
Advanced Algorithms
Computer Science, ETH Zürich

Mohsen Ghaffari

These notes will be updated regularly. Please read critically; there are typos

throughout, but there might also be mistakes. Feedback and comments would be

greatly appreciated and should be emailed to ghaffari@inf.ethz.ch.

Last update: March 10, 2020

Contents

Notation and useful inequalities

I Approximation algorithms 1

1 Greedy algorithms 3
1.1 Minimum set cover . 3

2 Approximation schemes 11
2.1 Knapsack . 12
2.2 Bin packing . 14
2.3 Minimum makespan scheduling 20

3 Randomized approximation schemes 27
3.1 DNF counting . 27
3.2 Counting graph colorings . 32

4 Rounding ILPs 37
4.1 Minimum set cover . 38
4.2 Minimizing congestion in multi-commodity routing 43

5 Probabilistic tree embedding 51
5.1 A tight probabilistic tree embedding construction 52
5.2 Application: Buy-at-bulk network design 60
5.3 Extra: Ball carving with O(log n) stretch factor 61

II Streaming and sketching algorithms 65

6 Warm up 67
6.1 Typical tricks . 67
6.2 Majority element . 68

7 Estimating the moments of a stream 71

7.1 Estimating the first moment of a stream 71

7.2 Estimating the zeroth moment of a stream 73

7.3 Estimating the kth moment of a stream 80

8 Graph sketching 89

8.1 Warm up: Finding the single cut 90

8.2 Warm up 2: Finding one out of k > 1 cut edges 92

8.3 Maximal forest with O(n log4 n) memory 93

III Graph sparsification 97

9 Preserving distances 99

9.1 α-multiplicative spanners . 100

9.2 β-additive spanners . 102

10 Preserving cuts 111

10.1 Warm up: G = Kn . 113

10.2 Uniform edge sampling . 113

10.3 Non-uniform edge sampling 115

IV Online algorithms and competitive analysis 121

11 Warm up: Ski rental 123

12 Linear search 125

12.1 Amortized analysis . 125

12.2 Move-to-Front . 126

13 Paging 129

13.1 Types of adversaries . 130

13.2 Random Marking Algorithm (RMA) 131

14 Yao’s Minimax Principle 135

14.1 Application to the paging problem 136

15 The k-server problem 137

15.1 Special case: Points on a line 138

16 Multiplicative Weights Update (MWU) 143
16.1 Warm up: Perfect expert exists 144
16.2 A deterministic MWU algorithm 144
16.3 A randomized MWU algorithm 145
16.4 Generalization . 147
16.5 Application: Online routing of virtual circuits 147

Notation and useful inequalities

Commonly used notation

• P : class of decision problems that can be solved on a deterministic
sequential machine in polynomial time with respect to input size

• NP : class of decision problems that can be solved non-deterministically
in polynomial time with respect to input size. That is, decision prob-
lems for which “yes” instances have a proof that can be verified in
polynomial time.

• A: usually denotes the algorithm we are discussing about

• I: usually denotes a problem instance

• ind.: independent / independently

• w.p.: with probability

• w.h.p: with high probability
We say event X holds with high probability (w.h.p.) if

Pr[X] ≥ 1− 1

poly(n)

say, Pr[X] ≥ 1− 1
nc

for some constant c ≥ 2.

• L.o.E.: linearity of expectation

• u.a.r.: uniformly at random

• Integer range [n] = {1, . . . , n}

• e ≈ 2.718281828459: the base of the natural logarithm

Useful distributions

Bernoulli Coin flip w.p. p. Useful for indicators

Pr[X = 1] = p

E[X] = p

Var(X) = p(1− p)

Binomial Number of successes out of n trials, each succeeding w.p. p;
Sample with replacement out of n items, p of which are successes

Pr[X = k] =

(
n

k

)
pk(1− p)n−k

E[X] = np

Var(X) = np(1− p) ≤ np

Geometric Number of Bernoulli trials until one success

Pr[X = k] = (1− p)n−1p

E[X] =
1

p

Var(X) =
1− p
p2

Hypergeometric r successes in n draws without replacement when there
are K successful items in total

Pr[X = k] =

(
K
r

)(
n−k
r−k

)(
n
r

)
E[X] = r · k

n

Var(X) = r · k
n
· n− k

n
· n− r
n− 1

Exponential Parameter: λ; Written as X ∼ Exp(λ)

Pr[X = x] =

{
λe−λx if x ≥ 0

0 if x < 0

E[X] =
1

λ

Var(X) =
1

λ2

Remark If x1 ∼ Exp(λ1), . . . , xn ∼ Exp(λn), then

• min{x1, . . . , xn} ∼ Exp(λ1 + · · ·+ λn)

• Pr[k | xk = min{x1, . . . , xn}] = λk
λ1+···+λn

Useful inequalities

• (n
k
)k ≤

(
n
k

)
≤ (en

k
)k

•
(
n
k

)
≤ nk

• limn→∞(1− 1
n
)n = e−1

•
∑∞

i=1
1
i2

= π2

6

• (1− x) ≤ e−x, for any x

• (1 + 2x) ≥ ex, for x ∈ [0, 1]

• (1 + x
2
) ≥ ex, for x ∈ [−1, 0]

• (1− x) ≥ e−x−x
2
, for x ∈ (0, 1

2
)

• 1
1−x ≤ 1 + 2x for x ≤ 1

2

Theorem (Linearity of Expectation).

E(
n∑
i=1

aiXi) =
n∑
i=1

aiE(Xi)

Theorem (Variance).

V(X) = E(X2)− E(X)2

Theorem (Variance of a Sum of Random Variables).

V(aX + bY) = a2V(X) + b2V(Y) + 2abCov(X, Y)

Theorem (AM-GM inequality). Given n numbers x1, . . . , xn,

x1 + · · ·+ xn
n

≥ (x1 ∗ · · · ∗ xn)1/n

The equality holds if and only if x1 = · · · = xn.

Theorem (Markov’s inequality). If X is a nonnegative random variable and
a > 0, then

Pr[X ≥ a] ≤ E(X)

a

Theorem (Chebyshev’s inequality). If X is a random variable (with finite
expected value µ and non-zero variance σ2), then for any k > 0,

Pr[|X − µ| ≥ kσ] ≤ 1

k2

Theorem (Bernoulli’s inequality). For every integer r ≥ 0 and every real
number x ≥ −1,

(1 + x)r ≥ 1 + rx

Theorem (Chernoff bound). For independent Bernoulli variables X1, . . . , Xn,
let X =

∑n
i=1 Xi. Then,

Pr[X ≥ (1 + ε) · E(X)] ≤ exp(
−ε2E(X)

3
) for 0 < ε

Pr[X ≤ (1− ε) · E(X)] ≤ exp(
−ε2E(X)

2
) for 0 < ε < 1

By union bound, for 0 < ε < 1, we have

Pr[|X − E(X)| ≥ ε · E(X)] ≤ 2 exp(
−ε2E(X)

3
)

Remark 1 There is actually a tighter form of Chernoff bounds:

∀ε > 0,Pr[X ≥ (1 + ε)E(X)] ≤ (
eε

(1 + ε)1+ε
)E(X)

Remark 2 We usually apply Chernoff bound to show that the probability

of bad approximation is low by picking parameters such that 2 exp(−ε
2E(X)
3

) ≤
δ, then negate to get Pr[|X − E(X)| ≤ ε · E(X)] ≥ 1− δ.

Theorem (Probabilistic Method). Let (Ω,A, P) be a probability space,

Pr[ω] > 0⇐⇒ ∃ω ∈ Ω

Combinatorics taking k elements out of n:

• no repetition, no ordering:
(
n
k

)
• no repetition, ordering: n!

(n−k)!

• repetition, no ordering:
(
n+k−1

k

)
• repetition, ordering: nk

Part I

Approximation algorithms

1

Chapter 1

Greedy algorithms

Unless P = NP , we do not expect efficient algorithms for NP-hard prob-
lems. However, we are often able to design efficient algorithms that give
solutions that are provably close/approximate to the optimum.

Definition 1.1 (α-approximation). An algorithm A is an α-approximation
algorithm for a minimization problem with respect to cost metric c if for any
problem instance I and for some optimum solution OPT ,

c(A(I)) ≤ α · c(OPT (I))

Maximization problems are defined similarly with c(OPT (I)) ≤ α·c(A(I)).

1.1 Minimum set cover

Consider a universe U = {e1, . . . , en} of n elements, a collection of subsets
S = {S1, . . . , Sm} of m subsets of U such that U =

⋃m
i=1 Si, and a non-

negative1 cost function c : S → R+. If Si = {e1, e2, e5}, then we say Si
covers elements e1, e2, and e5. For any subset T ⊆ S, define the cost of T as
the cost of all subsets in T . That is,

c(T) =
∑
Si∈T

c(Si)

Definition 1.2 (Minimum set cover problem). Given a universe of elements
U , a collection of subsets S, and a non-negative cost function c : S → R+,
find a subset S∗ ⊆ S such that:

(i) S∗ is a set cover:
⋃
Si∈S∗ Si = U

(ii) c(S∗), the cost of S∗, is minimized
1If a set costs 0, then we can just remove all the elements covered by it for free.

3

4 CHAPTER 1. GREEDY ALGORITHMS

Example

S1

S2

S3

S4

e1

e2

e3

e4

e5

Suppose there are 5 elements e1, e2, e3, e4, e5, 4 subsets S1, S2, S3, S4,
and the cost function is defined as c(Si) = i2. Even though S3∪S4 covers all
vertices, this costs c({S3, S4}) = c(S3) + c(S4) = 9 + 16 = 25. One can verify
that the minimum set cover is S∗ = {S1, S2, S3} with a cost of c(S∗) = 14.
Notice that we want a minimum cover with respect to c and not the number
of subsets chosen from S (unless c is uniform cost).

1.1.1 A greedy minimum set cover algorithm

Since finding the minimum set cover is NP-complete, we are interested in al-
gorithms that give a good approximation for the optimum. [Joh74] describes
a greedy algorithm GreedySetCover and proved that it gives an Hn-
approximation2. The intuition is as follows: Spread the cost c(Si) amongst
the vertices that are newly covered by Si. Denoting the price-per-item by
ppi(Si), we greedily select the set that has the lowest ppi at each step unitl
we have found a set cover.

Algorithm 1 GreedySetCover(U ,S, c)
T ← ∅ . Selected subset of S
C ← ∅ . Covered vertices
while C 6= U do

Si ← arg minSi∈S\T
c(Si)
|Si\C| . Pick set with lowest price-per-item

T ← T ∪ {Si} . Add Si to selection
C ← C ∪ Si . Update covered vertices

end while
return T

2Hn =
∑n

i=1
1
n = ln(n) +γ ≤ ln(n) + 0.6 ∈ O(log(n)), where γ is the Euler-Mascheroni

constant. See https://en.wikipedia.org/wiki/Euler-Mascheroni_constant.

https://en.wikipedia.org/wiki/Euler-Mascheroni_constant

1.1. MINIMUM SET COVER 5

Consider a run of GreedySetCover on the earlier example. In the first
iteration, ppi(S1) = 1/3, ppi(S2) = 4, ppi(S3) = 9/2, ppi(S4) = 16/3. So,
S1 is chosen. In the second iteration, ppi(S2) = 4, ppi(S3) = 9, ppi(S4) = 16.
So, S2 was chosen. In the third iteration, ppi(S3) = 9, ppi(S4) =∞. So,
S3 was chosen. Since all vertices are now covered, the algorithm terminates
(coincidentally to the minimum set cover). Notice that ppi for the unchosen
sets change according to which vertices remain uncovered. Furthermore, once
one can simply ignore S4 when it no longer covers any uncovered vertices.

Theorem 1.3. GreedySetCover is an Hn-approximation algorithm.

Proof. By construction, GreedySetCover terminates with a valid set cover
T . It remains to show that c(T) ≤ Hn · c(OPT) for any minimum set
cover OPT . Upon relabelling, let e1, . . . , en be the elements in the order
they are covered by GreedySetCover. Define price(ei) as the price-
per-item associated with ei at the time ei was purchased during the run
of the algorithm. Consider the moment in the algorithm where elements
Ck−1 = {e1, . . . , ek−1} are already covered by some sets Tk ⊂ T . Tk covers no
elements in {ek, . . . , en}. Since there is a cover3 of cost at most c(OPT) for
the remaining n−k+1 elements, there must be an element e∗ ∈ {ek, . . . , en}
whose price price(e∗) is at most c(OPT)

n−k+1
.

S

not in OPT

OPT

OPTk

e1

ek−1

ek

ek+1

en

U

We formalize this intuition with the argument below. Since OPT is a
set cover, there exists a subset OPTk ⊆ OPT that covers ek . . . en. Sup-

3OPT is a valid cover (though probably not minimum) for the remaining elements.

6 CHAPTER 1. GREEDY ALGORITHMS

pose OPTk = {O1, . . . , Op} where Oi ∈ S ∀i ∈ [p]. We make the following
observations:

1. Since no element in {ek, . . . , en} is covered by Tk, O1, . . . , Op ∈ S \ Tk.

2. Because some elements may be covered more than once,

n− k + 1 = |U \ Ck−1|
≤ |O1 ∩ (U \ Ck−1)|+ · · ·+ |Op ∩ (U \ Ck−1)|

=

p∑
j=1

|Oj ∩ (U \ Ck−1)|

3. By definition, for each j ∈ {1, . . . , p}, ppi(Oj) =
c(Oj)

|Oj∩(U\Ck−1)| .

Since the greedy algorithm will pick a set in S \ T with the lowest price-per-
item, price(ek) ≤ ppi(Oj) for all j ∈ {1, . . . , p}. Substituting this expression
into the last equation and rearranging the terms we get:

c(Oj) ≥ price(ek) · |Oj ∩ (U \ Ck−1)|,∀j ∈ {1, . . . , p} (1.1)

Summing over all p sets, we have

c(OPT) ≥ c(OPTk) Since OPTk ⊆ OPT

=

p∑
j=1

c(Oj) Definition of c(OPTk)

≥ price(ek) ·
p∑
j=1

|Oj ∩ (U \ Ck−1)| By Equation (1.1)

≥ price(ek) · |U \ Ck−1| By observation 2

= price(ek) · (n− k + 1)

Rearranging, price(ek) ≤ c(OPT)
n−k+1

. Summing over all elements, we have:

c(T) =
∑
S∈T

c(S) =
n∑
k=1

price(ek) ≤
n∑
k=1

c(OPT)

n− k + 1
= c(OPT)·

n∑
k=1

1

k
= Hn·c(OPT)

Remark By construction, price(e1) ≤ · · · ≤ price(en).
Next we provide an example to show this bound is indeed tight.

1.1. MINIMUM SET COVER 7

Tight bound example for GreedySetCover Consider n = 2 · (2k − 1)
elements, for some k ∈ N \ {0}. Partition the elements into groups of size
2 ·20, 2 ·21, 2 ·22, . . . , 2 ·2k−1. Let S = {S1, . . . , Sk, Sk+1, Sk+2}. For 1 ≤ i ≤ k,
let Si cover the group of size 2 · 2i−1 = 2i. Let Sk+1 and Sk+2 cover half of
each group (i.e. 2k − 1 elements each) such that Sk+1 ∩ Sk+2 = ∅.

.

.

S1 S2 S3 Sk

Sk+1

Sk+2

2
elts

4
elts

8 = 2 · 22

elements
2 · 2k−1

elements

Suppose c(Si) = 1,∀i ∈ {1, . . . , k + 2}. The greedy algorithm will pick
Sk, then Sk−1, . . . , and finally S1. This is because 2 · 2k−1 > n/2 and
2 · 2i > (n−

∑k−1
j=i+1 2 · 2j)/2, for 1 ≤ i ≤ k − 1. This greedy set cover costs

k = O(log(n)). Meanwhile, the minimum set cover is S∗ = {Sk+1, Sk+2} with
a cost of 2.

A series of works by Lund and Yannakakis [LY94], Feige [Fei98], and Dinur
[DS14, Corollary 1.5] showed that it is NP-hard to always approximate set
cover to within (1− ε) · ln |U|, for any constant ε > 0.

Theorem 1.4 ([DS14, Corollary 1.5]). It is NP-hard to always approximate
set cover to within (1− ε) · ln |U|, for any constant ε > 0.

Proof. See [DS14, Corollary 1.5]

1.1.2 Special cases

In this section, we show that one may improve the approximation factor
from Hn if we have further assumptions on the set cover instance. View-
ing a set cover instance as a bipartite graph between sets and elements, let
∆ = maxi∈{1,...,m} degree(Si) and f = maxi∈{1,...,m} degree(ei) represent the
maximum degree of the sets and elements respectively. Consider the follow-
ing two special cases of set cover instances:

1. All sets are small. That is, ∆ is small.

2. Every element is covered by few sets. That is, f is small.

8 CHAPTER 1. GREEDY ALGORITHMS

Special case: Small ∆

Theorem 1.5. GreedySetCover is a H∆-approximation algorithm.

Proof. Suppose OPT = {O1, . . . , Op}, where Oi ∈ S ∀i ∈ [p]. Consider a set
Oi = {ei,1, . . . , ei,d} with degree(Oi) = d ≤ ∆. Without loss of generality,
suppose that the greedy algorithm covers ei,1, then ei,2, and so on. For

1 ≤ k ≤ d, when ei,k is covered, price(ei,k) ≤ c(Oi)
d−k+1

(It is an equality if the
greedy algorithm also chose Oi to first cover ei,k, . . . , ei,d). Hence, the greedy
cost of covering elements in Oi (i.e. ei,1, . . . , ei,d) is at most

d∑
k=1

c(Oi)

d− k + 1
= c(Oi) ·

d∑
k=1

1

k
= c(Oi) ·Hd ≤ c(Oi) ·H∆

Summing over all p sets to cover all n elements, we have c(T) ≤ H∆ ·c(OPT).

Remark We apply the same greedy algorithm for small ∆ but analyzed in
a more localized manner. Crucially, in this analysis, we always work with
the exact degree d and only use the fact d ≤ ∆ after summation. Observe
that ∆ ≤ n and the approximation factor equals that of Theorem 1.3 when
∆ = n.

Special case: Small f

We first look at the case when f = 2, show that it is related to another graph
problem, then generalize the approach for general f .

Vertex cover as a special case of set cover

Definition 1.6 (Minimum vertex cover problem). Given a graph G = (V,E),
find a subset S ⊆ V such that:

(i) S is a vertex cover: ∀e = {u, v} ∈ E, u ∈ S or v ∈ S

(ii) |S|, the size of S, is minimized

When f = 2 and c(Si) = 1, ∀Si ∈ S, we can reduce minimum vertex
cover to minimum set cover. Given an instance I of minimum vertex cover
I = 〈G = (V,E)〉 we build an instance I∗ = 〈U∗,S∗〉 of set cover as follows:

• Each edge ei ∈ E in G becomes an element e′i in U∗

1.1. MINIMUM SET COVER 9

• Each vertex vj ∈ V in G becomes an element Sj in S∗ and e′i ∈ Sj ⇐⇒
ei is adjacent to vj ∈ I

Notice that every element ei ∈ U will be in exactly 2 elements of S, for
every edge is adjacent to exactly two vertices. Hence, I∗ has f = 2. One
way to obtain a 2-approximation to minimum vertex cover (and hence 2-
approximation for this special case of set cover) is to use a maximal matching.

Definition 1.7 (Maximal matching problem). Given a graph G = (V,E),
find a subset M ⊆ E such that:

(i) M is a matching: Distinct edges ei, ej ∈M do not share an endpoint

(ii) M is maximal: ∀ek 6∈M , M ∪ {ek} is not a matching

a b c d e f

A related concept to maximal matching is maximum matching, where one
tries to maximize the set of M . By definition, any maximum matching is also
a maximal matching, but the converse is not necessarily true. Consider a path
of 6 vertices and 5 edges. Both the set of blue edges {{a, b}, {c, d}, {e, f}}
and the set of red edges {{b, c}, {d, e}} are valid maximal matchings, where
the maximum matching is the former.

Remark Any maximal matching is a 2-approximation of maximum match-
ing.

Algorithm 2 GreedyMaximalMatching(V,E)

M ← ∅ . Selected edges
C ← ∅ . Set of incident vertices
while E 6= ∅ do

ei = {u, v} ← Pick any edge from E
M ←M ∪ {ei} . Add ei to the matching
C ← C ∪ {u, v} . Add endpoints to incident vertices
Remove all edges in E that are incident to u or v

end while
return M

GreedyMaximalMatching is a greedy maximal matching algorithm.
The algorithm greedily adds any available edge ei that is not yet incident to
M , then excludes all edges that are adjacent to ei.

10 CHAPTER 1. GREEDY ALGORITHMS

Theorem 1.8. The set of incident vertices C at the end of GreedyMax-
imalMatching is a 2-approximation for minimum vertex cover.

[h]

. . .

. . .
Maximal matching M

Vertex cover C,
where |C| = 2 · |M |

Proof. Suppose, for a contradiction, that GreedyMaximalMatching ter-
minated with a set C that is not a vertex cover. Then, there exists an edge
e = {u, v} such that u 6∈ C and v 6∈ C. If such an edge exists, e = {u, v} ∈ E
then M ′ = M ∪ {e} would have been a matching with |M ′| > |M | and
GreedyMaximalMatching would not have terminated. This is a contra-
diction, hence C is a vertex cover.

