulting from its similar appearance to gray matter on T1-weighted MRI. 

Furthermore, we believe that the CDN framework is well-suited for producing 

intelligent human-computer interaction. Human input can be modeled as another G 

function in the ACME model so that human input is propagated throughout the other 

CDN layers. See Section 6.4 for more details. 

7.2.2 More Sophisticated Shape Descriptors 

Our framework used distance-to-boundary as a basic shape descriptor that readily 

facilitated measurements of normality. Other simple shape descriptors can take the form 

of curvature measurements or coefficients for combining a series of basis functions. The 

medical computer vision field is rapidly developing progressively better models of 

anatomic shape. Future developments in topological atlases and shape variations will be 

well suited for recognizing deviations from normalcy. In particular, we mentioned data 

dimensionality reduction schemes, such as PCA and nonlinear variants, in Section 2.2. 

For example, such a scheme could model the variability of the shape of white matter. 

Subsequently, cortical gray matter could be modeled as a sheet of certain thickness 

enveloping the outer surface of the white matter. 

Given our model of recognizing deviations from normalcy, it is important to note 

that PCA is not able to answer how well new data are fit by the model in a non-Gaussian, 

probabilistic sense. Instead, the only criterion available is the squared distance of a given 

image from its projection into eigen-space. [Roweis98] has addressed this problem with 

an EM-based approach. 

7.2.3 Non-rigid Atlas Registration 

Our Bayesian framework incorporated spatially-varying statistical priors via rigid-

registration with an atlas. Section 3.5 detailed several alternative approaches for richer 

implementations, including extending [Pohl02] so that the warping involved in the 

registration process would not be hindered by the presence of pathology. 
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7.2.4 Alternatives to MF-Optimized MRFs for Inter-Layer Communication 

Section 6.2.4 derived a conclusion from several premises that could be satisfied using our 

multi-level MRF developed later in that section. Nonetheless, a multi-level MRF is not 

necessarily the optimal solution for meeting those requirements. Belief propagation 

networks [Belhumeur96, Weiss97, Freeman00, Yedidia02] could be designed to facilitate 

inter-layer communication: blending neighborhood-, region-, and global-level properties. 

7.2.5 Alternative Metrics for Deviation from Normalcy 

Our framework tended to fit Gaussian models to voxel- and region-level properties. The 

motivation for this was the convenience lent by normal distributions for expressing 

definitions of normalcy and measurements of abnormality. Further research can explore 

alternatives to Gaussian models in these instances.  

Generally, alternative metrics of normality need to be explored. For a texture-

based approach, consider [DeBonet97, DeBonet98]. For incorporating frequency 

information, consider a wavelet-based approach as performed with mammography 

[Laine94]. In comparison to a windowed Fourier transform which has a fixed resolution 

in the spatial and frequency domain, the resolution of the wavelet transform varies with 

the scale parameter, decomposing an image into a set of frequency channels. 

7.2.6 Exhaustive Implementation of Multi-scale NNPM 

Chapter 3 presented experiments run using a multi-scale implementation of NNPM. 

Further research should replicate these experiments using the full possible range of all 

scales and extents. PCA can be used to reduce the dimensionality of each patch for more 

efficient computation, and more convenient fitting of probability distributions to the 

occurrence of each possible patch. Although we used a measure of RMS error to 

characterize abnormality, a probabilistic approach can be taken given an extensive 

training set. 

 Furthermore, a full set of training data (300 cases) can be used instead of just a 

couple slices from the healthy hemisphere, as in our example. 

 Additionally, Section 3.4.2 suggested using non-rectangular windows. In essence, 

these are rectangular windows with a portion masked out to remove it from consideration. 



 

Appendix 

 

8.1 EM Segmentation 

8.1.1 EM Segmentation: ML Derivation 

[Wells96b] derived the EM segmentation algorithm from the standpoint of a MAP 

estimator of the bias field. We present here a slightly different derivation by deriving EM 

segmentation directly from [Dempter77]’s definition of EM based on ML estimation. 

Additionally, our derivation uses our imaging model from Chapter 2 to explain the 

validity of the various assumptions. 

 

Define the following notation: 

y the observed log-transformed image intensities 

b bias field (additive to log-transformed data) 

w the tissue classification 

L set of all possible tissue labels, l 

µl mean of tissue class l  

σl standard deviation of tissue class l 

i index into voxel locations 

 

Begin by writing the expectation that we wish to maximize: 

)|'(maxarg
'

bbQ
b

 (8.1)

)]|,([logmaxarg bwypE
wb

 (8.2)
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Apply the definition of conditional probability: 

))](),|([log(maxarg wpbwypE
wb

 (8.3)

Decouple the problem using the logarithm: 

)](log),|([logmaxarg wpbwypE
wb

+  (8.4)

Assume from our imaging model in Chapter 2 that the bias field and tissue classes are 

statistically independent. While this is not completely true in practice, it is a viable 

approximation for mathematical tractability. Since we will maximize with respect to b, 

the p(w) term can be dropped. 