Consider the matching M . Any vertex cover has to include at least one
endpoint for each edge in M , hence the minimum vertex cover OPT has at
least |M | vertices (i.e. |OPT | ≥ |M |). By picking C as our vertex cover,
|C| = 2 · |M | ≤ 2 · |OPT |. Therefore, C is a 2-approximation.

We now generalize beyond f = 2 by considering hypergraphs. Hyper-
graphs are a generalization of graphs in which an edge can join any number
of vertices. Formally, a hypergraph H = (X,E) consists of a set X of ver-
tices/elements and a set E of hyperedges where each hyperedge is an element
of P(X)\∅ (where P is the powerset of X). The minimum vertex cover prob-
lem and maximal matching problem are defined similarly on a hypergraph.

Remark A hypergraphH = (X,E) can be viewed as a bipartite graph with
partitions X and E, with an edge between element x ∈ X and hyperedge
e ∈ E if x ∈ e in H.

Example Suppose H = (X,E) where X = {a, b, c, d, e} and E = {{a, b, c},
{b, c}, {a, d, e}}. A minimum vertex cover of size 2 would be {a, c} (there
are multiple vertex covers of size 2). Maximal matchings would be {{a, b, c}}
and {{b, c}, {a, d, e}}, where the latter is the maximum matching.

Claim 1.9. Generalizing GreedyMaximalMatching to compute a max-
imal matching in the hypergraph by greedily picking hyperedges yields an f -
approximation algorithm for minimum vertex cover.

Sketch of Proof Let C be the set of all vertices involved in the greedily
selected hyperedges. In a similar manner as the proof in Theorem 1.8, C can
be showed to be an f -approximation.

Chapter 2

Approximation schemes

In the last chapter, we described simple greedy algorithms that approximate
the optimum for minimum set cover, maximal matching and minimum vertex
cover within a constant factor of the optimum solution. We now want to
devise algorithms, which come arbitrarily close to the optimum solution.
For that purpose we formalize the notion of efficient (1 + ε)-approximation
algorithms for minimization problems, a la [Vaz13].

Let I be an instance from the problem of interest (e.g. minimum set
cover). Denote |I| as the size of the problem instance in bits, and |Iu| as
the size of the problem instance in unary. For example, if the input is a
number x of at most n bits, then |I| = log2(x) = O(n) while |Iu| = O(2n).
This distinction of “size of input” will be important when we discuss the
knapsack problem later.

Definition 2.1 (Polynomial time approximation scheme (PTAS)). For a
given cost metric c, an optimal algorithm OPT and a parameter ε, an algo-
rithm Aε is a PTAS for a minimization problem if

• c(Aε(I)) ≤ (1 + ε) · c(OPT (I))

• Aε runs in poly(|I|) time

Note that ε is a parameter of the algorithm, and is not considered as input.
Thus the runtime for PTAS may depend arbitrarily on ε. If we define ε as an
input parameter for the algorithm, we can obtain a stricter definition, namely
that of fully polynomial time approximation schemes (FPTAS). Assuming
P 6= NP , FPTAS is the best one can hope for on NP-hard problems.

Definition 2.2 (Fully polynomial time approximation scheme (FPTAS)).
For a given cost metric c, an optimal algorithm OPT and input parameter
ε, an algorithm A is an FPTAS for a minimization problem if

11

12 CHAPTER 2. APPROXIMATION SCHEMES

• For any ε > 0, c(A(I)) ≤ (1 + ε) · c(OPT (I))

• A runs in poly(|I|, 1
ε
) time

As before, one can define (1− ε)-approximations, PTAS, and FPTAS for
maximization problems similarly.

2.1 Knapsack

Definition 2.3 (Knapsack problem). Consider a set S with n items. Each
item i has size(i) ∈ Z+ and profit(i) ∈ Z+. Given a budget B, find a
subset S∗ ⊆ S such that:

(i) Selection S∗ fits budget:
∑

i∈S∗ size(i) ≤ B

(ii) Selection S∗ has maximum value:
∑

i∈S∗ profit(i) is maximized

Let us denote the item with the highest profit by pmax = maxi∈{1,...,n} profit(i).
Now let’s consider items i with size(i) > B. Clearly these items can not
be chosen due to the size constraint. Therefore we can remove them and
relabel the remaining items, in O(n) time. Thus without loss of generality
we assume size(i) ≤ B, ∀i ∈ {1, . . . , n}.

Observe that pmax ≤ profit(OPT (I)) because we can always pick at
least one item, namely the highest valued one.

Example Denote the i-th item by i : 〈size(i), profit(i)〉. Consider an
instance with S = {1 : 〈10, 130〉, 2 : 〈7, 103〉, 3 : 〈6, 91〉, 4 : 〈4, 40〉, 5 : 〈3, 38〉}
and budget B = 10. Then, the best subset S∗ = {2 : 〈7, 103〉, 5 : 〈3, 38〉} ⊆ S
yields a total profit of 103 + 38 = 141.

2.1.1 An exact algorithm via dynamic programming

The maximum achievable profit is at most npmax, as we can have at most n
items, each having profit at most pmax. Define the size of a subset as the
sum of the size of the sets involved. Using dynamic programming (DP), we
can form an n-by-(npmax) matrix M where M [i, p] is the smallest size of a
subset chosen from {1, . . . , i} such that the total profit equals p. Trivially,
set M [1, profit(1)] = size(1) and M [1, p] = ∞ for p 6= profit(1). To
handle boundaries, define M [i, j] =∞ for j ≤ 0. Then, for M [i+ 1, p],

• If profit(i+ 1) > p, then we cannot pick item i+ 1.
So, M [i+ 1, p] = M [i, p].

2.1. KNAPSACK 13

• If profit(i+ 1) ≤ p, then we may pick item i+ 1.
So, M [i+ 1, p] = min{M [i, p], size(i+ 1) +M [i, p− profit(i+ 1)]}.

Since each cell can be computed in O(1) using DP via the above recurrence,
matrix M can be filled inO(n2pmax) and S∗ may be extracted by back-tracing
from M [n, npmax].

Remark This dynamic programming algorithm is not a PTAS because
O(n2pmax) can be exponential in input problem size |I|. Namely the number
pmax which appears in the runtime is encoded by log2(pmax) bits in the input,
thus is of order at most O(n). However the actual value can be of exponential
size. As such, we call this DP algorithm a pseudo-polynomial time algorithm.

2.1.2 FPTAS via profit rounding

Algorithm 3 FPTAS-Knapsack(S, B, ε)
k ← max{1, b ε

n
pmaxc} . Choice of k to be justified later

for i ∈ {1, . . . , n} do

profit′(i) = bprofit(i)
k
c . Round and scale the profits

end for
Run DP in Section 2.1.1 with B, size(i), and re-scaled profit′(i).
return Items selected by DP

FPTAS-Knapsack pre-processes the problem input by rounding down
to the nearest multiple of k and then, since every value is now a multiple
of k, scaling down by a factor of k. FPTAS-Knapsack then calls the DP
algorithm described in Section 2.1.1. Since we scaled down the profits, the
new maximum profit is pmax

k
, hence the DP now runs in O(n

2pmax
k

).
To obtain a FPTAS, we pick k = max{1, b εpmax

n
c} so that FPTAS-

Knapsack is a (1− ε)-approximation algorithm and runs in poly(n, 1
ε
).

Theorem 2.4. FPTAS-Knapsack is a FPTAS for the knapsack problem.

Proof. Suppose we are given a knapsack instance I = (S, B). Let loss(i)
denote the decrease in value by using rounded profit′(i) for item i. By the
profit rounding definition, for each item i,

loss(i) = profit(i)− k · bprofit(i)

k
c ≤ k

Then, over all n items,

14 CHAPTER 2. APPROXIMATION SCHEMES

n∑
i=1

loss(i) ≤ nk loss(i) ≤ k for any item i

< ε · pmax Since k = b ε
n
pmaxc

≤ ε · profit(OPT (I)) Since pmax ≤ profit(OPT (I))

Thus, profit(FPTAS-Knapsack(I)) ≥ (1− ε) · profit(OPT (I)).

Furthermore, FPTAS-Knapsack runs in O(n
2pmax
k

) = O(n
3

ε
) ∈ poly(n, 1

ε
).

Remark k = 1 when pmax ≤ n
ε
. In that case, no rounding occurs and the

DP finds the exact solution in O(n2pmax) ∈ O(n
3

ε
) ∈ poly(n, 1

ε
) time.

Example Recall the earlier example where budget B = 10 and S = {1 :
〈10, 130〉, 2 : 〈7, 103〉, 3 : 〈6, 91〉, 4 : 〈4, 40〉, 5 : 〈3, 38〉}. For ε = 1

2
, one

would set k = max{1, b εpmax
n
c} = max{1, b130/2

5
c} = 13. After round-

ing, we have S ′ = {1 : 〈10, 10〉, 2 : 〈7, 7〉, 3 : 〈6, 7〉, 4 : 〈4, 3〉, 5 : 〈3, 2〉}.
The optimum subset from S ′ is {3 : 〈6, 7〉, 4 : 〈4, 3〉} which translates to
a total profit of 91 + 40 = 131 in the original problem. As expected,
131 = profit(FPTAS-Knapsack(I)) ≥ (1− 1

2
) · profit(OPT (I)) = 70.5.

2.2 Bin packing

Definition 2.5 (Bin packing problem). Given a set S with n items where
each item i has size(i) ∈ (0, 1], find the minimum number of unit-sized bins
(i.e. bins of size 1) that can hold all n items.

For any problem instance I, let OPT (I) be an optimal bin assignment
and |OPT (I)| be the corresponding minimum number of bins required. One
can see that

∑n
i=1 size(i) ≤ |OPT (I)|.

Example Consider S = {0.5, 0.1, 0.1, 0.1, 0.5, 0.4, 0.5, 0.4, 0.4}, where |S| =
n = 9. Since

∑n
i=1 size(i) = 3, at least 3 bins are needed. One can verify

that 3 bins suffice: b1 = b2 = b3 = {0.5, 0.4, 0.1}. Hence, |OPT (S)| = 3.

2.2. BIN PACKING 15

b1 b2 b3

0.5

0.4

0.1

0.5

0.4

0.1

0.5

0.4

0.1

2.2.1 First-fit: A 2-approximation algorithm

FirstFit processes items one-by-one, creating new bins if an item cannot
fit into one of the existing bins. For a unit-sized bin b, we use size(b) to
denote the sum of the size of items that are put into b, and define free(b) =
1− size(b).

Algorithm 4 FirstFit(S)

B → ∅ . Collection of bins
for i ∈ {1, . . . , n} do

if size(i) ≤ free(b) for some bin b ∈ B. then
Pick the smallest such b.
free(b)← free(b)− size(i) . Put item i into existing bin b

else
B ← B ∪ {b′} . Put item i into a fresh bin b′

free(b′) = 1− size(i)
end if

end for
return B

Lemma 2.6. Using FirstFit, at most one bin is less than half-full. That
is, |{b ∈ B : size(b) ≤ 1

2
}| ≤ 1, where B is the output of FirstFit.

Proof. Suppose, for contradiction, that there are two bins bi and bj such that
i < j, size(bi) ≤ 1

2
and size(bj) ≤ 1

2
. Then, FirstFit could have put all

items in bj into bi, and would not have created bj. This is a contradiction.

Theorem 2.7. FirstFit is a 2-approximation algorithm for bin packing.

Proof. Suppose FirstFit terminates with |B| = m bins. By Lemma 2.6,∑n
i=1 size(i) > m−1

2
, as m−1 bins are at least half-full. Since

∑n
i=1 size(i) ≤

16 CHAPTER 2. APPROXIMATION SCHEMES

|OPT (I)|, we have

m− 1 < 2 ·
n∑
i=1

size(i) ≤ 2 · |OPT (I)|

That is, m ≤ 2 · |OPT (I)| since both m and |OPT (I)| are integers.

Recall example with S = {0.5, 0.1, 0.1, 0.1, 0.5, 0.4, 0.5, 0.4, 0.4}. First-
Fit will use 4 bins: b1 = {0.5, 0.1, 0.1, 0.1}, b2 = b3 = {0.5, 0.4}, b4 = {0.4}.
As expected, 4 = |FirstFit(S)| ≤ 2 · |OPT (S)| = 6.

b1 b2 b3 b4

0.5

0.1
0.1
0.1

0.5

0.4

0.5

0.4

0.4

Remark If we first sort the item weights in non-increasing order, then one
can show that running FirstFit on the sorted item weights will yield a
3
2
-approximation algorithm for bin packing. See footnote for details1.

It is natural to wonder whether we can do better than a 3
2
-approximation.

Unfortunately, unless P = NP , we cannot do so efficiently. To prove this, we
show that if we can efficiently derive a (3

2
−ε)-approximation for bin packing,

then the partition problem (which is NP-hard) can be solved efficiently.

Definition 2.8 (Partition problem). Given a multiset S of (possibly re-
peated) positive integers x1, . . . , xn, is there a way to partition S into S1

and S2 such that
∑

x∈S1 x =
∑

x∈S2 x?

Theorem 2.9. It is NP-hard to solve bin packing with an approximation
factor better than 3

2
.

1Curious readers can read the following lecture notes for proof on First-Fit-Decreasing:
http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/

bin_packing.pdf

https://dcg.epfl.ch/files/content/sites/dcg/files/courses/2012%20-%

20Combinatorial%20Optimization/12-BinPacking.pdf

http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/bin_packing.pdf
http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/bin_packing.pdf
https://dcg.epfl.ch/files/content/sites/dcg/files/courses/2012%20-%20Combinatorial%20Optimization/12-BinPacking.pdf
https://dcg.epfl.ch/files/content/sites/dcg/files/courses/2012%20-%20Combinatorial%20Optimization/12-BinPacking.pdf

2.2. BIN PACKING 17

Proof. Suppose some polytime algorithm A solves bin packing with a (3
2
−

ε)-approximation for ε > 0. Given an instance of the partition problem
with S = {x1, . . . , xn}, let X =

∑n
i=1 xi. Define a bin packing instance

S ′ = {2x1
X
, . . . , 2xn

X
}. Since

∑
x∈S′ x = 2, at least two bins are required. By

construction, one can bipartition S if and only if only two bins are required
to pack S ′. Since A gives a (3

2
− ε)-approximation, if OPT on S ′ returns 2

bins, then A on S ′ will return also b2 · (3
2
− ε)c = 2 bins. Therefore, as A

solves bin-packing with a (3
2
−ε)-approximation in polytime, we would get an

algorithm for solving the partition problem in polytime. Contradiction.

In the following sections, we work towards a PTAS for bin packing whose
runtime will be exponential in 1

ε
. To do this, we first consider two simplifying

assumptions and design algorithms for them. Then, we adapt the algorithm
to a PTAS by removing the assumptions one at a time.

2.2.2 Special case 1: Exact solving with Aε
In this section, we make the following two assumptions:

Assumption (1) All items have at least size ε, for some ε > 0.

Assumption (2) There are only k different possible sizes (k is a constant).

Define M = d1
ε
e. By assumption 1, there are at most M items in a bin.

In addition, define R =
(
M+k
M

)
. By assumption 2, there are at most R items

arrangements in one bin. Since at most n bins are needed, the total number
of bin configurations is at most

(
n+R
R

)
≤ (n + R)R = O(nR). Since k and ε

are constant, R is also constant and one can enumerate over all possible bin
configurations (denote this algorithm as Aε) to exactly solve bin packing, in
this special case, in O(nR) ∈ poly(n) time.

Remark 1 The number of configurations are computed by solving combi-
natorics problems of the following form: If xi defines the number of items of
the ith possible size, how many non-negative integer solutions are there to
x1 + · · · + xn ≤ k? This type of problems can be solved by counting how
many ways there are to put n indistinguishable balls into k distinguishable
bins and is generally known under stars and bars.2

2See slides 22 and 23 of http://www.cs.ucr.edu/~neal/2006/cs260/piyush.pdf for
illustration of

(
M+k
M

)
and

(
n+R
R

)
.

http://www.cs.ucr.edu/~neal/2006/cs260/piyush.pdf

18 CHAPTER 2. APPROXIMATION SCHEMES

Remark 2 The number of bin configurations is computed out of n bins
(i.e., 1 bin for each item). One may use less than n bins, but this upper
bound suffices for our purposes.

2.2.3 Special case 2: PTAS

In this section, we remove the second assumption and require only:

Assumption (1) All items have at least size ε, for some ε > 0.

Our goal is to reuse the exact algorithm Aε on a slightly modified prob-
lem instance J that satisfies both assumptions. For this, we partition the
items into k non-overlapping groups of Q ≤ bnε2c elements each. To obtain a
constant number of different sizes, we round the sizes of all items in a group
to the largest size of that group, resulting in at most k different item sizes.
We can now call Aε on J to solve the modified instance exactly in polyno-
mial time. Since J only rounds up sizes, Aε(J) will yield a satisfying bin
assignment for instance I, with possibly “spare slack”. The entire procedure
is described in PTAS-BinPacking.

Algorithm 5 PTAS-BinPacking(I = S, ε)
k ← d 1

ε2
e

Q← bnε2c
Partition n items into k non-overlapping groups, each with ≤ Q items
for i ∈ {1, . . . , k} do

imax ← maxitem j in group i size(j)
for item j in group i do

size(j)← imax
end for

end for
Denote the modified instance as J
return Aε(J)

It remains to show that the solution to the modified instance OPT (J)
yields a (1+ε)-approximation of OPT (I). For this, consider another modified
instance J ′ that is defined analogously to J only with rounded down item
sizes. Thus, since we rounded down item sizes in J ′, we have |OPT (J ′)| ≤
|OPT (I)|.

Lemma 2.10. |OPT (J)| ≤ |OPT (J ′)|+Q

2.2. BIN PACKING 19

0 Item sizes
.

≤ Q items ≤ Q items ≤ Q items

J rounds up

J ′ rounds down

J1

J ′1

J2

J ′2

Jk

J ′k

Figure 2.1: Partition items into k groups, each with ≤ Q items; Label
groups in ascending sizes; J rounds up item sizes, J ′ rounds down item sizes.

Proof. Label the k groups in J by J1, . . . , Jk where the items in Ji have
smaller sizes than the items in Ji+1. Label the k groups in J ′ similarly. See
Figure 2.1. For i = {1, . . . , k − 1}, since the smallest item in J ′i+1 has size
at least as large as the largest item in Ji, any valid packing for J ′i serves as
a valid packing for the Ji−1. For Jk (the largest ≤ Q items of J), we use
separate bins for each of its items (hence the additive Q term).

Lemma 2.11. |OPT (J)| ≤ |OPT (I)|+Q

Proof. By Lemma 2.10 and the fact that |OPT (J ′)| ≤ |OPT (I)|.

Theorem 2.12. PTAS-BinPacking is an (1+ ε)-approximation algorithm
for bin packing with assumption (1).

Proof. By Assumption (1), all item sizes are at least ε, so |OPT (I)| ≥ nε.
Then, Q = bnε2c ≤ ε · |OPT (I)|. Apply Lemma 2.11.

2.2.4 General case: PTAS

We now consider the general case where we do not make any assumptions
on the problem instance I. First, we lower bound the minimum item size
by putting aside all items with size smaller than min{1

2
, ε

2
}, thus allowing us

to use PTAS-BinPacking. Then, we add back the small items in a greedy
manner with FirstFit to complete the packing.

Theorem 2.13. Full-PTAS-BinPacking uses ≤ (1+ε)|OPT (I)|+1 bins

Proof. If FirstFit does not open a new bin, the theorem trivially holds.
Suppose FirstFit opens a new bin (using m bins in total), then we know
that at least (m− 1) bins are strictly more than (1− ε′)-full.

20 CHAPTER 2. APPROXIMATION SCHEMES

Algorithm 6 Full-PTAS-BinPacking(I = S, ε)
ε′ ← min{1

2
, ε

2
} . See analysis why we chose such an ε′

X ← Items with size < ε′ . Ignore small items
P ← PTAS-BinPacking(S \X, ε′) . By Theorem 2.12,

. |P | = (1 + ε′) · |OPT (S \X)|
P ′ ← Using FirstFit, add items in X to P . Handle small items
return Resultant packing P ′

|OPT (I)| ≥
n∑
i=1

size(i) Lower bound on |OPT (I)|

> (m− 1)(1− ε′) From above observation

Hence,

m <
|OPT (I)|

1− ε′
+ 1 Rearranging

< |OPT (I)| · (1 + 2ε′) + 1 Since
1

1− ε′
≤ 1 + 2ε′, for ε′ ≤ 1

2

≤ (1 + ε) · |OPT (I)|+ 1 By choice of ε′ = min{1

2
,
ε

2
}

2.3 Minimum makespan scheduling

Definition 2.14 (Minimum makespan scheduling problem). Given n jobs,
let I = {p1, . . . , pn} be the set of processing times, where job i takes pi units of
time to complete. Find an assignment for the n jobs to m identical machines
such that the completion time (i.e. makespan) is minimized.

For any problem instance I, let OPT (I) be an optimal job assignment
and |OPT (I)| be the corresponding makespan. One can see that:

• pmax = maxi∈{1,...,n} pi ≤ |OPT (I)|

• 1
m

∑n
i=1 pi ≤ |OPT (I)|

Denote L(I) = max{pmax, 1
m

∑n
i=1 pi} as the larger lower bound. Then,

L(I) ≤ |OPT (I)|.

2.3. MINIMUM MAKESPAN SCHEDULING 21

Remark To prove approximation factors, it is often useful to relate to lower
bounds of |OPT (I)|.

Example Suppose we have 7 jobs with processing times I = {p1 = 3,
p2 = 4, p3 = 5, p4 = 6, p5 = 4, p6 = 5, p7 = 6} and m = 3 machines.
Then, the lower bound on the makespan is L(I) = max{6, 11} = 11. This is
achieveable by allocating M1 = {p1, p2, p5}, M2 = {p3, p4}, M3 = {p6, p7}.

0 Time

M1

M2

M3

p1 p2 p5

p3 p4

p6 p7

3 5 7 Makespan = 11

Graham [Gra66] is a 2-approximation greedy algorithm for the minimum
makespan scheduling problem. With slight modifications, we improve it to
ModifiedGraham, a 4

3
-approximation algorithm. Finally, we end off the

section with a PTAS for minimum makespan scheduling.

2.3.1 Greedy approximation algorithms

Algorithm 7 Graham(I = {p1, . . . , pn},m)

M1, . . . ,Mm ← ∅ . All machines are initially free
for i ∈ {1, . . . , n} do

j ← argminj∈{1,...,m}
∑

p∈Mj
p . Pick the least loaded machine

Mj ←Mj ∪ {pi} . Add job i to this machine
end for
return M1, . . . ,Mm

Theorem 2.15. Graham is a 2-approximation algorithm.

Proof. Suppose the last job that finishes (which takes plast time) running was
assigned to machine Mj. Define t = (

∑
p∈Mj

p) − plast as the makespan of
machine Mj before the last job was assigned to it. That is,

|Graham(I)| = t+ plast

22 CHAPTER 2. APPROXIMATION SCHEMES

As Graham assigns greedily to the least loaded machine, all machines take
at least t time, hence

t ≤ 1

m

n∑
i=1

pi ≤ |OPT (I)|.

as 1
m

∑n
i=1 pi is the average of work done on each machine. Since plast ≤

pmax ≤ |OPT (I)|, we have |Graham(I)| = t+ plast ≤ 2 · |OPT (I)|.

Corollary 2.16. |OPT (I)| ≤ 2 ·L(I), where L(I) = max{pmax, 1
m

∑n
i=1 pi}.

Proof. From the proof of Theorem 2.15, we have |Graham(I)| = t + plast

and t ≤ 1
m

∑n
i=1 pi. Since |OPT (I)| ≤ |Graham(I)| and plast ≤ pmax, we

have

|OPT (I)| ≤ 1

m

n∑
i=1

pi + pmax ≤ 2 · L(I)

Recall the example with I = {p1 = 3, p2 = 4, p3 = 5, p4 = 6, p5 =
4, p6 = 5, p7 = 6} and m = 3. Graham will schedule M1 = {p1, p4},
M2 = {p2, p5, p7}, M3 = {p3, p6}, yielding a makespan of 14. As expected,
14 = |Graham(I)| ≤ 2 · |OPT (I)| = 22.

0 Time

M1

M2

M3

p1

p2

p3

p4

p5

p6

p7

3 4 5 8 9 10 Makespan = 14

Remark The approximation for Graham is loose because we have no
guarantees on plast beyond plast ≤ pmax. This motivates us to order the job
timings in descending order (see ModifiedGraham).

Algorithm 8 ModifiedGraham(I = {p1, . . . , pn},m)

I ′ ← I in descending order
return Graham(I ′,m)

Let plast be the last job that finishes running. We consider the two cases
plast >

1
3
· |OPT (I)| and plast ≤ 1

3
· |OPT (I)| separately for the analysis.

2.3. MINIMUM MAKESPAN SCHEDULING 23

Lemma 2.17. If plast >
1
3
· |OPT (I)|, then |ModifiedGraham(I)| = |OPT (I)|.

Proof. For m ≥ n, |ModifiedGraham(I)| = |OPT (I)| by trivially putting
one job on each machine. For m < n, without loss of generality3, we can
assume that every machine has a job.

Suppose, for a contradiction, that |ModifiedGraham(I)| > |OPT (I)|.
Then, there exists a sequence of jobs with descending sizes I = {p1, . . . , pn}
such that the last, smallest job pn causes ModifiedGraham(I) to have a
makespan larger than OPT (I)4. That is, |ModifiedGraham(I \ {pn})| ≤
|OPT (I)| and plast = pn. Let C be the configuration of machines after
ModifiedGraham assigned {p1, . . . , pn−1}.

Observation 1 In C, each machine has either 1 or 2 jobs.
If there exists machine Mi with ≥ 3 jobs, Mi will take > |OPT (I)|
time because all jobs take > 1

3
· |OPT (I)| time. This contradicts the

assumption |ModifiedGraham(I \ {pn})| ≤ |OPT (I)|.

Let us denote the jobs that are alone in C as heavy jobs, and the machines
they are on as heavy machines.

Observation 2 In OPT (I), all heavy jobs are alone.
By assumption on pn, we know that assigning pn to any machine (in
particular, the heavy machines) in C causes the makespan to exceed
|OPT (I)|. Since pn is the smallest job, no other job can be assigned to
the heavy machines otherwise |OPT (I)| cannot attained by OPT (I).

Suppose there are k heavy jobs occupying a machine each in OPT (I). Then,
there are 2(m−k) + 1 jobs (two non-heavy jobs per machine in C, and pn) to
be distributed across m− k machines. By the pigeonhole principle, at least
one machine M∗ will get ≥ 3 jobs in OPT (I). However, since the smallest
job pn takes > 1

3
· |OPT (I)| time, M∗ will spend > |OPT (I)| time. This is

a contradiction.

Theorem 2.18. ModifiedGraham is a 4
3
-approximation algorithm.

Proof. By similar arguments as per Theorem 2.15, |ModifiedGraham(I)| =
t + plast ≤ 4

3
· |OPT (I)| when plast ≤ 1

3
· |OPT (I)|. Meanwhile, when plast >

1
3
· |OPT (I)|, |ModifiedGraham(I)| = |OPT (I)| by Lemma 2.17.

3Suppose there is a machine Mi without a job, then there must be another machine
Mj with more than 1 job (by pigeonhole principle). Shifting one of the jobs from Mj to
Mi will not increase the makespan.

4If adding pj for some j < n already causes |ModifiedGraham({p1, . . . , pj})| >
|OPT (I)|, we can truncate I to {p1, . . . , pj} so that plast = pj . Since pj ≥ pn >
1
3 · |OPT (I)|, the antecedent still holds.

24 CHAPTER 2. APPROXIMATION SCHEMES

Recall the example with I = {p1 = 3, p2 = 4, p3 = 5, p4 = 6, p5 = 4, p6 =
5, p7 = 6} and m = 3. Putting I in decreasing sizes, I ′ = 〈p4 = 6, p7 = 6,
p3 = 5, p6 = 5, p2 = 4, p5 = 4, p1 = 3〉 and ModifiedGraham will schedule
M1 = {p4, p2, p1}, M2 = {p7, p5}, M3 = {p3, p6}, yielding a makespan of 13.
As expected, 13 = |ModifiedGraham(I)| ≤ 4

3
· |OPT (I)| = 14.666 . . .

0 Time

M1

M2

M3

p1p2

p3

p4

p5

p6

p7

5 6 10 Makespan = 13

2.3.2 PTAS for minimum makespan scheduling

Recall that any makespan scheduling instance (I,m) has a lower bound
L(I) = max{pmax, 1

m

∑n
i=1 pi}. From Corollary 2.16, we know that |OPT (I)| ∈

[L(I), 2L(I)]. Let Bin(I, t) be the minimum number of bins of size t that can
hold all jobs. By associating job processing times with item sizes, and scal-
ing bin sizes up by a factor of t, we can relate Bin(I, t) to the bin packing
problem. One can see that Bin(I, t) is monotonically decreasing in t and
|OPT (I)| is the minimum t such that Bin(I, t) = m. Hence, to get a (1 + ε)-
approximate schedule, it suffices to find a t ≤ (1 + ε) · |OPT (I)| such that
Bin(I, t) ≤ m.

Given t, PTAS-Makespan transforms a makespan scheduling instance
into a bin packing instance, then solves for an approximate bin packing to
yield an approximate scheduling. By ignoring small jobs (jobs of size ≤ εt)
and rounding job sizes down to the closest power of (1 + ε) : tε · {1, (1 +
ε), . . . , (1+ε)h = ε−1}, exact bin packing Aε with size t bins is used yielding a
packing P . To get a bin packing for the original job sizes, PTAS-Makespan
follows P ’s bin packing but uses bins of size t(1+ε) to account for the rounded
down job sizes. Suppose jobs 1 and 2 with sizes p1 and p2 were rounded down
to p′1 and p′2, and P assigns them to a same bin (i.e., p′1+p′2 ≤ t). Then, due to
the rounding process, their original sizes should also fit into a size t(1+ε) bin
since p1 +p2 ≤ p′1(1+ ε)+p′2(1+ ε) ≤ t(1+ ε). Finally, small jobs are handled
using FirstFit. Let α(I, t, ε) be the final bin configuration produced by
PTAS-Makespan on parameter t and |α(I, t, ε)| be the number of bins used.
Since |OPT (I)| ∈ [L, 2L], there will be a t ∈ {L,L + εL, L + 2εL, . . . , 2L}
such that |α(I, t, ε)| ≤ Bin(I, t) ≤ m bins (see Lemma 2.19 for the first

2.3. MINIMUM MAKESPAN SCHEDULING 25

Algorithm 9 PTAS-Makespan(I = {p1, . . . , pn},m)

L = max{pmax, 1
m

∑n
i=1 pi}

for t ∈ {L,L+ εL, L+ 2εL, L+ 3εL, . . . , 2L} do
I ′ ← I \ {Jobs with sizes ≤ εt} := I \X . Ignore small jobs
h← dlog1+ε(

1
ε
)e . To partition (εt, t] into powers of (1 + ε)

for pi ∈ I ′ do
k ← Largest j ∈ {0, . . . , h} such that pi ≥ tε(1 + ε)j

pi ← tε(1 + ε)k . Round down job size
end for
P ← Aε(I ′) . Use Aε from Section 2.2.2 with size t bins
α(I, t, ε)← Use bins of size t(1 + ε) to emulate P on original sizes
α(I, t, ε)← Using FirstFit, add items in X to α(I, t, ε)
if α(I, t, ε) uses ≤ m bins then

return Assign jobs to machines according to α(I, t, ε)
end if

end for

inequality). Note that running binary search on t also works, but we only
care about poly-time.

Lemma 2.19. For any t > 0, |α(I, t, ε)| ≤ Bin(I, t).

Proof. If FirstFit does not open a new bin, then |α(I, t, ε)| ≤ Bin(I, t) since
α(I, t, ε) uses an additional (1 + ε) buffer on each bin. If FirstFit opens a
new bin (say, totalling b bins), then there are at least (b− 1) produced bins
fromAε (exact solving on rounded down items of size> εt) that are more than
(t(1 + ε) − εt) = t-full. Hence, any bin packing algorithm must use strictly

more than (b−1)t
t

= b− 1 bins. In particular, Bin(I, t) ≥ b = |α(I, t, ε)|.
Theorem 2.20. PTAS-Makespan is a (1 + ε)-approximation for the min-
imum makespan scheduling problem.

Proof. Let t∗ = |OPT (I)| and tα be the minimum t ∈ {L,L + εL, L +
2εL, . . . , 2L} such that |α(I, t, ε)| ≤ m. It follows that tα ≤ t∗ + εL. Since
L ≤ |OPT (I)| and since we consider bins of final size tα(1+ε) to accomodate
for the original sizes, we have |PTAS-Makespan(I)| = tα(1 + ε) ≤ (t∗ +
εL)(1 + ε) ≤ (1 + ε)2 · |OPT (I)|. For ε ∈ [0, 1] we have (1 + ε)2 ≤ (1 + 3ε)
and thus the statement follows.

Theorem 2.21. PTAS-Makespan runs in poly(|I|,m) time.

Proof. There are at most max{pmax
ε
, 1
mε

∑n
i=1 pi} ∈ O(1

ε
) values of t to try.

Filtering small jobs and rounding remaining jobs takes O(n). From the

previous lecture, Aε runs in O(1
ε
· nh+1

ε) and FirstFit runs in O(nm).

26 CHAPTER 2. APPROXIMATION SCHEMES

Chapter 3

Randomized approximation
schemes

In this chapter, we study the class of algorithms which extends FPTAS by
allowing randomization.

Definition 3.1 (Fully polynomial randomized approximation scheme (FPRAS)).
For cost metric c, an algorithm A is a FPRAS if

• For any ε > 0, Pr[|c(A(I))− c(OPT (I))| ≤ ε · c(OPT (I))] ≥ 3
4

• A runs in poly(|I|, 1
ε
)

Intuition An FPRAS computes, with a high enough probability, a solution
which is not too far from the optimal one in a reasonable time.

Remark The probability 3
4

above is somewhat arbitrary. Finding an algo-
rithm that produce computes a good enough solution with any probability
1
2

+ α for α > 0 suffices. For any δ > 0, one can invoke O(1
δ
) independent

copies of A(I) then return the median. Then, the median is a correct es-
timation with probability greater than 1 − δ. This is known as probability
amplification (see section 6.1).

3.1 DNF counting

Definition 3.2 (Disjunctive Normal Form (DNF)). A formula F on n Boolean
variables x1, . . . , xn is said to be in DNF if

• F = C1 ∨ · · · ∨ Cm is a disjunction of clauses

27

28 CHAPTER 3. RANDOMIZED APPROXIMATION SCHEMES

• ∀i ∈ [m], a clause Ci = li,1 ∧ · · · ∧ li,|Ci| is a conjunction of literals

• ∀i ∈ [n], a literal li ∈ {xi,¬xi} is either the variable xi or its negation.

Let α : [n] → {0, 1} be a truth assignment on the n variables. Formula F
is said to be satisfiable if there exists a satisfying assignment α such that F
evaluates to true under α (i.e. F [α] = 1).

Any clause with both xi and ¬xi is trivially false. As they can be removed
in a single scan of F , assume that F does not contain such trivial clauses.

Example Let F = (x1 ∧ ¬x2 ∧ ¬x4) ∨ (x2 ∧ x3) ∨ (¬x3 ∧ ¬x4) be a
Boolean formula on 4 variables, where C1 = x1 ∧ ¬x2 ∧ ¬x4, C2 = x2 ∧ x3

and C3 = ¬x3 ∧ ¬x4. Drawing the truth table, one sees that there are 9 sat-
isfying assignments to F , one of which is α(1) = 1, α(2) = α(3) = α(4) = 0.

Remark Another common normal form for representing Boolean formulas
is the Conjunctive Normal Form (CNF). Formulas in CNF are conjunctions
of disjunctions (as compared to disjunctions of conjunctions in DNF). In
particular, one can determine in polynomial time whether a DNF formula is
satisfiable but it is NP-complete to determine if a CNF formula is satisfiable.

Suppose F is a Boolean formula in DNF. Let f(F) = |{α : F [α] = 1}| be
the number of satisfying assignments to F . If we let Si = {α : Ci[α] = 1}
be the set of satisfying assignments to clause Ci, then we see that f(F) =
|
⋃m
i=1 Si|. In the above example, |S1| = 2, |S2| = 4, |S3| = 4, and f(F) = 9.

In the following, we present two failed attempts to compute f(F) and
then present DNF-Count, a FPRAS for DNF counting via sampling.

3.1.1 Failed attempt 1: Principle of Inclusion-Exclusion

By definition of f(F) = |
⋃m
i=1 Si|, one may be tempted to apply the Principle

of Inclusion-Exclusion to expand:

|
m⋃
i=1

Si| =
m∑
i=1

|Si| −
∑
i<j

|Si ∩ Sj|+ . . .

However, there are exponentially many terms and there exist instances where
truncating the sum yields arbitrarily bad approximation.

3.1. DNF COUNTING 29

3.1.2 Failed attempt 2: Sampling (wrongly)

Suppose we pick k assignments uniformly at random (u.a.r.). Let Xi be
the indicator variable whether the i-th assignment satisfies F , and X =∑k

i=1Xi be the total number of satisfying assignments out of the k sampled

assignments. A u.a.r. assignment is satisfying with probability f(F)
2n

. By

linearity of expectation, E(X) = k · f(F)
2n

. Unfortunately, since we only sample
k ∈ poly(n, 1

ε
) assignments, k

2n
can be exponentially small. This means that

we need exponentially many samples for E(X) to be a good estimate of f(F).
Thus, this approach will not yield a FPRAS for DNF counting.

3.1.3 An FPRAS for DNF counting via sampling

Consider an m-by-f(F) boolean matrix M where

M [i, j] =

{
1 if assignment αj satisfies clause Ci

0 otherwise

Remark We are trying to estimate f(F) and thus will never be able to
build the matrix M . It is used here as an explanation of why this attempt
works.

α1 α2 . . . αf(F)

C1 0 1 . . . 0
C2 1 1 . . . 1
C3 0 0 . . . 0

. . .
...

...
. . .

...
Cm 0 1 . . . 1

Table 3.1: Visual representation of the matrix M . Red 1’s indicate the
topmost clause Ci satisfied for each assignment αj

Let |M | denote the total number of 1’s in M ; it is the sum of the number
of clauses satisfied by each assignment that satisfies F . Recall that Si is the
set of assignments that satisfy Ci. Since |Si| = 2n−|Ci|, |M | =

∑m
i=1 |Si| =∑m

i=1 2n−|Ci|.
We are now interested in the number of “topmost” 1’s in the matrix, where

“topmost” is defined column-wise. As every column represents a satisfying
assignment, at least one clause must be satisfied for each assignment and this

30 CHAPTER 3. RANDOMIZED APPROXIMATION SCHEMES

proves that there are exactly f(F) “topmost” 1’s in the matrix M (i.e. one
by column).

DNF-Count estimates the fraction of “topmost” 1’s in M , then returns
this fraction times |M | as an estimate of f(F).

To estimate the fraction of “topmost” 1’s:

• Pick a clause according to its length: shorter clauses are more likely.

• Uniformly select a satisfying assignment for the picked clause by flip-
ping coins for variables not in the clause.

• Check if the assignment satisfies any clauses with a smaller index.

Algorithm 10 DNF-Count(F, ε)

X ← 0 . Empirical number of “topmost” 1’s sampled
for k = 9m

ε2
times do

Ci ← Sample one of m clauses, where Pr[Ci chosen] = 2n−|Ci|

|M |
αj ← Sample one of 2n−|Ci| satisfying assignments of Ci
IsTopmost ← True
for l ∈ {1, . . . , i− 1} do . Check if αj is “topmost”

if Cl[α] = 1 then . Checkable in O(n) time
IsTopmost ← False

end if
end for
if IsTopmost then

X ← X + 1
end if

end for
return |M |·X

k

Lemma 3.3. DNF-Count samples a ‘1’ in the matrix M uniformly at
random at each step.

Proof. Recall that the total number of 1’s in M is |M | =
∑m

i=1 |Si| =∑m
i=1 2n−|Ci|.

3.1. DNF COUNTING 31

Pr[Ci and αj are chosen] = Pr[Ci is chosen] · Pr[αj is chosen|Ci is chosen]

=
2n−|Ci|∑m
i=1 2n−|Ci|

· 1

2n−|Ci|

=
1∑m

i=1 2n−|Ci|

=
1

|M |

Lemma 3.4. In DNF-Count, Pr
[∣∣∣ |M |·Xk − f(F)

∣∣∣ ≤ ε · f(F)
]
≥ 3

4
.

Proof. Let Xi be the indicator variable whether the i-th sampled assignment
is “topmost”, where p = Pr[Xi = 1]. By Lemma 3.3, p = Pr[Xi = 1] = f(F)

|M | .

Let X =
∑k

i=1Xi be the empirical number of “topmost” 1’s. Then, E(X) =
kp by linearity of expectation. By picking k = 9m

ε2
,

Pr

[∣∣∣∣ |M | ·Xk
− f(F)

∣∣∣∣ ≥ ε · f(F)

]
= Pr

[∣∣∣∣X − k · f(F)

|M |

∣∣∣∣ ≥ ε · k · f(F)

|M |

]
Multiply by

k

|M |

= Pr [|X − kp| ≥ εkp] Since p =
f(F)

|M |

≤ 2 exp

(
−ε

2kp

3

)
By Chernoff bound

= 2 exp

(
−3m · f(F)

|M |

)
Since k =

9m

ε2
and p =

f(F)

|M |
≤ 2 exp(−3) Since |M | ≤ m · f(F)

≤ 1

4

Negating, we get:

Pr

[∣∣∣∣ |M | ·Xk
− f(F)

∣∣∣∣ ≤ ε · f(F)

]
≥ 1− 1

4
=

3

4

Lemma 3.5. DNF-Count runs in poly(F, 1
ε
) = poly(n,m, 1

ε
) time.

32 CHAPTER 3. RANDOMIZED APPROXIMATION SCHEMES

Proof. There are k ∈ O(m
ε2

) iterations. In each iteration, we spend O(m+n)
sampling Ci and αj, and O(nm) for checking if a sampled αj is “topmost”.

In total, DNF-Count runs in O(m
2n(m+n)
ε2

) time.

Theorem 3.6. DNF-Count is a FPRAS for DNF counting.

Proof. By Lemmas 3.4 and 3.5.