)],|([logmaxarg bwypE
wb

 (8.5)

Next, assume the statistical independence of voxel intensities. We noted in discussion of 

Chapter 2’s imaging model that this was not completely true in practice, so we will relax 

this assumption later using Markov random fields. 
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Decouple using the logarithm: 
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Apply the fact that for linear functions, f, f(E) = E(f): 
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Apply the measurement model. The probability of observing a particular image intensity, 

given knowledge of the tissue class and the bias field, is given by a Gaussian distribution 

centered at the biased mean intensity for the class: 
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Decouple using the logarithm: 
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Drop the term not dependent on b: 
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To find the minimum, apply the zero-gradient condition by differentiating with respect to 

each component of b: 
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Consider that only the ith component of the summation depends on bi. Also, move the 

differentiation inside the summation, and expand the quadratic: 
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Apply the derivative: 
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The expectation of a linear function is a linear function of expectations: 
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The bias field is independent of tissue class, so it can be pulled out of the expectation 

over the probabilities of tissue classes: 
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We will revisit equation 8.16, but we’ll simplify it for now: 
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Equation 8.17 states that the bias field is the expected value of the difference between the 

actual and predicted intensities. To conclude the derivation of the computation to be 

performed during the M-Step, we express the expectation: 

)(, i

i

wi
w

iwi yWb µ−= ∑   , i∀  (8.18)

where 

),|(, iiiiw bywpW =  (8.19)

The weights Ww,i used to compute the weighted average are the probabilities of the 

hidden variables given the visible data and the current belief for the bias. As noted at the 

end of Section 4.1, the objective of the E-Step is merely to compute these weights. Apply 

Bayes’ Theorem: 
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Apply the definition of conditional probability: 
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Since the bias field is independent of tissue class, p(b | w) = p(b). For the same reason, 

p(b) can be pulled out of the summation over w: 
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The remaining factors in equation 8.22 are known quantities: 
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=)( iwp  prior probability of tissue class. This is a stationary prior now, but we 

will use a spatially varying prior later. 

 

To summarize, the EM algorithm performs the following iterations at each voxel 

location. Conceptually, the E-Step computes the weighting associated with each tissue 

class, and the M-Step computes the bias field as the weighted residual intensities: 

E-Step:                                     
∑
∈

==
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wpwbyp
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M-Step:                                             )(, i

i

wi
w

iwi yW µβ −←∑  (8.25)

We would now like to revisit equation 8.16 for computing the bias field. We performed 

the above derivation by using EM for a maximum-likelihood approach with no prior 

knowledge of the bias field. But in fact, we do know that the bias field is slowly varying, 

and we could apply this knowledge with a low-pass filter to attenuate the high-frequency 

components. We could impose this constraint by applying such a filter, F, to equation 

8.17. Alternatively, we could apply F to both the numerator and denominator of equation 

8.16 in order to remove any DC gain intrinsic to the filter. In our implementation, F is a 

3-D, isotropic, boxcar filter with a radius approximately 1/10 the image radius.  To 

summarize, replace equation 8.16 with: 
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8.1.2 EM Segmentation: MAP Derivation 

Observe that equation 8.26 is a filtered Weighted Mean Residual image divided by a 

filtered Weighted Inverse Variance image. This is the identical result as equation 22 in 

[Wells96b], but Wells used prior knowledge of the bias field from the beginning of the 

derivations. This would be equivalent to us computing EM based on MAP instead of ML, 

which involves replacing equation 8.02: 

ML:                                           )]|,([logmaxarg bwypE
wb

(8.27)

MAP:                                           arg  )],|([logmax wybpE
wb

(8.28)

Apply Bayes’ rule to equation 8.27: 
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Decouple using the logarithm, and drop p(y,w) because it does not vary with β: 

)]()|,([logmaxarg bpbwypE
wb

+  (8.30)

Thus, the only difference between MAP (equation 8.28) and ML (equation 8.02) is the 

p(b) term that captures prior knowledge of the nature of the bias field. From here, the 

derivations would proceed almost identically to what we have shown for the ML case. In 

the end, handling the p(b) term proves intractable to compute exactly, so [Wells96b] 

proposed an approximation identical to equation 8.26. 

8.1.3 EM Segmentation: Rejection Class 

In this thesis, we are applying EM segmentation to images of abnormal tissue not 

explained by our models of healthy tissue classes. The EM algorithm will attempt to fit 
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unhealthy tissue to a class for healthy tissue by adjusting the bias field. For breast 

segmentation, [Guilllemaud97] proposed using a rejection class to collect intensities that 

are not a reasonable fit to an established tissue class. Unlike the tissue classes modeled by 

Gaussian distributions, the rejection class has a uniform distribution with a probability 

just high enough to be greater than the tails of Gaussians distant from their means. To 

preserve the bias field’s integrity, we wish to only calculate the bias where we know the 

tissue’s classification. Then the bias field computed over known tissues will diffuse into 

the regions of uncertainty. The equation for computation of the Mean Residual during the 

M-Step changes to: 
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 Generally, we would like to weight our computation of the bias field by our 

confidence in knowledge of the tissue class. We will use this idea instead of a rejection 

class, and we will demonstrate results of this later in the chapter. 
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