3.2 Counting graph colorings

Definition 3.7 (Graph coloring). Let G = (V,E) be a graph on |V | = n
vertices and |E| = m edges. Denote the maximum degree as ∆. A valid q-
coloring of G is an assignment c : V → {1, . . . , q} such that adjacent vertices
have different colors. i.e., If u and v are adjacent in G, then c(u) 6= c(v).

Example (3-coloring of the Petersen graph)

For q ≥ ∆ + 1, one can obtain a valid q-coloring by sequentially coloring
a vertex with available colors greedily. In this section, we show a FPRAS for
counting f(G), the number of graph coloring of a given graph G, under the
assumption that we have q ≥ 2∆ + 1 colors.

3.2.1 Sampling a coloring uniformly

When q ≥ 2∆ + 1, the Markov chain approach in SampleColor allows us
to sample a random coloring in O(n log n

ε
) steps.

Claim 3.8. For q ≥ 2∆ + 1, the distribution of colorings returned by Sam-
pleColor is ε-close to a uniform distribution on all valid colorings.

Proof. Beyond the scope of this course.

3.2. COUNTING GRAPH COLORINGS 33

Algorithm 11 SampleColor(G = (V,E), ε)

Greedily color the graph
for k = O(n log n

ε
) times do

Pick a random vertex v uniformly at random from V
Pick u.a.r. an available color . Different from the colours in N(v)
Color v with new color . May end up with same color

end for
return Coloring

3.2.2 FPRAS for q ≥ 2∆ + 1 and ∆ ≥ 2

Fix an arbitrary ordering of edges in E. For i = {1, . . . ,m}, let Gi = (V,Ei)
be a graph such that Ei = {e1, . . . , ei} is the set of the first i edges. Define
Ωi = {c : c is a valid coloring for Gi} as the set of all valid colorings of Gi,

and denote ri = |Ωi|
|Ωi−1| .

We will estimate the number of graph coloring as

f(G) = |Ωm| = |Ω0| ·
|Ω1|
|Ω0|

. . .
|Ωm|
|Ωm−1|

= |Ω0| · Πm
i=1ri = qn · Πm

i=1ri

One can see that Ωi ⊆ Ωi−1 as removal of ei in Gi−1 can only increase the
number of valid colorings. Furthermore, suppose ei = {u, v}, then Ωi−1\Ωi =
{c : c(u) = c(v)}. Fix the coloring of, say the lower-indexed vertex, u. Then,
there are ≥ q − ∆ ≥ 2∆ + 1 − ∆ = ∆ + 1 possible recolorings of v in Gi.
Hence,

|Ωi| ≥ (∆ + 1) · |Ωi−1 \ Ωi|
⇐⇒ |Ωi| ≥ (∆ + 1) · (|Ωi−1| − |Ωi|)
⇐⇒ |Ωi|+ (∆ + 1) · |Ωi| ≥ (∆ + 1) · |Ωi−1|
⇐⇒ (∆ + 2) · |Ωi| ≥ (∆ + 1) · |Ωi−1|

⇐⇒ |Ωi|
|Ωi−1|

≥ ∆ + 1

∆ + 2

This implies that ri = |Ωi|
|Ωi−1| ≥

∆+1
∆+2
≥ 3

4
since ∆ ≥ 2.

Since f(G) = |Ωm| = |Ω0| · |Ω1|
|Ω0| . . .

|Ωm|
|Ωm−1| = |Ω0| · Πm

i=1ri = qn · Πm
i=1ri, if

we can find a good estimate of ri for each ri with high probability, then we
have a FPRAS for counting the number of valid graph colorings for G.

We now define Color-Count(G, ε) (algorithm 12) as an algorithm that
estimates the number of valid coloring of graph G using q ≥ 2∆ + 1 colors.

34 CHAPTER 3. RANDOMIZED APPROXIMATION SCHEMES

Algorithm 12 Color-Count(G, ε)

r̂1, . . . , r̂m ← 0 . Estimates for ri
for i = 1, . . . ,m do

for k = 128m3

ε2
times do

c← Sample coloring of Gi−1 . Using SampleColor
if c is a valid coloring for Gi then

r̂i ← r̂i + 1
k

. Update empirical count of ri = |Ωi|
|Ωi−1|

end if
end for

end for
return qnΠm

i=1r̂i

Lemma 3.9. For all i ∈ {1, . . . ,m}, Pr
[
|r̂i − ri| ≤ ε

2m
· ri
]
≥ 3

4m
.

Proof. Let Xj be the indicator variable whether the j-th sampled coloring
for Ωi−1 is a valid coloring for Ωi, where p = Pr[Xj = 1]. From above, we

know that p = Pr[Xj = 1] = |Ωi|
|Ωi−1| ≥

3
4
. Let X =

∑k
j=1 Xj be the empirical

number of colorings that is valid for both Ωi−1 and Ωi, captured by k · r̂i.
Then, E(X) = kp by linearity of expectation. Picking k = 128m3

ε2
,

Pr
[
|X − kp| ≥ ε

2m
kp
]
≤ 2 exp

(
−

(ε
2m

)2kp

3

)
By Chernoff bound

= 2 exp

(
−32mp

3

)
Since k =

128m3

ε2

≤ 2 exp(−8m) Since p ≥ 3

4

≤ 1

4m
Since exp(−x) ≤ 1

x
for x > 0

Dividing by k and negating, we have:

Pr
[
|r̂i − ri| ≤

ε

2m
· ri
]

= 1− Pr
[
|X − kp| ≥ ε

2m
kp
]
≥ 1− 1

4m
=

3

4m

Lemma 3.10. Color-Count runs in poly(F, 1
ε
) = poly(n,m, 1

ε
) time.

Proof. There are m ri’s to estimate. Each estimation has k ∈ O(m
3

ε2
) iter-

ations. In each iteration, we spend O(n log n
ε
) time to sample a coloring c

of Gi−1 and O(m) time to check if c is a valid coloring for Gi. In total,
Color-Count runs in O(mk(n log n

ε
+m)) = poly(n,m, 1

ε
) time.

3.2. COUNTING GRAPH COLORINGS 35

Theorem 3.11. Color-Count is a FPRAS for counting the number of
valid graph colorings when q ≥ 2∆ + 1 and ∆ ≥ 2.

Proof. By Lemma 3.10, Color-Count runs in poly(n,m, 1
ε
) time. Since

1 + x ≤ ex for all real x, we have (1 + ε
2m

)m ≤ e
ε
2 ≤ 1 + ε. The last

inequality1 is because ex ≤ 1 + 2x for 0 ≤ x ≤ 1.25643. On the other hand,
Bernoulli’s inequality tells us that (1− ε

2m
)m ≥ 1− ε

2
≥ 1− ε. We know from

the proof of Lemma 3.9, Pr[|r̂i − ri| ≤ ε
2m
· ri] ≥ 1− 1

4m
for any estimate ri.

Therefore,

Pr [|qnΠm
i=1r̂i − f(G)| ≤ εf(G)] = Pr [|qnΠm

i=1r̂i − f(G)| ≤ εf(G)]

≥
(

1− 1

4m

)m
≥ 3

4

Remark Recall from Claim 3.8 that SampleColor actually gives an ap-
proximate uniform coloring. A more careful analysis can absorb the approx-
imation of SampleColor under Color-Count’s ε factor.

1See https://www.wolframalpha.com/input/?i=e%5Ex+%3C%3D+1%2B2x

https://www.wolframalpha.com/input/?i=e%5Ex+%3C%3D+1%2B2x

36 CHAPTER 3. RANDOMIZED APPROXIMATION SCHEMES

Chapter 4

Rounding ILPs

Linear programming (LP) and integer linear programming (ILP) are versa-
tile models but with different solving complexities — LPs are solvable in
polynomial time while ILPs are NP-hard.

Definition 4.1 (Linear program (LP)). The canonical form of an LP is

minimize cTx

subject to Ax ≥ b

x ≥ 0

where x is the vector of n variables (to be determined), b and c are vectors
of (known) coefficients, and A is a (known) matrix of coefficients. cTx and
obj(x) are the objective function and objective value of the LP respectively.
For an optimal variable assignment x∗, obj(x∗) is the optimal value.

ILPs are defined similarly with the additional constraint that variables
take on integer values. As we will be relaxing ILPs into LPs, to avoid confu-
sion, we use y for ILP variables to contrast against the x variables in LPs.

Definition 4.2 (Integer linear program (ILP)). The canonical form of an
ILP is

minimize cTy

subject to Ay ≥ b

y ≥ 0

y ∈ Zn

where y is the vector of n variables (to be determined), b and c are vectors
of (known) coefficients, and A is a (known) matrix of coefficients. cTy and
obj(y) are the objective function and objective value of the LP respectively.
For an optimal variable assignment y∗, obj(y∗) is the optimal value.

37

38 CHAPTER 4. ROUNDING ILPS

Remark We can define LPs and ILPs for maximization problems similarly.
One can also solve maximization problems with a minimization LPs using
the same constraints but negated objective function. The optimal value from
the solved LP will then be the negation of the maximized optimal value.

In this chapter, we illustrate how one can model set cover and multi-
commodity routing as ILPs, and how to perform rounding to yield approx-
imations for these problems. As before, Chernoff bounds will be a useful
inequality in our analysis toolbox.

4.1 Minimum set cover

Recall the minimum set cover problem and the example from Section 1.1.

Example

S1

S2

S3

S4

e1

e2

e3

e4

e5

Suppose there are n = 5 vertices and m = 4 subsets S = {S1, S2, S3, S4},
where the cost function is defined as c(Si) = i2. Then, the minimum set
cover is S∗ = {S1, S2, S3} with a cost of c(S∗) = 14.

In Section 1.1, we saw that a greedy selection of sets that minimizes
the price-per-item of remaining sets gave an Hn-approximation for set cover.
Furthermore, in the special cases where ∆ = maxi∈[m] degree(Si) and f =
maxi∈[n] degree(xi) are small, one can obtainH∆-approximation and f -approximation
respectively.

We now show how to formulate set cover as an ILP, reduce it into a LP,
and how to round the solutions to yield an approximation to the original set
cover instance. Consider the following ILP:

4.1. MINIMUM SET COVER 39

ILPSet cover

minimize
m∑
i=1

yi · c(Si) / Cost of chosen set cover

subject to
∑
i:ej∈Si

yi ≥ 1 ∀j ∈ [n] / Every item ej is covered

yi ∈ {0, 1} ∀i ∈ [m] / Indicator whether set Si is chosen

Upon solving ILPSet cover, the set {Si : i ∈ [n] ∧ y∗i = 1} is the optimal
solution for a given set cover instance. However, as solving ILPs is NP-hard,
we consider relaxing the integral constraint by replacing binary yi variables
by real-valued/fractional xi ∈ [0, 1]. Such a relaxation will yield the corre-
sponding LP:

LPSet cover

minimize
m∑
i=1

xi · c(Si) / Cost of chosen fractional set cover

subject to
∑
i:ej∈Si

xi ≥ 1 ∀j ∈ [n] / Every item ej is fractionally covered

0 ≤ xi ≤ 1 ∀i ∈ [m] / Relaxed indicator variables

Since LPs can be solved in polynomial time, we can find the optimal
fractional solution to LPSet cover in polynomial time.

Observation As the set of solutions of ILPSet cover is a subset of LPSet cover,
obj(x∗) ≤ obj(y∗).

Example The corresponding ILP for the example set cover instance is:

minimize y1 + 4y2 + 9y3 + 16y4

subject to y1 + y4 ≥ 1 / Sets covering e1

y1 + y3 ≥ 1 / Sets covering e2

y3 ≥ 1 / Sets covering e3

y2 + y4 ≥ 1 / Sets covering e4

y1 + y4 ≥ 1 / Sets covering e5

∀i ∈ {1, . . . , 4}, yi ∈ {0, 1}

40 CHAPTER 4. ROUNDING ILPS

After relaxing:

minimize x1 + 4x2 + 9x3 + 16x4

subject to x1 + x4 ≥ 1

x1 + x3 ≥ 1

x3 ≥ 1

x2 + x4 ≥ 1

x1 + x4 ≥ 1

∀i ∈ {1, . . . , 4}, 0 ≤ xi ≤ 1 / Relaxed indicator variables

Solving it using a LP solver1 yields: x1 = 1, x2 = 1, x3 = 1, x4 = 0. Since
the solved x∗ are integral, x∗ is also the optimal solution for the original
ILP. In general, the solved x∗ may be fractional, which does not immediately
yield a set selection.

We now describe two ways to round the fractional assignments x∗ into
binary variables y so that we can interpret them as proper set selections.

4.1.1 (Deterministic) Rounding for small f

We round x∗ as follows:

∀i ∈ [m], set yi =

{
1 if x∗i ≥ 1

f

0 else

Theorem 4.3. The rounded y is a feasible solution to ILPSet cover.

Proof. Since x∗ is a feasible (not to mention, optimal) solution for LPSet cover,
in each constraint, there is at least one x∗i that is greater or equal to 1

f
. Hence,

every element is covered by some set yi in the rounding.

Theorem 4.4. The rounded y is a f -approximation to ILPSet cover.

Proof. By the rounding, yi ≤ f · x∗i ,∀i ∈ [m]. Therefore,

obj(y) ≤ f · obj(x∗) ≤ f · obj(y∗)

1Using Microsoft Excel. See tutorial: http://faculty.sfasu.edu/fisherwarre/lp_

solver.html

Or, use an online LP solver such as: http://online-optimizer.appspot.com/?model=

builtin:default.mod

http://faculty.sfasu.edu/fisherwarre/lp_solver.html
http://faculty.sfasu.edu/fisherwarre/lp_solver.html
http://online-optimizer.appspot.com/?model=builtin:default.mod
http://online-optimizer.appspot.com/?model=builtin:default.mod

4.1. MINIMUM SET COVER 41

4.1.2 (Randomized) Rounding for general f

If f is large, having a f -approximation algorithm from the previous sub-
section may be unsatisfactory. By introducing randomness in the rounding
process, we show that one can obtain a ln(n)-approximation (in expectation)
with arbitrarily high probability through probability amplification.

Consider the following rounding procedure:

1. Interpret each x∗i as probability for picking Si. That is, Pr[yi = 1] = x∗i .

2. For each i, independently set yi to 1 with probability x∗i .

Theorem 4.5. E(obj(y)) = obj(x∗)

Proof.

E(obj(y)) = E(
m∑
i=1

yi · c(Si))

=
m∑
i=1

E(yi) · c(Si) By linearity of expectation

=
m∑
i=1

Pr(yi = 1) · c(Si) Since each yi is an indicator variable

=
m∑
i=1

x∗i · c(Si) Since Pr(yi = 1) = x∗i

= obj(x∗)

Although the rounded selection to yield an objective cost that is close
to the optimum (in expectation) of the LP, we need to consider whether all
constraints are satisfied.

Theorem 4.6. For any j ∈ [n], item ej is not covered w.p. ≤ e−1.

Proof. For any j ∈ [n],

Pr[Item ej not covered] = Pr[
∑
i:ej∈Si

yi = 0]

= Πi:ej∈Si(1− x∗i) Since the yi are chosen independently

≤ Πi:ej∈Sie
−x∗i Since (1− x) ≤ e−x

= e
−

∑
i:ej∈Si

x∗i

≤ e−1

42 CHAPTER 4. ROUNDING ILPS

The last inequality holds because the optimal solution x∗ satisfies the jth

constraint in the LP that
∑

i:ej∈Si x
∗
i ≥ 1.

Since e−1 ≈ 0.37, we would expect the rounded y not to cover several
items. However, one can amplify the success probability by considering in-
dependent roundings and taking the union (See ApxSetCoverILP).

Algorithm 13 ApxSetCoverILP(U ,S, c)
ILPSet cover ← Construct ILP of problem instance
LPSet cover ← Relax integral constraints on indicator variables y to x
x∗ ← Solve LPSet cover

T ← ∅ . Selected subset of S
for k · ln(n) times (for any constant k > 1) do

for i ∈ [m] do
yi ← Set to 1 with probability x∗i
if yi = 1 then

T ← T ∪ {Si} . Add to selected sets T
end if

end for
end for
return T

Similar to Theorem 4.4, we can see that E(obj(T)) ≤ (k · ln(n)) · obj(y∗).
Furthermore, Markov’s inequality tells us that the probability of obj(T) being
z times larger than its expectation is at most 1

z
.

Theorem 4.7. ApxSetCoverILP gives a valid set cover w.p. ≥ 1−n1−k.

Proof. For all j ∈ [n],

Pr[Item ej not covered by T] = Pr[ej not covered by all k ln(n) roundings]

≤ (e−1)k ln(n)

= n−k

Taking union bound over all n items,

Pr[T is not a valid set cover] ≤
n∑
i=1

n−k = n1−k

So, T is a valid set cover with probability ≥ 1− n1−k.

4.2. MINIMIZING CONGESTION INMULTI-COMMODITY ROUTING43

Note that the success probability of 1− n1−k can be further amplified by
taking several independent samples of ApxSetCoverILP, then returning
the lowest cost valid set cover sampled. With z samples, the probability that
all repetitions fail is less than nz(1−k), so we succeed w.p. ≥ 1− nz(1−k).

4.2 Minimizing congestion in multi-commodity

routing

A multi-commodity routing (MCR) problem involves routing multiple (si, ti)
flows across a network with the goal of minimizing congestion, where con-
gestion is defined as the largest ratio of flow over capacity of any edge in
the network. In this section, we discuss two variants of the multi-commodity
routing problem. In the first variant (special case), we are given the set of
possible paths Pi for each (si, ti) source-target pairs. In the second variant
(general case), we are given only the network. In both cases, [RT87] showed

that one can obtain an approximation of O(log(m)
log log(m)

) with high probability.

Definition 4.8 (Multi-commodity routing problem). Consider a directed
graph G = (V,E) where |E| = m and each edge e = (u, v) ∈ E has a capacity
c(u, v). The in-set/out-set of a vertex v is denoted as in(v) = {(u, v) ∈ E :
u ∈ V } and out(v) = {(v, u) ∈ E : u ∈ V } respectively. Given k triplets
(si, ti, di), where si ∈ V is the source, ti ∈ V is the target, and di ≥ 0 is
the demand for the ith commodity respectively, denote f(e, i) ∈ [0, 1] as the
fraction of di that is flowing through edge e. The task is to minimize the
congestion parameter λ by finding paths pi for each i ∈ [k], such that:

(i) (Valid sources):
∑

e∈out(si) f(e, i)−
∑

e∈in(si)
f(e, i) = 1,∀i ∈ [k]

(ii) (Valid sinks):
∑

e∈in(ti)
f(e, i)−

∑
e∈out(ti) f(e, i) = 1,∀i ∈ [k]

(iii) (Flow conservation): For each commodity i ∈ [k],∑
e∈out(v)

f(e, i)−
∑

e∈in(v)

f(e, i) = 0, ∀e ∈ E,∀v ∈ V \ {si ∪ ti}

(iv) (Single path): All demand for commodity i passes through a single path
pi (no repeated vertices).

(v) (Congestion factor): ∀e ∈ E,
∑k

i=1 di1e∈pi ≤ λ · c(e), where indicator
1e∈pi = 1 ⇐⇒ e ∈ pi.

(vi) (Minimum congestion): λ is minimized.

44 CHAPTER 4. ROUNDING ILPS

Example Consider the following flow network with k = 3 commodities
with edge capacities as labelled:

s1

s2

s3

a

b

c

t1

t2

t3

13

7

20

58

17

8

11

19

7

6

5

For demands d1 = d2 = d3 = 10, there exists a flow assignment such that
the total demands flowing on each edge is below its capacity:

s1

s2

s3

a

b

c

t1

t2

t3

10 10

s1

s2

s3

a

b

c

t1

t2

t3

5

5

5

5
5 5

4.2. MINIMIZING CONGESTION INMULTI-COMMODITY ROUTING45

s1

s2

s3

a

b

c

t1

t2

t3

5

55

5

5

5

Although the assignment attains congestion λ = 1 (due to edge (s3, a)),
the path assignments for commodities 2 and 3 violate the property of “single
path”. Forcing all demand of each commodity to flow through a single path,
we have a minimum congestion of λ = 1.25 (due to edges (s3, s2) and (a, t2)):

s1

s2

s3

a

b

c

t1

t2

t3

10 10

s1

s2

s3

a

b

c

t1

t2

t3

10

10
10

46 CHAPTER 4. ROUNDING ILPS

s1

s2

s3

a

b

c

t1

t2

t3

10

10

10

10

4.2.1 Special case: Given sets of si − ti paths Pi
For each commodity i ∈ [k], we are to select a path pi from a given set
of valid paths Pi, where each edge in all paths in Pi has capacities ≥ di.
Because we intend to pick a single path for each commodity to send all
demands through, constraints (i)-(iii) of MCR are fulfilled trivially. Using
yi,p as indicator variables whether path p ∈ Pi is chosen, we can model the
following ILP:

ILPMCR-Given-Paths

minimize λ / (1)

subject to
k∑
i=1

(
di ·

∑
p∈Pi,e∈p

yi,p

)
≤ λ · c(e) ∀e ∈ E / (2)∑

p∈Pi

yi,p = 1 ∀i ∈ [k] / (3)

yi,p ∈ {0, 1} ∀i ∈ [k], p ∈ Pi / (4)

/ (1) Congestion parameter λ

/ (2) Congestion factor relative to selected paths

/ (3) Exactly one path chosen from each Pi

/ (4) Indicator variable for path p ∈ Pi

Relax the integral constraint on yi,p to xi,p ∈ [0, 1] and solve the correspond-
ing LP. Define λ∗ = obj(LPMCR-Given-Paths) and denote x∗ as a fractional path

4.2. MINIMIZING CONGESTION INMULTI-COMMODITY ROUTING47

selection that achieves λ∗. To obtain a valid path selection, for each com-

modity i ∈ [k], pick path p ∈ Pi with weighted probability
x∗i,p∑

p∈Pi
x∗i,p

= x∗i,p.

Note that by constraint (3),
∑

p∈Pi x
∗
i,p = 1.

Remark 1 For a fixed i, a path is selected exclusively (only one!) (cf. set
cover’s roundings where we may pick multiple sets for an item).

Remark 2 The weighted sampling is independent across different com-
modities. That is, the choice of path amongst Pi does not influence the
choice of path amongst Pj for i 6= j.

Theorem 4.9. Pr[obj(y) ≥ 2c logm
log logm

max{1, λ∗}] ≤ 1
mc−1

Proof. Fix an arbitrary edge e ∈ E. For each commodity i, define an indi-
cator variable Ye,i whether edge e is part of the chosen path for commod-
ity i. By randomized rounding, Pr[Ye,i = 1] =

∑
p∈Pi,e∈p x

∗
i,p. Denoting

Ye =
∑k

i=1 di · Ye,i as the total demand on edge e in all k chosen paths,

E(Ye) = E(
k∑
i=1

di · Ye,i)

=
k∑
i=1

di · E(Ye,i) By linearity of expectation

=
k∑
i=1

di
∑

p∈Pi,e∈p

xi,p Since Pr[Ye,i = 1] =
∑

p∈Pi,e∈p

xi,p

≤ λ∗ · c(e) By MCR constraint and optimality of the solved LP

For every edge e ∈ E, applying2 the tight form of Chernoff bounds with
(1 + ε) = 2 logn

log logn
on variable Ye

c(e)
gives

Pr[
Ye
c(e)

≥ 2c logm

log logm
max{1, λ∗}] ≤ 1

mc

Finally, take union bound over all m edges.

2See Corollary 2 of https://courses.engr.illinois.edu/cs598csc/sp2011/

Lectures/lecture_9.pdf for details.

https://courses.engr.illinois.edu/cs598csc/sp2011/Lectures/lecture_9.pdf
https://courses.engr.illinois.edu/cs598csc/sp2011/Lectures/lecture_9.pdf

48 CHAPTER 4. ROUNDING ILPS

4.2.2 General: Given only a network

In the general case, we may not be given path sets Pi and there may be
exponentially many si− ti paths in the network. However, we show that one
can still formulate an ILP and round it (slightly differently) to yield the same
approximation factor. Consider the following:

ILPMCR-Given-Network

minimize λ / (1)

subject to
∑

e∈out(si)

f(e, i)−
∑

e∈in(si)

f(e, i) = 1 ∀i ∈ [k] / (2)

∑
e∈in(ti)

f(e, i)−
∑

e∈out(ti)

f(e, i) = 1 ∀i ∈ [k] / (3)

∑
e∈out(v)

f(e, 1)−
∑

e∈in(v)

f(e, 1) = 0 ∀e ∈ E, / (4)

∀v ∈ V \ {s1 ∪ t1}
...

...∑
e∈out(v)

f(e, k)−
∑

e∈in(v)

f(e, k) = 0 ∀e ∈ E, / (4)

∀v ∈ V \ {sk ∪ tk}
k∑
i=1

(
di ·

∑
p∈Pi,e∈p

yi,p

)
≤ λ · c(e) ∀e ∈ E As before∑

p∈Pi

yi,p = 1 ∀i ∈ [k] As before

yi,p ∈ {0, 1} ∀i ∈ [k], p ∈ Pi As before

/ (1) Congestion parameter λ

/ (2) Valid sources

/ (3) Valid sinks

/ (4) Flow conservation

Relax the integral constraint on yi,p to xi,p ∈ [0, 1] and solve the corresponding
LP. To extract the path candidates Pi for each commodity, perform flow de-
composition3. For each extracted path pi for commodity i, treat the minimum

3See https://www.youtube.com/watch?v=zgutyzA9JM4&t=1020s (17:00 to 29:50) for
a recap on flow decomposition.

https://www.youtube.com/watch?v=zgutyzA9JM4&t=1020s

4.2. MINIMIZING CONGESTION INMULTI-COMMODITY ROUTING49

mine∈pi f(e, i) on the path as the selection probability (as per xe,i in the pre-
vious section). By selecting the path pi with probability mine∈pi f(e, i), one
can show by similar arguments as before that E(obj(y)) ≤ obj(x∗) ≤ obj(y∗).

50 CHAPTER 4. ROUNDING ILPS

Chapter 5

Probabilistic tree embedding

Trees are a special kind of graphs without cycles and someNP-hard problems
are known to admit exact polynomial time solutions on trees. Motivated
by the existence of efficient algorithms on trees, one hopes to design the
following framework for a general graph G = (V,E) with distance metric
dG(u, v) between vertices u, v ∈ V :

1. Construct a tree T

2. Solve the problem on T efficiently

3. Map the solution back to G

4. Argue that the transformed solution from T is a good approximation
for the exact solution on G.

Ideally, we want to build a tree T such that dG(u, v) ≤ dT (u, v) and
dT (u, v) ≤ c · dG(u, v), where c is the stretch of the tree embedding. Unfortu-
nately, such a construction is hopeless1.

Instead, we relax the hard constraint dT (u, v) ≤ c · dG(u, v) and consider
a distribution over a collection of trees T , so that

• (Over-estimates cost): ∀u, v ∈ V , ∀T ∈ T , dG(u, v) ≤ dT (u, v)

• (Over-estimate by not too much): ∀u, v ∈ V , ET∈T [dT (u, v)] ≤ c · dG(u, v)

• (T is a probability space):
∑

T∈T Pr[T] = 1

1For a cycle G with n vertices, the excluded edge in a constructed tree will cause the
stretch factor c ≥ n− 1. Exercise 8.7 in [WS11]

51

52 CHAPTER 5. PROBABILISTIC TREE EMBEDDING

Bartal [Bar96] gave a construction2 for probabilistic tree embedding with
poly-logarithmic stretch factor c, and proved3 that a stretch factor c ∈
Ω(log n) is required for general graphs. A construction that yields c ∈
O(log n), in expectation, was subsequently found by [FRT03].

5.1 A tight probabilistic tree embedding con-

struction

In this section, we describe a probabilistic tree embedding construction due
to [FRT03] with a stretch factor c = O(log n). For a graph G = (V,E), let
the distance metric dG(u, v) be the distance between two vertices u, v ∈ V
and denote diam(C) = maxu,v∈C dG(u, v) as the maximum distance between
any two vertices u, v ∈ C for any subset of vertices C ⊆ V . In particular,
diam(V) refers to the diameter of the whole graph. In the following, let
B(v, r) := {u ∈ V : dG(u, v) ≤ r} denote the ball of radius r around vertex
v.

5.1.1 Idea: Ball carving

To sample an element of the collection T we will recursively split our graph
using a technique called ball carving.

Definition 5.1 (Ball carving). Given a graph G = (V,E), a subset C ⊆ V
of vertices and upper bound D, where diam(C) = maxu,v∈C dG(u, v) ≤ D,
partition C into C1, . . . , Cl such that

(A) ∀i ∈ {1, . . . , l},maxu,v∈Ci dG(u, v) ≤ D
2

(B) ∀u, v ∈ V , Pr[u and v not in same partition] ≤ α · dG(u,v)
D

, for some α

Before using ball carving to construct a tree embedding with expected
stretch α, we show that a reasonable value α ∈ O(log n) can be achieved.

5.1.2 Ball carving construction

The following algorithm concretely implements ball carving and thus gives a
split of a given subset of the graph that satisfies properties (A) and (B) as
defined.

2Theorem 8 in [Bar96]
3Theorem 9 in [Bar96]

5.1. A TIGHT PROBABILISTIC TREE EMBEDDING CONSTRUCTION53

Algorithm 14 BallCarving(G = (V,E), C ⊆ V,D)

if |C| = 1 then
return The only vertex in C

else . Say there are n vertices, where n > 1
θ ← Uniform random value from the range [D

8
, D

4
]

Pick a random permutation π on C . Denote πi as the ith vertex in π
for i ∈ [n] do

Vi ← B(πi, θ) \
⋃i−1
j=1B(πj, θ) . V1, . . . , Vn is a partition of C

end for
return Non-empty sets V1, . . . , Vl . Vi can be empty

end if . i.e. Vi = ∅ ⇐⇒ ∀v ∈ B(πi, θ), [∃j < i, v ∈ B(πj, θ)]

Notation Let π : C → N be an ordering of the vertices C. For vertex
v ∈ C, denote π(v) as v’s position in π and πi as the ith vertex. That is,
v = ππ(v).

Example C = {A,B,C,D,E, F} and π(A) = 3, π(B) = 2, π(C) = 5, π(D) =
1, π(E) = 6, π(F) = 4. Then π gives an ordering of these vertices as
(D,B,A, F, C,E) denoted as π. E = π6 = ππ(E).

Figure 5.1 illustrates the process of ball carving on a set of vertices C =
{N1, N2, · · · , N8}.

Claim 5.2. BallCarving(G,C,D) returns partition V1, . . . , Vl such that

diam(Vi) = max
u,v∈Vi

dG(u, v) ≤ D

2

for all i ∈ {1, . . . , l}.

Proof. Since θ ∈ [D
8
, D

4
], all constructed balls have diameters ≤ D

4
·2 = D

2
.

Definition 5.3 (Ball cut). A ball B(u, r) is cut if BallCarving puts the
vertices in B(u, r) in at least two different partitions. We say Vi cuts B(u, r)
if there exist w, y ∈ B(u, r) such that w ∈ Vi and y 6∈ Vi.

Lemma 5.4. For any vertex u ∈ C and radius r ∈ R+,

Pr[B(u, r) is cut in BallCarving(G,C,D)] ≤ O(log n) · r
D

Proof. Let θ be the randomly chosen ball radius and π be the random permu-
tation on C in BallCarving. We give another ordering of vertices according
to the increasing order of their distances from u:

v1, v2, . . . , vn, such that dG(u, v1) ≤ dG(u, v2) ≤ · · · ≤ dG(u, vn).

54 CHAPTER 5. PROBABILISTIC TREE EMBEDDING

N1

N2

N3

N4

N5

N6

N7

N8

Figure 5.1: Ball carving on a set of vertices C = {N1, N2, · · · , N8}. The
ordering of nodes is given by a random permutation π. In Ball(N1) there are
vertices N1, N2, N5. So V1 = {N1, N2, N5}. In Ball(N2) there is only N3 not
been carved by the former balls. So V2 = {N3}. All of vertices in Ball(N3)

have been carved. So V3 = φ. In Ball(N4), only N4 has not been carved.
V4 = {N4}. In Ball(N5) all of vertices have been carved. V5 = φ. Ball(N6)

carves N6, N7, N8, so V6 = {N6, N7, N8}. Similar to N3, N5, V7 = φ and
V8 = φ. Thus C is partitioned into sets {N1, N2, N5}, {N3}, {N4} and

{N6, N7, N8}.

5.1. A TIGHT PROBABILISTIC TREE EMBEDDING CONSTRUCTION55

Observation 5.5. If Vi is the first partition that cuts B(u, r), a necessary
condition is that in π, vi appears before any vj with j < i. (i.e. π(vi) <
π(vj),∀1 ≤ j < i).

Proof. Consider the largest 1 ≤ j < i such that π(vj) < π(vi):

• If B(u, r) ∩ B(vj, θ) = ∅, then B(u, r) ∩ B(vi, r) = ∅. Since B(u, r) ∩
B(vj, θ) = ∅ ⇐⇒ ∀u′ ∈ B(u, r), u′ /∈ B(vj, θ) ⇐⇒ ∀u′ ∈ B(u, r), dG(u′, vj) >
θ ⇐⇒ dG(B(u, r), vj) > θ. Also, we know dG(B(u, r), vi) ≥ dG(B(u, r), vi) >
θ. None of B(u, r)’s vertices will be in B(vi, θ), neither in Vi.

• If B(u, r) ⊆ B(vj, θ), then vertices in B(u, r) would have been removed
before vi is considered.

• If B(u, r)∩B(vj, θ) 6= ∅ and B(u, r) 6⊆ B(vj, θ), then Vi is not the first
partition that cuts B(u, r) since Vj (or possibly an earlier partition)
has already cut B(u, r).

In any case, if there is a 1 ≤ j < i such that π(vj) < π(vi), Vi does not cut
B(u, r).

Observation 5.6. Pr[Vi cuts B(u, r)] ≤ 2r
D/8

Proof. We ignore all the other partitions, only considering the sufficient con-
dition for a partition to cut a ball. Vi cutsB(u, r) means ∃u1 ∈ B(u, r), s.t.u1 ∈
B(vi, θ) ∩ ∃u2 ∈ B(u, r), s.t.u2 /∈ B(vi, θ).

• ∃u1 ∈ B(u, r), s.t.u1 ∈ B(vi, θ)⇒ dG(u, vi)− r ≤ dG(u1, vi) ≤ θ.

• ∃u2 ∈ B(u, r), s.t.u2 /∈ B(vi, θ)⇒ dG(u, vi) + r ≥ dG(u2, vi) ≥ θ.

We get the bounds of θ : θ ∈ [dG(u, vi)−r, dG(u, vi)+r]. Since θ is uniformly
chosen from [D

8
, D

4
],

Pr[θ ∈ [dG(u, vi)−r, dG(u, vi)+r]] ≤ (dG(u, vi) + r)− (dG(u, vi)− r)
D/4−D/8

=
2r

D/8

Therefore, Pr[Vi cuts B(u, r)] ≤ Pr[θ ∈ [dG(u, vi) − r, dG(u, vi) + r]] ≤ 2r
D/8

.

56 CHAPTER 5. PROBABILISTIC TREE EMBEDDING

Thus,

Pr[B(u, r) is cut]

= Pr[
n⋃
i=1

Event that Vi first cuts B(u, r)]

≤
n∑
i=1

Pr[Vi first cuts B(u, r)] Union bound

=
n∑
i=1

Pr[π(vi) = min
j<i

π(vj)] Pr[Vi cuts B(u, r)] Require vi to appear first

=
n∑
i=1

1

i
· Pr[Vi cuts B(u, r)] By random permutation π

≤
n∑
i=1

1

i
· 2r

D/8
diam(B(u, r)) ≤ 2r, θ ∈ [

D

8
,
D

4
]

= 16
r

D
Hn Hn =

n∑
i=1

1

i

∈ O(log(n)) · r
D

Claim 5.7. BallCarving(G) returns partition V1, . . . , Vl such that

∀u, v ∈ V,Pr[u and v not in same partition] ≤ α · dG(u, v)

D

Proof. Let r = dG(u, v), then v is on the boundary of B(u, r).

Pr[u and v not in same partition]

≤ Pr[B(u, r) is cut in BallCarving]

≤ O(log n) · r
D

By Lemma 5.4

= O(log n) · dG(u, v)

D
Since r = dG(u, v)

Note: α = O(log n) as previously claimed.

5.1.3 Construction of T

Using ball carving, ConstructT recursively partitions the vertices of a
given graph until there is only one vertex remaining. At each step, the upper

5.1. A TIGHT PROBABILISTIC TREE EMBEDDING CONSTRUCTION57

bound D indicates the maximum distance between the vertices of C. The
first call of ConstructT starts with C = V and D = diam(V). Figure 5.2
illustrates the process of building a tree T from a given graph G.

Algorithm 15 ConstructT(G = (V,E), C ⊆ V,D)

if |C| = 1 then
return The only vertex in C . Return an actual vertex from V (G)

else
V1, . . . , Vl ← BallCarving(G, C, D) . maxu,v,∈Vi dG(u, v) ≤ D

2

Create auxiliary vertex r . r is root of current subtree
for i ∈ {1, . . . , l} do

ri ← ConstructT(G, Vi,
D
2

)
Add edge {r, ri} with weight D

end for
return Root of subtree r . Return an auxiliary vertex r

end if

Lemma 5.8. For any two vertices u, v ∈ V and i ∈ N, if T separates u and
v at level i, then 2D

2i
≤ dT (u, v) ≤ 4D

2i
, where D = diam(V).

Proof. If T splits u and v at level i, then the path from u to v in T has to
include two edges of length D

2i
, hence dT (u, v) ≥ 2D

2i
. To be precise,

2D

2i
≤ dT (u, v) = 2 · (D

2i
+

D

2i+1
+ · · ·) ≤ 4D

2i

See picture — r is the auxiliary node at level i which splits nodes u and v.

r

. . .u ∈ Vu v ∈ Vv

D
2i

D
2i

r

. . .u ∈ Vu v ∈ Vv

...
...

u v

D
2i

D
2i

D
2i+1

D
2i+1

58 CHAPTER 5. PROBABILISTIC TREE EMBEDDING

r0

. . .

level-0

V1 Vl0

D D

level-1

r0

. . .r1 rl0

. . .V1,1 V1,l1

. . .

D D

D
2

D
2

r0

. . .

level-0

r1 rl0

. .
.

level-1

V1,1,...,1

...

D D

D
2

D
2i−1

D
2i

level-i

Figure 5.2: Recursive ball carving with dlog2(D)e levels. Red vertices are
auxiliary nodes that are not in the original graph G. Denoting the root as
the 0th level, edges from level i to level i+ 1 have weight D

2i
.

Remark If u, v ∈ V separate before level i, then dT (u, v) must still include
the two edges of length D

2i
, hence dT (u, v) ≥ 2D

2i
.

Claim 5.9. ConstructT(G,C = V,D = diam(V)) returns a tree T such
that

dG(u, v) ≤ dT (u, v)

Proof. Consider u, v ∈ V . Say D
2i
≤ dG(u, v) ≤ D

2i−1 for some i ∈ N. By
property (A) of ball carving, T will separate them at, or before, level i. By
Lemma 5.8, dT (u, v) ≥ 2D

2i
= D

2i−1 ≥ dG(u, v).

Claim 5.10. ConstructT(G,C = V,D = diam(V)) returns a tree T such
that

E[dT (u, v)] ≤ 4α log(D) · dG(u, v)

Proof. Consider u, v ∈ V . Define Ei as the event that “vertices u and v get
separated at the ith level”, for i ∈ N. By recursive nature of ConstructT,
the subset at the ith level has distance at most D

2i
. So, property (B) of ball

carving tells us that Pr[Ei] ≤ α · dG(u,v)
D/2i

. Then,

5.1. A TIGHT PROBABILISTIC TREE EMBEDDING CONSTRUCTION59

E[dT (u, v)] =

log(D)−1∑
i=0

Pr[Ei] · [dT (u, v), given Ei] Definition of expectation

≤
log(D)−1∑
i=0

Pr[Ei] ·
4D

2i
By Lemma 5.8

≤
log(D)−1∑
i=0

(α · dG(u, v)

D/2i
) · 4D

2i
Property (B) of ball carving

= 4α log(D) · dG(u, v) Simplifying

If we apply Claim 5.7 with Claim 5.10, we get

E[dT (u, v)] ≤ O(log(n) log(D)) · dG(u, v)

To remove the log(D) factor, so that stretch factor c = O(log n), a tighter
analysis is needed by only considering vertices that may cut B(u, dG(u, v))
instead of all n vertices. For details, see Theorem 5.18 in Section 5.3.

5.1.4 Contraction of T

Note in Figure 5.2 that we introduce auxiliary vertices in our tree con-
struction and wonder if we can build a T without additional vertices (i.e.
V (T) = V (G). In this section, we look at Contract which performs tree
contractions to remove the auxiliary vertices. It remains to show that the
produced tree still preserves desirable properties of a tree embedding.

Algorithm 16 Contract(T)

while T has an edge (u,w) such that u ∈ V and w is an auxiliary node
do

Contract edge (u,w) by merging subtree rooted at u into w
Identify the new node as u

end while
Multiply weight of every edge by 4
return Modified T ′

Claim 5.11. Contract returns a tree T ′ such that

dT (u, v) ≤ dT ′(u, v) ≤ 4 · dT (u, v)

60 CHAPTER 5. PROBABILISTIC TREE EMBEDDING

Proof. Suppose auxiliary node w, at level i, is the closest common ancestor
for two arbitrary vertices u, v ∈ V in the original tree T . Then,

dT (u, v) = dT (u,w) + dT (w, v) = 2 · (
logD∑
j=i

D

2j
) ≤ 4 · D

2i

Since we do not contract actual vertices, at least one of the (u,w) or (v, w)
edges of weight D

2i
will remain. Multiplying the weights of all remaining edges

by 4, we get dT (u, v) ≤ 4 · D
2i

= dT ′(u, v).
Suppose we only multiply the weights of dT (u, v) by 4, then dT ′(u, v) = 4 · dT (u, v).

Since we contract edges, dT ′(u, v) can only decrease, so dT ′(u, v) ≤ 4 · dT (u, v).

Remark Claim 5.11 tells us that one can construct a tree T ′ without aux-
iliary variables by incurring an additional constant factor overhead.

5.2 Application: Buy-at-bulk network design

Definition 5.12 (Buy-at-bulk network design problem). Consider a graph
G = (V,E) with edge lengths le for e ∈ E. Let f : R+ → R+ be a sub-additive
cost function. That is, f(x + y) ≤ f(x) + f(y). Given k commodity triplets
(si, ti, di), where si ∈ V is the source, ti ∈ V is the target, and di ≥ 0 is the
demand for the ith commodity, find a capacity assignment on edges ce (for
all edges) such that

•
∑

e∈E f(ce) · le is minimized

• ∀e ∈ E, ce ≥ Total flow passing through it

• Flow conservation is satisfied and every commodity’s demand is met

Remark If f is linear (e.g. f(x + y) = f(x) + f(y)), one can obtain an
optimum solution by finding the shortest path si → ti for each commodity i,
then summing up the required capacities for each edge.

Let us denote I = (G, f, {si, ti, di}ki=1) as the given instance. LetOPT (I,G)
be the optimal solution onG. The general idea of our algorithm NetworkDesign
is first transforming the original graph G into a tree T by probabilistic tree
embedding method, contracting the tree as T ′, then finding an optimal solu-
tion on T ′ and map it back to graph G. Let A(I,G) be the solution produced
by our algorithm on graph G. Denote the costs as |OPT (I,G)| and |A(I, T)|
respectively.

5.3. EXTRA: BALL CARVING WITH O(LOGN) STRETCH FACTOR61

Algorithm 17 NetworkDesign(G = (V,E))

ce = 0, ∀e ∈ E . Initialize capacities
T ← ConstructT(G) . Build probabilistic tree embedding T of G
T ← Contract(T) . V (T) = V (G) after contraction
for i ∈ {1, . . . , k} do . Solve problem on T

P T
si,ti
← Find shortest si − ti path in T . It is unique in a tree

for Edge {u, v} of P T
si,ti

in T do
PG
u,v ← Find shortest u− v path in G
ce ← ce + di, for each edge in e ∈ PG

u,v

end for
end for
return {e ∈ E : ce}

We now compare the solutions OPT (I,G) and A(I, T) by comparing edge
costs (u, v) ∈ E in G and tree embedding T .

Claim 5.13. |A(I,G)| using edges in G ≤ |A(I, T)| using edges in T .

Proof. (Sketch) For any pair of vertices u, v ∈ V , dG(u, v) ≤ dT (u, v).

Claim 5.14. |A(I, T)| using edges in T ≤ |OPT (I, T)| using edges in T .

Proof. (Sketch) Since shortest path in a tree is unique, A(I, T) is optimum
for T . So, any other flow assignment has to incur higher edge capacities.

Claim 5.15. E[|OPT (I, T)| using edges in T] ≤ O(log n) · |OPT (I,G)|

Proof. (Sketch) T stretches edges by at most a factor of O(log n).

By the three claims above, NetworkDesign gives aO(log n)-approximation
to the buy-at-bulk network design problem, in expectation. For details, refer
to Section 8.6 in [WS11].

5.3 Extra: Ball carving with O(log n) stretch

factor

If we apply Claim 5.7 with Claim 5.10, we get E[dT (u, v)] ≤ O(log(n) log(D))·
dG(u, v). To remove the log(D) factor, so that stretch factor c = O(log n), a
tighter analysis is needed by only considering vertices that may cutB(u, dG(u, v))
instead of all n vertices.

62 CHAPTER 5. PROBABILISTIC TREE EMBEDDING

5.3.1 Tighter analysis of ball carving

Fix arbitrary vertices u and v. Let r = dG(u, v). Recall that θ is chosen
uniformly at random from the range [D

8
, D

4
]. A ball B(vi, θ) can cut B(u, r)

only when dG(u, vi)− r ≤ θ ≤ dG(u, vi) + r. In other words, one only needs
to consider vertices vi such that D

8
− r ≤ θ − r ≤ dG(u, vi) ≤ θ + r ≤ D

4
+ r.

Lemma 5.16. For i ∈ N, if r > D
16

, then Pr[B(u, r) is cut] ≤ 16r
D

Proof. If r > D
16

, then 16r
D
> 1. As Pr[B(u, r) is cut at level i] is a probability

≤ 1, the claim holds.

Remark Although lemma 5.16 is not a very useful inequality (since any
probability ≤ 1), we use it to partition the value range of r so that we can
say something stronger in the next lemma.

Lemma 5.17. For i ∈ N, if r ≤ D
16

, then

Pr[B(u, r) is cut] ≤ r

D
O(log(

|B(u,D/2)|
|B(u,D/16)|

))

Proof. Vi cuts B(u, r) only if D
8
− r ≤ dG(u, vi) ≤ D

4
+ r, we have dG(u, vi) ∈

[D
16
, 5D

16
] ⊆ [D

16
, D

2
].

u

D
2

D
16

Dist from u

u

v1

D
16

D
2

vj vj+1 . . . vk

Suppose we arrange the vertices in ascending order of distance from u:
u = v1, v2, . . . , vn. Denote:

• j−1 = |B(u, D
16

)| as the number of nodes that have distance ≤ D
16

from
u

• k = |B(u, D
2

)| as the number of nodes that have distance ≤ D
2

from u

5.3. EXTRA: BALL CARVING WITH O(LOGN) STRETCH FACTOR63

We see that only vertices vj, vj+1, . . . , vk have distances from u in the range
[D
16
, D

2
]. Pictorially, only vertices in the shaded region could possibly cut

B(u, r). As before, let π(v) be the ordering in which vertex v appears in
random permutation π. Then,

Pr[B(u, r) is cut]

= Pr[
k⋃
i=j

Event that Vi cuts B(u, r)] Only Vj, Vj+1, . . . , Vk can cut

≤
k∑
i=j

Pr[π(vi) < min
z<i
{π(vz)}] · Pr[Vi cuts B(u, r)] Union bound

=
k∑
i=j

1

i
· Pr[Vi cuts B(u, r)] By random permutation π

≤
k∑
i=j

1

i
· 2r

D/8
diam(B(u, r)) ≤ 2r, θ ∈ [

D

8
,
D

4
]

=
r

D
(Hk −Hj) where Hk =

k∑
i=1

1

i

∈ r

D
O(log(

|B(u,D/2)|
|B(u,D/16)|

)) since Hk ∈ Θ(log(k))

5.3.2 Plugging into ConstructT

Recall that ConstructT is a recursive algorithm which handles graphs of
diameter ≤ D

2i
at level i. For a given pair of vertices u and v, there exists

i∗ ∈ N such that D
2i∗
≤ r = dG(u, v) ≤ D

2i∗−1 . In other words, D
2i∗−4

1
16
≤

r ≤ D
2i∗−5

1
16

. So, lemma 5.17 applies for levels i ∈ [0, i∗ − 5] and lemma 5.16
applies for levels i ∈ [i∗ − 4, log(D)− 1].

Theorem 5.18. E[dT (u, v)] ∈ O(log n) · dG(u, v)

Proof. As before, let Ei be the event that “vertices u and v get separated at
the ith level. For Ei to happen, the ball B(u, r) = B(u, dG(u, v)) must be cut
at level i, so Pr[Ei] ≤ Pr[B(u, r) is cut at level i].

64 CHAPTER 5. PROBABILISTIC TREE EMBEDDING

E[dT (u, v)]

=

log(D)−1∑
i=0

Pr[Ei] · Pr[dT (u, v), given Ei] (1)

≤
log(D)−1∑
i=0

Pr[Ei] ·
4D

2i
(2)

=
i∗−5∑
i=0

Pr[Ei] ·
4D

2i
+

log(D)−1∑
i=i∗−4

Pr[Ei] ·
4D

2i
(3)

≤
i∗−5∑
i=0

r

D/2i
O(log(

|B(u,D/2i+1)|
|B(u,D/2i+4)|

)) · 4D

2i
+

log(D)−1∑
i=i∗−4

Pr[Ei] ·
4D

2i
(4)

≤
i∗−5∑
i=0

r

D/2i
O(log(

|B(u,D/2i+1)|
|B(u,D/2i+4)|

)) · 4D

2i
+

log(D)−1∑
i=i∗−4

16r

D/2i∗−4
· 4D

2i
(5)

= 4r ·
i∗−5∑
i=0

O(log(
|B(u,D/2i+1)|
|B(u,D/2i+4)|

)) +

log(D)−1∑
i=i∗−4

4 · 2i∗−i · r (6)

≤ 4r ·
i∗−5∑
i=0

O(log(
|B(u,D/2i+1)|
|B(u,D/2i+4)|

)) + 27r (7)

= 4r · O(log(n)) + 27r (8)

∈ O(log n) · r

(1) Definition of expectation

(2) By Lemma 5.8

(3) Split into cases: D
2i∗−4

1
16
≤ r ≤ D

2i∗−5
1
16

(4) By Lemma 5.17

(5) By Lemma 5.16 with respect to D/2i
∗−4

(6) Simplifying

(7) Since
∑log(D)−1

i=i∗−4 2i
∗−i ≤ 25

(8) log(x
y
) = log(x)− log(y) and |B(u,∞)| ≤ n

Part II

Streaming and sketching
algorithms

65

Chapter 6

Warm up

Thus far, we have been ensuring that our algorithms run fast. What if our
system does not have sufficient memory to store all data to post-process it?
For example, a router has relatively small amount of memory while tremen-
dous amount of routing data flows through it. In a memory constrained set-
ting, can one compute something meaningful, possible approximately, with
limited amount of memory?

More formally, we now look at a slightly different class of algorithms
where data elements from [n] = {1, . . . , n} arrive in one at a time, in a stream
S = a1, . . . , am, where ai ∈ [n] arrives in the ith time step. At each step, our
algorithm performs some computation1 and discards the item ai. At the end
of the stream2, the algorithm should give us a value that approximates some
value of interest.

6.1 Typical tricks

Before we begin, let us first describe two typical tricks used to amplify suc-
cess probabilities of randomized algorithms. Suppose we have a randomized
algorithm A that returns an unbiased estimate of a quantity of interest X
on a problem instance I, with success probability p > 0.5.

Trick 1: Reduce variance Run j independent copies ofA on I, and return
the mean 1

j

∑j
i=1 A(I). The expected outcome E(1

j

∑j
i=1A(I)) will still

be X while the variance drops by a factor of j.

Trick 2: Improve success Run k independent copies of A on I, and re-
turn the median. As each copy of A succeeds (independently) with

1Usually this is constant time so we ignore the runtime.
2In general, the length of the stream, m, may not be known.

67

68 CHAPTER 6. WARM UP

probability p > 0.5, the probability that more than half of them fails
(and hence the median fails) drops exponential with respect to k.

Let ε > 0 and δ > 0 denote the precision factor and failure probability
respectively. Robust combines the above-mentioned two tricks to yield a
(1± ε)-approximation to X that succeeds with probability > 1− δ.

Algorithm 18 Robust(A, I, ε, δ)
C ← ∅ . Initialize candidate outputs
for k = O(log 1

δ
) times do

sum← 0
for j = O(1

ε2
) times do

sum← sum+A(I)
end for
Add sum

j
to candidates C . Include new sample of mean

end for
return Median of C . Return median

6.2 Majority element

Definition 6.1 (“Majority in a stream” problem). Given a stream S =
{a1, . . . , am} of items from [n] = {1, . . . , n}, with an element j ∈ [n] that
appears strictly more than m

2
times in S, find j.

Algorithm 19 MajorityStream(S = {a1, . . . , am})
guess← 0
count← 0
for ai ∈ S do . Items arrive in streaming fashion

if ai = guess then
count← count+ 1

else if count > 1 then
count← count− 1

else
guess← ai

end if
end for
return guess

6.2. MAJORITY ELEMENT 69

Example Consider a stream S = {1, 3, 3, 7, 5, 3, 2, 3}. The table below
shows how guess and count are updated as each element arrives.

Stream elements 1 3 3 7 5 3 2 3

Guess 1 3 3 3 5 3 2 3
Count 1 1 2 1 1 1 1 1

One can verify that MajorityStream uses O(log n + logm) bits to
store guess and counter.

Claim 6.2. MajorityStream correctly finds element j ∈ [n] which appears
> m

2
times in S = {a1, . . . , am}.

Proof. (Sketch) Match each other element in S with a distinct instance of j.
Since j appears > m

2
times, at least one j is unmatched. As each matching

cancels out count, only j could be the final guess.

Remark If no element appears > m
2

times, then MajorityStream is
not guaranteed to return the most frequent element. For example, for S =
{1, 3, 4, 3, 2}, MajorityStream(S) returns 2 instead of 3.

70 CHAPTER 6. WARM UP

Chapter 7

Estimating the moments of a
stream

One class of interesting problems is computing moments of a given stream S.
For items j ∈ [n], define fj as the number of times j appears in a stream S.
Then, the kth moment of a stream S is defined as

∑n
j=1(fj)

k. When k = 1,
the first moment

∑n
j=1 fj = m is simply the number of elements in the stream

S. When k = 0, by associating 00 = 0, the zeroth moment
∑n

j=1(fj)
0 is the

number of distinct elements in the stream S.

7.1 Estimating the first moment of a stream

A trivial exact solution would be to use O(logm) bits to maintain a counter,
incrementing for each element observed. For some upper bound M , consider
the sequence (1 + ε), (1 + ε)2, . . . , (1 + ε)log1+εM . For any stream length m,
there exists i ∈ N such that (1 + ε)i ≤ m ≤ (1 + ε)i+1. Thus, to obtain
a (1 + ε)-approximation, it suffices to track the exponent i to estimate the
length of m. For ε ∈ Θ(1), this can be done in O(log logm) bits.

Algorithm 20 Morris(S = {a1, . . . , am})
x← 0
for ai ∈ S do . Items arrive in streaming fashion

r ← Random probability from [0, 1]
if r ≤ 2−x then . If not, x is unchanged.

x← x+ 1
end if

end for
return 2x − 1 . Estimate m by 2x − 1

71

72 CHAPTER 7. ESTIMATING THE MOMENTS OF A STREAM

The intuition behind Morris [Mor78] is to increase the counter (and
hence double the estimate) when we expect to observe 2x new items. For
analysis, denote Xm as the value of counter x after exactly m items arrive.

Theorem 7.1. E[2Xm − 1] = m. That is, Morris is an unbiased estimator
for the length of the stream.

Proof. Equivalently, let us prove E[2Xm] = m + 1, by induction on m ∈ N+.
On the first element (m = 1), x increments with probability 1, so E[2X1] =
21 = m+ 1. Suppose it holds for some m ∈ N, then

E[2Xm+1] =
m∑
j=1

E[2Xm+1 |Xm = j] Pr[Xm = j] Condition on Xm

=
m∑
j=1

(2j+1 · 2−j + 2j · (1− 2−j)) · Pr[Xm = j] Increment x w.p. 2−j

=
m∑
j=1

(2j + 1) · Pr[Xm = j] Simplifying

=
m∑
j=1

2j · Pr[Xm = j] +
m∑
j=1

Pr[Xm = j] Splitting the sum

= E[2Xm] +
m∑
j=1

Pr[Xm = j] Definition of E[2Xm]

= E[2Xm] + 1
m∑
i=1

Pr[Xm = j] = 1

= (m+ 1) + 1 Induction hypothesis

= m+ 2

Note that we sum up to m because x ∈ [1,m] after m items.

Claim 7.2. E[22Xm] = 3
2
m2 + 3

2
m+ 1

Proof. Exercise.

Claim 7.3. Var(2Xm − 1) = E[(2Xm − 1−m)2] ≤ m2

2

Proof. Exercise. Use the Claim 7.2.

Theorem 7.4. For ε > 0, Pr[|(2Xm − 1)−m| > εm] ≤ 1
2ε2

7.2. ESTIMATING THE ZEROTH MOMENT OF A STREAM 73

Proof.

Pr[|(2Xm − 1)−m| > εm] ≤ Var(2Xm − 1)

(εm)2
Chebyshev’s inequality

≤ m2/2

ε2m2
By Claim 7.3

=
1

2ε2

Remark Using the discussion in Section 6.1, we can run Morris multiple
times to obtain a (1± ε)-approximation of the first moment of a stream that
succeeds with probability > 1− δ. For instance, repeating Morris 10

ε2
times

and reporting the mean m̂, Pr[|m̂ −m| > εm] ≤ 1
20

because the variance is

reduced by ε2

10
.

7.2 Estimating the zeroth moment of a stream

Trivial exact solutions could either use O(n) bits to track if element exists,
or use O(m log n) bits to remember the whole stream. Suppose there are D
distinct items in the whole stream. In this section, we show that one can in
fact make do with only O(log n) bits to obtain an approximation of D.

7.2.1 An idealized algorithm

Consider the following algorithm sketch:

1. Take a uniformly random hash function h : {1, . . . ,m} → [0, 1]

2. As items ai ∈ S arrive, track z = min{h(ai)}

3. In the end, output 1
z
− 1

Since we are randomly hashing elements into the range [0, 1], we expect
the minimum hash output to be 1

D+1
1, so E[1

z
− 1] = D. Unfortunately,

storing a uniformly random hash function that maps to the interval [0, 1] is
infeasible. As storing real numbers is memory intensive, one possible fix is to
discretize the interval [0, 1], using O(log n) bits per hash output. However,
storing this hash function would still require O(n log n) space.

1See https://en.wikipedia.org/wiki/Order_statistic

https://en.wikipedia.org/wiki/Order_statistic

74 CHAPTER 7. ESTIMATING THE MOMENTS OF A STREAM

7.2.2 An actual algorithm

Instead of a uniformly random hash function, we select a random hash from
a family of pairwise independent hash functions.

Definition 7.5 (Family of pairwise independent hash functions). Hn,m is a
family of pairwise independent hash functions if

• (Hash definition): ∀h ∈ Hn,m, h : {1, . . . , n} → {1, . . . ,m}

• (Uniform hashing): ∀x ∈ {1, . . . , n}, Prh∈Hn,m [h(x) = i] = 1
m

• (Pairwise independent) ∀x, y ∈ {1, . . . , n}, x 6= y, Prh∈Hn,m [h(x) =
i ∧ h(y) = j] = 1

m2

Remark For now, we care only about m = n, and write Hn,n as Hn.

Claim 7.6. Let n be a prime number. Then,

Hn = {ha,b : h(x) = ax+ b mod n,∀a, b ∈ Zn}

is a family of pairwise independent hash functions.

Proof. (Sketch) For any given x 6= y,

• There is a unique value of h(x) mod n, out of n possibilities.

• The system {ax + b = i mod n, ay + b = j mod n} has a unique

solution for (a, b) (note that

(
x 1
y 1

)
∈ Z2×2

n is non-singular), out of n2

possibilities.

Remark If n is not a prime, we know there exists a prime p such that
n ≤ p ≤ 2n, so we round n up to p. Storing a random hash from Hn is then
storing the numbers a and b in O(log n) bits.

We now present an algorithm [FM85] which estimates the zeroth moment
of a stream and defer the analysis to the next lecture. In FM, zeros refer
to the number of trailing zeroes in the binary representation of h(ai). For
example, if h(ai) = 20 = (...10100)2, then zeros(h(ai)) = 2.

Recall that the kth moment of a stream S is defined as
∑n

j=1(fj)
k. Since

the hash h is deterministic after picking a random hash from Hn,n, h(ai) =
h(aj),∀ai = aj ∈ [n]. We first prove a useful lemma.

7.2. ESTIMATING THE ZEROTH MOMENT OF A STREAM 75

Algorithm 21 FM(S = {a1, . . . , am})
h← Random hash from Hn,n

Z ← 0
for ai ∈ S do . Items arrive in streaming fashion

Z = max{Z, zeros(h(ai))}
(zeros(h(ai)) = # leading zeroes in binary representation of h(ai))

end for
return 2Z ·

√
2 . Estimate of D

Lemma 7.7. If X1, . . . , Xn are pairwise independent indicator random vari-
ables and X =

∑n
i=1 Xi, then Var(X) ≤ E[X].

Proof.

Var(X) =
n∑
i=1

Var(Xi) The Xi’s are pairwise independent

=
n∑
i=1

(E[X2
i]− (E[Xi])

2) Definition of variance

≤
n∑
i=1

E[X2
i] Ignore negative part

=
n∑
i=1

E[Xi] X2
i = Xi since Xi’s are indicator random variables

= E[
n∑
i=1

Xi] Linearity of expectation

= E[X] Definition of expectation

Theorem 7.8. There exists a constant C > 0 such that

Pr[
D

3
≤ 2Z ·

√
2 ≤ 3D] > C

Proof. We will prove Pr[(D
3
> 2Z ·

√
2) or (2Z ·

√
2 > 3D)] ≤ 1 − C by

separately analyzing Pr[D
3
≥ 2Z ·

√
2] and Pr[2Z ·

√
2 ≥ 3D], then applying

union bound. Define indicator variables

Xi,r =

{
1 if zeros(h(ai)) ≥ r

0 otherwise

76 CHAPTER 7. ESTIMATING THE MOMENTS OF A STREAM

andXr =
∑m

i=1 Xi,r = |{ai ∈ S : zeros(h(ai)) ≥ r}|. Notice thatXn ≤ Xn−1 ≤ · · · ≤ X1

since zeros(h(ai)) ≥ r + 1⇒ zeros(h(ai)) ≥ r. Now,

E[Xr] = E[
m∑
i=1

Xi,r] Since Xr =
m∑
i=1

Xi,r

=
m∑
i=1

E[Xi,r] By linearity of expectation

=
m∑
i=1

Pr[Xi,r = 1] Since Xi,r are indicator variables

=
m∑
i=1

1

2r
h is a uniform hash

=
D

2r
Since h hashes same elements to the same value

Denote τ1 as the smallest integer such that 2τ1 ·
√

2 > 3D, and τ2 as the
largest integer such that 2τ2 ·

√
2 < D

3
. We see that if τ1 < Z < τ2, then

2Z ·
√

2 is a 3-approximation of D.

r 0

τ2 + 1 log2(D√
2
)

τ2 τ1

• If Z ≥ τ1, then 2Z ·
√

2 ≥ 2τ1 ·
√

2 > 3D

• If Z ≤ τ2, then 2Z ·
√

2 ≤ 2τ2 ·
√

2 < D
3

7.2. ESTIMATING THE ZEROTH MOMENT OF A STREAM 77

Pr[Z ≥ τ1] ≤ Pr[Xτ1 ≥ 1] Since Z ≥ τ1 ⇒ Xτ1 ≥ 1

≤ E[Xτ1]

1
By Markov’s inequality

=
D

2τ1
Since E[Xr] =

D

2r

≤
√

2

3
Since 2τ1 ·

√
2 > 3D

Pr[Z ≤ τ2] ≤ Pr[Xτ2+1 = 0] Since Z ≤ τ2 ⇒ Xτ2+1 = 0

≤ Pr[E[Xτ2+1]−Xτ2+1 ≥ E[Xτ2+1]] Implied

≤ Pr[|Xτ2+1 − E[Xτ2+1]| ≥ E[Xτ2+1]] Adding absolute sign

≤ Var[Xτ2+1]

(E[Xτ2+1])2
By Chebyshev’s inequality

≤ E[Xτ2+1]

(E[Xτ2+1])2
By Lemma 7.7

≤ 2τ2+1

D
Since E[Xr] =

D

2r

≤
√

2

3
Since 2τ2 ·

√
2 <

D

3

Putting together,

Pr[(
D

3
> 2Z ·

√
2) or (2Z ·

√
2 > 3D)]

≤ Pr[
D

3
≥ 2Z ·

√
2] + Pr[2Z ·

√
2 ≥ 3D] By union bound

≤ 2
√

2

3
From above

= 1− C For C = 1− 2
√

2

3
> 0

Although the analysis tells us that there is a small success probability
(C = 1 − 2

√
2

3
≈ 0.0572), one can use t independent hashes and output the

mean 1
k

∑k
i=1(2Zi ·

√
2) (Recall Trick 1). With t hashes, the variance drops

by a factor of 1
t
, improving the analysis for Pr[Z ≤ τ2]. When the success

78 CHAPTER 7. ESTIMATING THE MOMENTS OF A STREAM

probability C > 0.5 (for instance, after t ≥ 17 repetitions), one can then call
the routine k times independently and return the median (Recall Trick 2).

While Tricks 1 and 2 allows us to strength the success probability C, more
work needs to be done to improve the approximation factor from 3 to (1+ ε).
To do this, we look at a slight modification of FM, due to [BYJK+02].

Algorithm 22 FM+(S = {a1, . . . , am}, ε)
N ← n3

t← c
ε2
∈ O(1

ε2
) . For some constant c ≥ 28

h← Random hash from Hn,N . Hash to a larger space
T ← ∅ . Maintain t smallest h(ai)’s
for ai ∈ S do . Items arrive in streaming fashion

T ← t smallest values from T ∪ {h(ai)}
(If |T ∪ {h(ai)}| ≤ t, then T = T ∪ {h(ai)})

end for
Z = maxt∈T T
return tN

Z
. Estimate of D

Remark For a cleaner analysis, we treat the integer interval [N] as a con-
tinuous interval in Theorem 7.9. Note that there may be a rounding error
of 1

N
but this is relatively small and a suitable c can be chosen to make the

analysis still work.

Theorem 7.9. In FM+, for any given 0 < ε < 1
2
, Pr[| tN

Z
−D| ≤ εD] > 3

4
.

Proof. We first analyze Pr[tN
Z
> (1 + ε)D] and Pr[tN

Z
< (1− ε)D] separately.

Then, taking union bounds and negating yields the theorem’s statement.

If tN
Z
> (1 + ε)D, then tN

(1+ε)D
> Z = tth smallest hash value, implying

that there are ≥ t hashes smaller than tN
(1+ε)D

. Since the hash uniformly

distributes [n] over [N], for each element ai,

Pr[h(ai) ≤
tN

(1 + ε)D
] =

tN
(1+ε)D

N
=

t

(1 + ε)D

Let d1, . . . , dD be the D distinct elements in the stream. Define indicator
variables

Xi =

{
1 if h(di) ≤ tN

(1+ε)D

0 otherwise

7.2. ESTIMATING THE ZEROTH MOMENT OF A STREAM 79

and X =
∑D

i=1Xi is the number of hashes that are smaller than tN
(1+ε)D

.

From above, Pr[Xi = 1] = t
(1+ε)D

. By linearity of expectation, E[X] = t
(1+ε)

.

Then, by Lemma 7.7, Var(X) ≤ E[X]. Now,

Pr[
tN

Z
> (1 + ε)D] ≤ Pr[X ≥ t] Since the former implies the latter

= Pr[X − E[X] ≥ t− E[X]] Subtracting E[X] from both sides

≤ Pr[X − E[X] ≥ ε

2
t] Since E[X] =

t

(1 + ε)
≤ (1− ε

2
)t

≤ Pr[|X − E[X]| ≥ ε

2
t] Adding absolute sign

≤ Var(X)

(εt/2)2
By Chebyshev’s inequality

≤ E[X]

(εt/2)2
Since Var(X) ≤ E[X]

≤ 4(1− ε/2)t

ε2t2
Since E[X] =

t

(1 + ε)
≤ (1− ε

2
)t

≤ 4

c
Simplifying with t =

c

ε2
and (1− ε

2
) < 1

Similarly, if tN
Z
< (1 − ε)D, then tN

(1−ε)D < Z = tth smallest hash value,

implying that there are < t hashes smaller than tN
(1−ε)D . Since the hash

uniformly distributes [n] over [N], for each element ai,

Pr[h(ai) ≤
tN

(1− ε)D
] =

tN
(1−ε)D

N
=

t

(1− ε)D

Let d1, . . . , dD be the D distinct elements in the stream. Define indicator
variables

Yi =

{
1 if h(di) ≤ tN

(1−ε)D

0 otherwise

and Y =
∑D

i=1 Yi is the number of hashes that are smaller than tN
(1−ε)D . From

above, Pr[Yi = 1] = t
(1−ε)D . By linearity of expectation, E[Y] = t

(1−ε) . Then,

by Lemma 7.7, Var(Y) ≤ E[Y]. Now,

80 CHAPTER 7. ESTIMATING THE MOMENTS OF A STREAM

Pr[
tN

Z
< (1− ε)D]

≤ Pr[Y ≤ t] Since the former implies the latter

= Pr[Y − E[Y] ≤ t− E[Y]] Subtracting E[Y] from both sides

≤ Pr[Y − E[Y] ≤ −εt] Since E[Y] =
t

(1− ε)
≥ (1 + ε)t

≤ Pr[−(Y − E[Y]) ≥ εt] Swap sides

≤ Pr[|Y − E[Y]| ≥ εt] Adding absolute sign

≤ Var(Y)

(εt)2
By Chebyshev’s inequality

≤ E[Y]

(εt)2
Since Var(Y) ≤ E[Y]

≤ (1 + 2ε)t

ε2t2
Since E[Y] =

t

(1− ε)
≤ (1 + 2ε)t

≤ 3

c
Simplifying with t =

c

ε2
and (1 + 2ε) < 3

Putting together,

Pr[|tN
Z
−D| > εD]] ≤ Pr[

tN

Z
> (1 + ε)D]] + Pr[

tN

Z
< (1− ε)D]] By union bound

≤ 4/c+ 3/c From above

≤ 7/c Simplifying

≤ 1/4 For c ≥ 28

7.3 Estimating the kth moment of a stream

In this section, we describe algorithms from [AMS96] that estimates the kth

moment of a stream, first for k = 2, then for general k. Recall that the kth

moment of a stream S is defined as Fk =
∑n

i=1(fi)
k, where for each element

i ∈ [n], fi denotes the number of times value i appears in the stream.

7.3. ESTIMATING THE KTH MOMENT OF A STREAM 81

7.3.1 k = 2

For each element i ∈ [n], we associate a random variable ri ∈u.a.r. {−1,+1}.

Algorithm 23 AMS-2(S = {a1, . . . , am})
Assign ri ∈u.a.r. {−1,+1}, ∀i ∈ [n] . For now, this takes O(n) space
Z ← 0
for ai ∈ S do . Items arrive in streaming fashion

Z ← Z + ri . At the end, Z =
∑n

i=1 rifi
end for
return Z2 . Estimate of F2 =

∑n
i=1 f

2
i

Lemma 7.10. In AMS-2, if random variables {ri}i∈[n] are pairwise indepen-
dent, then E[Z2] =

∑n
i=1 f

2
i = F2. That is, AMS-2 is an unbiased estimator

for the second moment.

Proof.

E[Z2] = E[(
n∑
i=1

rifi)
2] Since Z =

n∑
i=1

rifi at the end

= E[
n∑
i=1

r2
i f

2
i + 2

∑
1≤i<j≤n

rirjfifj] Expanding (
n∑
i=1

rifi)
2

=
n∑
i=1

E[r2
i f

2
i] + 2

∑
1≤i<j≤n

E[rirjfifj] Linearity of expectation

=
n∑
i=1

E[r2
i]f

2
i + 2

∑
1≤i<j≤n

E[rirj]fifj fi’s are (unknown) constants

=
n∑
i=1

f 2
i + 2

∑
1≤i<j≤n

E[rirj]fifj Since r2
i = 1,∀i ∈ [n]

=
n∑
i=1

f 2
i + 2

∑
1≤i<j≤n

E[ri]E[rj]fifj Since {ri}i∈[n] are pairwise independent

=
n∑
i=1

f 2
i Since E[ri] = 0, ∀i ∈ [n]

= F2 Since F2 =
n∑
i=1

f 2
i

82 CHAPTER 7. ESTIMATING THE MOMENTS OF A STREAM

So we have an unbiased estimator for the second moment but we are also
interested in the probability of error. We want a small probability for the
output Z2 to deviate more than (1 + ε) from the true value, i.e.,
Pr[|Z2 − F2| > εF2] should be small.

Lemma 7.11. In AMS-2, if random variables {ri}i∈[n] are 4-wise indepen-
dent2, then Var[Z2] ≤ 2(E[Z2])2.

Proof. As before, E[ri] = 0 and r2
i = 1 for all i ∈ [n]. By 4-wise independence,

the expectation of any product of at most 4 different ri’s is the product of
their expectations. Thus we get E[rirjrkrl] = E[ri]E[rj]E[rk]E[rl] = 0, as well
as E(r3

i rj) = E(rirj) = 0 and E(r2
i rjrk) = E(rjrk) = 0, where the indices

i, j, k, l are pairwise different. This allows us to compute E[Z4]:

E[Z4] = E[(
n∑
i=1

rifi)
4] Since Z =

n∑
i=1

rifi at the end

=
n∑
i=1

E[r4
i]f

4
i + 6

∑
1≤i<j≤n

E[r2
i r

2
j]f

2
i f

2
j L.o.E. and 4-wise independence

=
n∑
i=1

f 4
i + 6

∑
1≤i<j≤n

f 2
i f

2
j Since r4

i = r2
i = 1,∀i ∈ [n] .

Note that the coefficient of
∑

1≤i<j≤n E[r2
i r

2
j]f

2
i f

2
j is

(
4
2

)
= 6 and that all

other terms vanish by the computation above.

Var[Z2] = E[(Z2)2]− (E[Z2])2 Definition of variance

=
n∑
i=1

f 4
i + 6

∑
1≤i<j≤n

f 2
i f

2
j − (E[Z2])2 From above

=
n∑
i=1

f 4
i + 6

∑
1≤i<j≤n

f 2
i f

2
j − (

n∑
i=1

f 2
i)2 By Lemma 7.10

= 4
∑

1≤i<j≤n

f 2
i f

2
j Expand and simplify

≤ 2(
n∑
i=1

f 2
i)2 Introducing f 4

i terms

= 2(E[Z2])2 By Lemma 7.10

2The random variables {ri}i∈[n] are said to be 4-wise independent if

Pr
(
(ri1 , ri2 , ri3 , ri4) = (εi1 , εi2 , εi3 , εi4)

)
=
∏4

j=1 Pr(rij = εij) for all εi1 , εi2 , εi3 , εi4 .
Note that 4-wise independence implies pairwise independence.

7.3. ESTIMATING THE KTH MOMENT OF A STREAM 83

Theorem 7.12. In AMS-2, if {ri}i∈[n] are 4-wise independent, then we have
Pr[|Z2 − F2| > εF2] ≤ 2

ε2
for any ε > 0.

Proof.

Pr[|Z2 − F2| > εF2] = Pr[|Z2 − E[Z2]| > εE[Z2]] By Lemma 7.10

≤ Var(Z2)

(εE[Z2])2
By Chebyshev’s inequality

≤ 2(E[Z2])2

(εE[Z2])2
By Lemma 7.11

=
2

ε2

We can again apply the mean trick to decrease the variance by a factor
of k and have a smaller upper bound on the probability of error.
In particular, if we pick k = 10

ε2
repetitions of ASM-2 and output the mean

value of the output Z2 we have :

Pr[error] ≤
Var[Z2] 1

k

(εE[Z2])2
≤ 1

k
· 2

ε2
=

1

5

Claim 7.13. O(k log n) bits of randomness suffices to obtain a set of k-wise
independent random variables.

Proof. Recall the definition of hash family Hn,m. In a similar fashion3, we
consider hashes from the family (for prime p):

{hak−1,ak−2,...,a1,a0 : h(x) =
k−1∑
i=1

aix
i mod p

= ak−1x
k−1 + ak−2x

k−2 + · · ·+ a1x+ a0 mod p,

∀ak−1, ak−2, . . . , a1, a0 ∈ Zp}

This requires k random coefficients, which can be stored with O(k log n)
bits.

3See https://en.wikipedia.org/wiki/K-independent_hashing

https://en.wikipedia.org/wiki/K-independent_hashing

84 CHAPTER 7. ESTIMATING THE MOMENTS OF A STREAM

Observe that the above analysis only require {ri}i∈[n] to be 4-wise in-
dependent. Claim 7.13 implies that AMS-2 only needs O(4 log n) bits to
represent {ri}i∈[n].

Although the failure probability 2
ε2

is large for small ε, one can repeat t
times and output the mean (Recall Trick 1). With t ∈ O(1

ε2
) samples, the

failure probability drops to 2
tε2
∈ O(1). When the failure probability is less

than 1
2
, one can then call the routine k times independently, and return the

median (Recall Trick 2). On the whole, for any given ε > 0 and δ > 0,

O(log(n) log(1/δ)
ε2

) space suffices to yield a (1± ε)-approximation algorithm that
succeeds with probability > 1− δ.

7.3.2 General k

Algorithm 24 AMS-k(S = {a1, . . . , am})
m← |S| . For now, assume we know m = |S|
J ∈u.a.r. [m] . Pick a random index
r ← 0
for ai ∈ S do . Items arrive in streaming fashion

if i ≥ J and ai = aJ then
r ← r + 1

end if
end for
Z ← m(rk − (r − 1)k)
return Z . Estimate of Fk =

∑n
i=1(fi)

k

Remark At the end of AMS-k, r = |{i ∈ [m] : i ≥ J and ai = aJ}| will
be the number of occurrences of aJ in a suffix of the stream.

The assumption of known m in AMS-k can be removed via reservoir
sampling4. The idea is as follows: Initially, initialize stream length and J as
both 0. When ai arrives, choose to replace J with i with probability 1

i
. If J

is replaced, reset r to 0 and start counting from this stream suffix onwards.
It can be shown that the choice of J is uniform over current stream length.

Lemma 7.14. In AMS-k, E[Z] =
∑n

i=1 f
k
i = Fk. That is, AMS-k is an

unbiased estimator for the kth moment.

4See https://en.wikipedia.org/wiki/Reservoir_sampling

https://en.wikipedia.org/wiki/Reservoir_sampling

7.3. ESTIMATING THE KTH MOMENT OF A STREAM 85

Proof. When aJ = i, there are fi choices for J . By telescoping sums, we have

E[Z | aJ = i]

=
1

fi
[m(fki − (fi − 1)k)] +

1

fi
[m((fi − 1)k − (fi − 2)k)] + · · ·+ 1

fi
[m(1k − 0k)]

=
m

fi
[(fki − (fi − 1)k) + ((fi − 1)k − (fi − 2)k) + · · ·+ (1k − 0k)]

=
m

fi
fki .

Thus,

E[Z] =
n∑
i=1

E[Z | aJ = i] · Pr[aJ = i] Condition on the choice of J

=
n∑
i=1

E[Z | aJ = i] · fi
m

Since choice of J is uniform at random

=
n∑
i=1

m

fi
fki ·

fi
m

From above

=
n∑
i=1

fki Simplifying

= Fk Since Fk =
n∑
i=1

fki .

Lemma 7.15. For positive reals f1, f2, . . . , fn and a positive integer k, we
have

(
n∑
i=1

fi)(
n∑
i=1

f 2k−1
i) ≤ n1−1/k(

n∑
i=1

fki)2 .

Proof. Let M = maxi∈[n] fi, then fi ≤M for any i ∈ [n] and Mk ≤
∑n

i=1 f
k
i .

Hence,

86 CHAPTER 7. ESTIMATING THE MOMENTS OF A STREAM

(
n∑
i=1

fi)(
n∑
i=1

f 2k−1
i) ≤ (

n∑
i=1

fi)(M
k−1

n∑
i=1

fki) Since f 2k−1
i ≤Mk−1fki

≤ (
n∑
i=1

fi)(
n∑
i=1

fki)(k−1)/k(
n∑
i=1

fki) Since Mk ≤
n∑
i=1

fki

= (
n∑
i=1

fi)(
n∑
i=1

fki)(2k−1)/k Merging the last two terms

≤ n1−1/k(
n∑
i=1

fki)1/k(
n∑
i=1

fki)(2k−1)/k Fact: (
n∑
i=1

fi)/n ≤ (
n∑
i=1

fki /n)1/k

= n1−1/k(
n∑
i=1

fki)2 Merging the last two terms .

Remark f1 = n
1
k , f2 = · · · = fn = 1 is a tight example for Lemma 7.15,

up to a constant factor.

Theorem 7.16. In AMS-k, Var(Z) ≤ kn1− 1
k (E[Z])2.

Proof. Let us first analyze E[Z2].

E[Z2] =
m

m
[(1k − 0k)2 + (2k − 1k)2 + · · ·+ (fk1 − (f1 − 1)k)2 (1)

+ (1k − 0k)2 + (2k − 1k)2 + · · ·+ (fk2 − (f2 − 1)k)2

+ . . .

+ (1k − 0k)2 + (2k − 1k)2 + · · ·+ (fkn − (fn − 1)k)2]

≤ m[k1k−1(1k − 0k) + k2k−1(2k − 1k) + · · ·+ kfk−1
1 (fk1 − (f1 − 1)k) (2)

+ k1k−1(1k − 0k) + k2k−1(2k − 1k) + · · ·+ kfk−1
2 (fk2 − (f2 − 1)k)

+ . . .

+ k1k−1(1k − 0k) + k2k−1(2k − 1k) + · · ·+ kfk−1
n (fkn − (fn − 1)k)]

≤ m[kf 2k−1
1 + kf 2k−1

2 + · · ·+ kf 2k−1
n] (3)

= kmF2k−1 (4)

= kF1F2k−1 (5)

(1) Condition on J and expand as in the proof of Theorem 7.14

7.3. ESTIMATING THE KTH MOMENT OF A STREAM 87

(2) For all 0 < b < a,

ak − bk = (a− b)(ak−1 + ak−2b+ · · ·+ abk−2 + bk−1) ≤ (a− b)kak−1,

in particular, ((ak − (a− 1)k)2 ≤ kak−1(ak − (a− 1)k).

(3) Telescope each row, then ignore remaining negative terms

(4) F2k−1 =
∑n

i=1 f
2k−1
i

(5) F1 =
∑n

i=1 fi = m

Then,

Var(Z) = E[Z2]− (E[Z])2 Definition of variance

≤ E[Z2] Ignore negative part

≤ kF1F2k−1 From above

≤ kn1− 1
kF 2

k By Lemma 7.15

= kn1− 1
k (E[Z])2 By Theorem 7.14

Remark Proofs for Lemma 7.15 and Theorem 7.16 were omitted in class.
The above proofs are presented in a style consistent with the rest of the scribe
notes. Interested readers can refer to [AMS96] for details.

Remark One can apply an analysis similar to the case when k = 2, then
use Tricks 1 and 2.

Claim 7.17. For k > 2, a lower bound of Θ̃(n1− 2
k) is known.

Proof. Theorem 3.1 in [BYJKS04] gives the lower bound. See [IW05] for
algorithm that achieves it.

88 CHAPTER 7. ESTIMATING THE MOMENTS OF A STREAM

Chapter 8

Graph sketching

Definition 8.1 (Streaming connected components problem). Consider a
graph of n vertices and a stream S of edge updates {〈et,±〉}t∈N+, where edge
et is either added (+) or removed (-). Assume that S is “well-behaved”,
that is existing edges are not added and an edge is deleted only if it’s already
present in the graph.

At time t, the edge set Et of the graph Gt = (V,Et) is the set of edges
present after accounting for all stream updates up to time t. How much
memory do we need if we want to be able to query the connected components
for Gt for any t ∈ N+?

Let m be the total number of distinct edges in the stream. There are two
ways to represent connected components on a graph:

1. Every vertex stores a label such that vertices in the same connected
component have the same label

2. Explicitly build a tree for each connected component — This yields a
maximal forest

For now, we are interested in building a maximal forest for Gt. This
can be done with memory size of O(m) words1, or — in the special case
of only edge additions — O(n) words2. However, these are unsatisfactory
as m ∈ O(n2) on a complete graph, and we may have edge deletions. We
show how one can maintain a data structure with O(n log4 n) memory, with
a randomized algorithm that succeeds in building the maximal forest with
success probability ≥ 1− 1

n10 .

1Toggle edge additions/deletion per update. Compute connected components on de-
mand.

2Use the Union-Find data structure. See https://en.wikipedia.org/wiki/

Disjoint-set_data_structure

89

https://en.wikipedia.org/wiki/Disjoint-set_data_structure
https://en.wikipedia.org/wiki/Disjoint-set_data_structure

90 CHAPTER 8. GRAPH SKETCHING

Coordinator model For a change in perspective3, consider the following
computation model where each vertex acts independently from each other.
Then, upon request of connected components, each vertex sends some infor-
mation to a centralized coordinator to perform computation and outputs the
maximal forest.

The coordinator model will be helpful in our analysis of the algorithm
later as each vertex will send O(log4 n) amount of data (a local sketch of the
graph) to the coordinator, totalling O(n log4 n) memory as required.

8.1 Warm up: Finding the single cut

Definition 8.2 (The single cut problem). Fix an arbitrary subset A ⊆ V .
Suppose there is exactly 1 cut edge {u, v} between A and V \ A. How do we
output the cut edge {u, v} using O(log n) bits of memory?

Without loss of generality, assume u ∈ A and v ∈ V \A. Note that this is
not a trivial problem at first glance since it already takes O(n) bits for any
vertex to enumerate all its adjacent edges. To solve the problem, we use a bit
trick which exploits the fact that any edge {a, b} ∈ A will be considered twice
by vertices in A. Since one can uniquely identify each vertex with O(log n)
bits, consider the following:

• Identify an edge e = {u, v} by the concatenation of the identifiers of
its endpoints: id(e) = id(u) ◦ id(v) if id(u) < id(v)

• Locally, every vertex u maintains

XORu = ⊕{id(e) : e ∈ S ∧ u is an endpoint of e}

Thus XORu represents the bit-wise XOR of the identifiers of all edges
that are adjacent to u.

• All vertices send the coordinator their value XORu and the coordinator
computes

XORA = ⊕{XORu : u ∈ A}

3In reality, the algorithm simulates all the vertices’ actions so it is not a real multi-party
computation setup.

8.1. WARM UP: FINDING THE SINGLE CUT 91

Example Suppose V = {v1, v2, v3, v4, v5} where id(v1) = 000, id(v2) = 001,
id(v3) = 010, id(v4) = 011, and id(v5) = 100. Then, id({v1, v3}) = id(v1) ◦
id(v3) = 000010, and so on. Suppose

S = {〈{v1, v2},+〉, 〈{v2, v3},+〉, 〈{v1, v3},+〉, 〈{v4, v5},+〉, 〈{v2, v5},+〉, 〈{v1, v2},−〉}

and we query for the cut edge {v2, v5} with A = {v1, v2, v3} at t = |S|. The
figure below shows the graph G6 when t = 6:

v1

v2

v3

v4

v5

A

Vertex v1 sees {〈{v1, v2},+〉, 〈{v1, v3},+〉, and 〈{v1, v2},−〉}. So,

XOR1 ⇒ 000000 Initialize

⇒ 000000⊕ id((v1, v2)) = 000000⊕ 000001 = 000001 Due to 〈{v1, v2},+〉
⇒ 000001⊕ id((v1, v3)) = 000001⊕ 000010 = 000011 Due to 〈{v1, v3},+〉
⇒ 000011⊕ id((v1, v2)) = 000011⊕ 000001 = 000010 Due to 〈{v1, v2},−〉

Repeating the simulation for all vertices,

XOR1 = 000010 = id({v1, v2})⊕ id({v1, v3})⊕ id({v1, v2})
= 000001⊕ 000010⊕ 000001

XOR2 = 000110 = id({v1, v2})⊕ id({v2, v3})⊕ id({v2, v5})⊕ id({v1, v2})
= 000001⊕ 001010⊕ 001100⊕ 000001

XOR3 = 001000 = id({v2, v3})⊕ id({v1, v3})
= 001010⊕ 000010

XOR4 = 011100 = id({v4, v5})
= 011100

XOR5 = 010000 = id({v4, v5})⊕ id({v2, v5})
= 011100⊕ 001100

92 CHAPTER 8. GRAPH SKETCHING

Thus, XORA = XOR1⊕XOR2⊕XOR3 = 000010⊕ 000110⊕ 001000 =
001100 = id({v2, v5}) as expected. Notice that after adding or deleting an
edge e = (u, v), updating XORu and XORv can be done by doing a bit-wise
XOR of each of these values together with id(e). Also, the identifier of every
edge with both endpoints in A contributes two times to XORA.

Claim 8.3. XORA = ⊕{XORu : u ∈ A} is the identifier of the cut edge.

Proof. For any edge e = (a, b) such that a, b ∈ A, id(e) contributes to both
XORa and XORb. So, XORa ⊕ XORb will cancel out the contribution
of id(e) because id(e) ⊕ id(e) = 0. Hence, the only remaining value in
XORA = ⊕{XORu : u ∈ A} will be the identifier of the cut edge since only
one of its endpoints lies in A.

Remark Bit tricks are often used in the random linear network coding
literature (e.g. [HMK+06]).

8.2 Warm up 2: Finding one out of k > 1 cut

edges

Definition 8.4 (The k cut problem). Fix an arbitrary subset A ⊆ V . Sup-
pose there are exactly k cut edges (u, v) between A and V \ A, and we are

given an estimate k̂ such that k̂
2
≤ k ≤ k̂. How do we output a cut edge (u, v)

using O(log n) bits of memory, with high probability?

A straight-forward idea is to independently mark each edge, each with
probability 1/k̂. In expectation, we expect one edge to be marked. Denote
the set of marked cut edges by E ′.

Pr[|E ′| = 1]

= k · Pr[Cut edge {u, v} is marked; others are not]

= k · (1/k̂)(1− (1/k̂))k−1 Edges marked ind. w.p. 1/k̂

≥ (k̂/2)(1/k̂)(1− (1/k̂))k̂ Since
k̂

2
≤ k ≤ k̂

≥ 1

2
· 4−1 Since 1− x ≥ 4−x for x ≤ 1/2

≥ 1

10

8.3. MAXIMAL FOREST WITH O(N LOG4N) MEMORY 93

Remark The above analysis assumes that vertices can locally mark the
edges in a consistent manner (i.e. both endpoints of any edge make the
same decision whether to mark the edge or not). This can be done with a
sufficiently large string of shared randomness. We discuss this in Section 8.3.

From above, we know that Pr[|E ′| = 1] ≥ 1/10. If |E ′| = 1, we can
re-use the idea from Section 8.1. However, if |E ′| 6= 1, then XORA may
correspond erroneously to another edge in the graph. In the above example,
id({v1, v2})⊕ id({v2, v4}) = 000001⊕ 001011 = 001010 = id({v2, v3}).

To fix this, we use random bits as edge IDs instead of simply concate-
nating vertex IDs: Randomly assign (in a consistent manner) to each edge
a random ID of k = 20 log n bits. Since the XOR of random bits is random,
for any edge e, Pr[XORA = id(e) | |E ′| 6= 1] = (1

2
)k = (1

2
)20 logn. Hence,

Pr[XORA = id(e) for some edge e | |E ′| 6= 1]

≤
∑
e∈(V2)

Pr[XORA = id(e) | |E ′| 6= 1] Union bound over all possible edges

=

(
n

2

)
(
1

2
)20 logn There are

(
n

2

)
possible edges

= 2−18 logn Since

(
n

2

)
≤ n2 = 22 logn

=
1

n18
Rewriting

Now, we can correctly distinguish |E ′| = 1 from |E ′| 6= 1 and Pr[|E ′| =
1] ≥ 1

10
. For any given ε > 0, there exists a constant C(ε) such that if we

repeat t = C(ε) log n times, the probability that all t tries fail to extract a
single cut is (1− 1

10
)t ≤ 1

n1+ε .

8.3 Maximal forest with O(n log4 n) memory

Recall that Bor̊uvka’s algorithm4 builds a minimum spanning tree by itera-
tively finding the cheapest edge leaving connected components and adding
them into the MST. The number of connected components decreases by at
least half per iteration, so it converges in O(log n) iterations.

For any arbitrary cut, the number of edge cuts is k ∈ [0, n]. Guessing

through k̂ = 20, 21, . . . , 2dlogne, one can use Section 8.2 to find a cut edge:

• If k̂ � k, the marking probability will select nothing (in expectation).

4See https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

94 CHAPTER 8. GRAPH SKETCHING

• If k̂ � k, more than one edge will get marked, which we will then
detect (and ignore) since XORA will likely not be a valid edge ID.

Algorithm 25 ComputeSketches(S = {〈e,±〉, . . . }, ε,R)

for i = 1, . . . , n do
XORi ← 0(20 logn)∗log3 n . Initialize log3 n copies

end for
for Edge update {〈e = (u, v),±〉} ∈ S do . Streaming edge updates

for b = log n times do . Simulate Bor̊uvka
for i ∈ {1, 2, . . . , log n} do . log n guesses of k

for t = C(ε) log n times do . Amplify success probability
Rb,i,t ← Randomness for this specific instance based on R
if Edge e is marked w.p. 1/k̂ = 2−i, according to Rb,i,t then

Compute id(e) using R
XORu[b, i, t]← XORu[b, i, t]⊕ id(e)
XORv[b, i, t]← XORv[b, i, t]⊕ id(e)

end if
end for

end for
end for

end for
return XOR1, . . . , XORn

Using a source of randomness R, every vertex in ComputeSketches
maintains O(log3 n) copies of edge XORs using random (but consistent) edge
IDs and marking probabilities:

• dlog ne times for Bor̊uvka simulation later

• dlog ne times for guesses of cut size k

• C(ε) · log n times to amplify success probability of Section 8.2

Then, StreamingMaximalForest simulates Bor̊uvka using the output of
ComputeSketches:

• Find an out-going edge from each connected component via Section 8.2

• Join connected components by adding edges to graph

Since each edge ID uses O(log n) memory and O(log3 n) copies were main-
tained per vertex, a total of O(n log4 n) memory suffices. At each step, we

8.3. MAXIMAL FOREST WITH O(N LOG4N) MEMORY 95

Algorithm 26 StreamingMaximalForest(S = {〈e,±〉, . . . }, ε)
R ← Generate O(log2 n) bits of shared randomness
XOR1, . . . , XORn ← ComputeSketches(S, ε,R)
F ← (VF = V,EF = ∅) . Initialize empty forest
for b = log n times do . Simulate Bor̊uvka

C ← ∅ . Initialize candidate edges
for Every connected component A in F do

for i ∈ {1, 2, . . . , dlog ne} do . Guess A has [2i−1, 2i] cut edges
for t = C(ε) log n times do . Amplify success probability

Rb,i,t ← Randomness for this specific instance
XORA ← ⊕{XORu[b, i, t] : u ∈ A}
if XORA = id(e) for some edge e = (u, v) then

C ← C ∪ {(u, v)} . Add cut edge (u, v) to candidates
Go to next connected component in F

end if
end for

end for
end for
EF ← EF ∪ C, removing cycles in O(1) if necessary . Add candidates

end for
return F

96 CHAPTER 8. GRAPH SKETCHING

fail to find one cut edge leaving a connected component with probability
≤ (1 − 1

10
)t, which can be be made to be in O(1

n10). Applying union bound
over all O(log3 n) computations of XORA, we see that

Pr[Any XORA corresponds wrongly some edge ID] ≤ O(
log3 n

n18
) ⊆ O(

1

n10
)

So, StreamingMaximalForest succeeds with high probability.

Remark One can drop the memory constraint per vertex from O(log4 n)
to O(log3 n) by using a constant t instead of t ∈ O(log n) such that the
success probability is a constant larger than 1/2. Then, simulate Bor̊uvka
for d2 log ne steps. See [AGM12] (Note that they use a slightly different
sketch).

Theorem 8.5. Any randomized distributed sketching protocol for computing
spanning forest with success probability ε > 0 must have expected average
sketch size Ω(log3n), for any constant ε > 0.

Proof. See [NY18].

Claim 8.6. Polynomial number of bits provide sufficient independence for
the procedure described above.

Remark One can generate polynomial number of bits of randomness with
O(log2 n) bits. Interested readers can check out small-bias sample spaces5.
The construction is out of the scope of the course, but this implies that the
shared randomness R can be obtained within our memory constraints.

5See https://en.wikipedia.org/wiki/Small-bias_sample_space

https://en.wikipedia.org/wiki/Small-bias_sample_space

Part III

Graph sparsification

97

Chapter 9

Preserving distances

Given a simple, unweighted, undirected graph G with n vertices and m edges,
can we sparsify G by ignoring some edges such that certain desirable prop-
erties still hold? We will consider simple, unweighted and undirected graphs
G. For any pair of vertices u, v ∈ G, denote the shortest path between them
by Pu,v. Then, the distance between u and v in graph G, denoted by dG(u, v),
is simply the length of shortest path Pu,v between them.

Definition 9.1 ((α, β)-spanners). Consider a graph G = (V,E) with |V | = n
vertices and |E| = m edges. For given α ≥ 1 and β ≥ 0, an (α, β)-spanner
is a subgraph G′ = (V,E ′) of G, where E ′ ⊆ E, such that

dG(u, v) ≤ dG′(u, v) ≤ α · dG(u, v) + β

Remark The first inequality is because G′ has less edges than G. The
second inequality upper bounds how much the distances “blow up” in the
sparser graph G′.

For an (α, β)-spanner, α is called the multiplicative stretch of the spanner
and β is called the additive stretch of the spanner. One would then like to
construct spanners with small |E ′| and stretch factors. An (α, 0)-spanner is
called a α-multiplicative spanner, and a (1, β)-spanner is called a β-additive
spanner. We shall first look at α-multiplicative spanners, then β-additive
spanners in a systematic fashion:

1. State the result (the number of edges and the stretch factor)

2. Give the construction

3. Bound the total number of edges |E ′|

4. Prove that the stretch factor holds

99

100 CHAPTER 9. PRESERVING DISTANCES

Remark One way to prove the existence of an (α, β)-spanner is to use the
probabilistic method : Instead of giving an explicit construction, one designs
a random process and argues that the probability that the spanner existing
is strictly larger than 0. However, this may be somewhat unsatisfying as such
proofs do not usually yield a usable construction. On the other hand, the
randomized constructions shown later are explicit and will yield a spanner
with high probability1.

9.1 α-multiplicative spanners

Let us first state a fact regarding the girth of a graph G. The girth of a
graph G, denoted g(G), is defined as the length of the shortest cycle in G.
Suppose g(G) > 2k, then for any vertex v, the subgraph formed by the k-hop
neighbourhood of v is a tree with distinct vertices. This is because the k-hop
neighbourhood of v cannot have a cycle since g(G) > 2k.

v k

Theorem 9.2. [ADD+93] For a fixed k ≥ 1, every graph G on n vertices
has a (2k − 1)-multiplicative spanner with O(n1+1/k) edges.

Proof.
Construction

1. Initialize E ′ = ∅

2. For e = {u, v} ∈ E (in arbitrary order):
If dG′(u, v) ≥ 2k currently, add {u, v} into E ′.
Otherwise, ignore it.

1This is shown by invoking concentration bounds such as Chernoff.

9.1. α-MULTIPLICATIVE SPANNERS 101

Number of edges We claim that |E ′| ∈ O(n1+1/k). Suppose, for a con-
tradiction, that |E ′| > 2n1+1/k. Let G′′ = (V ′′, E ′′) be a graph obtained by
iteratively removing vertices with degree ≤ n1/k from G′. By construction,
|E ′′| > n1+1/k since at most n·n1/k edges are removed. Observe the following:

• g(G′′) ≥ g(G′) ≥ 2k+1, since girth does not decrease with fewer edges.

• Every vertex in G′′ has degree ≥ n1/k + 1, by construction.

• Pick an arbitrary vertex v ∈ V ′′ and look at its k-hop neighbourhood.

n ≥ |V ′′| By construction

≥ |{v}|+
k∑
i=1

|{u ∈ V ′′ : dG′′(u, v) = i}| Look only at k-hop neighbourhood from v

≥ 1 +
k∑
i=1

(n1/k + 1)(n1/k)i−1 Vertices distinct and have deg ≥ n1/k + 1

= 1 + (n1/k + 1)
(n1/k)k − 1

n1/k − 1
Sum of geometric series

> 1 + (n− 1) Since (n1/k + 1) > (n1/k − 1)

= n

This is a contradiction since we showed n > n. Hence, |E ′| ≤ 2n1+1/k ∈ O(n1+1/k).

Stretch factor For e = {u, v} ∈ E, dG′(u, v) ≤ (2k − 1) · dG(u, v) since we
only leave e out of E ′ if the distance is at most the stretch factor at the point
of considering e. For any u, v ∈ V , let Pu,v be the shortest path between u
and v in G. Say, Pu,v = (u,w1, . . . , wk, v). Then,

dG′(u, v) ≤ dG′(u,w1) + · · ·+ dG′(wk, v) Simulating Pu,v in G′

≤ (2k − 1) · dG(u,w1) + · · ·+ (2k − 1) · dG(wk, v) Apply edge stretch to each edge

= (2k − 1) · (dG(u,w1) + · · ·+ dG(wk, v)) Rearrange

= (2k − 1) · dG(u, v) Definition of Pu,v

102 CHAPTER 9. PRESERVING DISTANCES

Let us consider the family of graphs G on n vertices with girth> 2k. It can
be shown by contradiction that a graphG with n vertices with girth> 2k can-
not have a proper (2k−1)-spanner2: Assume G′ is a proper (2k−1)-spanner
with edge {u, v} removed. Since G′ is a (2k− 1)-spanner, dG′(u, v) ≤ 2k− 1.
Adding {u, v} to G′ will form a cycle of length at most 2k, contradicting the
assumption that G has girth > 2k.

Let g(n, k) be the maximum possible number of edges in a graph from G.
By the above argument, a graph on n vertices with g(n, k) edges cannot have
a proper (2k−1)-spanner. Note that the greedy construction of Theorem 9.2
will always produce a (2k− 1)-spanner with ≤ g(n, k) edges. The size of the
spanner is asymptotically tight if Conjecture 9.3 holds.

Conjecture 9.3. [Erd64] For a fixed k ≥ 1, there exists a family of graphs
on n vertices with girth at least 2k + 1 and Ω(n1+1/k) edges.

Remark 1 By considering edges in increasing weight order, the greedy
construction is also optimal for weighted graphs [FS16].

Remark 2 The girth conjecture is confirmed for k ∈ {1, 2, 3, 5} [Wen91,
Woo06].

9.2 β-additive spanners

In this section, we will use a random process to select a subset of vertices by
independently selecting vertices to join the subset. The following claim will
be useful for analysis:

Claim 9.4. If one picks vertices independently with probability p to be in
S ⊆ V , where |V | = n, then

1. E[|S|] = np

2. For any vertex v with degree d(v) and neighbourhood
N(v) = {u ∈ V : (u, v) ∈ E},

• E[|N(v) ∩ S|] = d(v) · p
• Pr[|N(v) ∩ S| = 0] ≤ e−d(v)·p

Proof. ∀v ∈ V , let Xv be the indicator whether v ∈ S. By construction,
E[Xv] = Pr[Xv = 1] = p.

2A proper subgraph in this case refers to removing at least one edge.

9.2. β-ADDITIVE SPANNERS 103

1.

E[|S|] = E[
∑
v∈V

Xv] By construction of S

=
∑
v∈V

E[Xv] Linearity of expectation

=
∑
v∈V

p Since E[Xv] = Pr[Xv = 1] = p

= np Since |V | = n

2.

E[|N(v) ∩ S|] = E[
∑

v∈N(v)

Xv] By definition of N(v) ∩ S

=
∑

v∈N(v)

E[Xv] Linearity of expectation

=
∑

v∈N(v)

p Since E[Xv] = Pr[Xv = 1] = p

= d(v) · p Since |N(v)| = d(v)

Probability that none of the neighbours of v is in S is

Pr[|N(v) ∩ S| = 0] = (1− p)d(v) ≤
(
e−p
)d(v) ≤ e−p·d(v),

since 1− x ≤ e−x for any x.

Remark Õ hides logarithmic factors. For example, O(n log1000 n) ⊆ Õ(n).

Theorem 9.5. [ACIM99] Every graph G on n vertices has a 2-additive span-

ner with Õ(n3/2) edges.

Proof.
Construction Partition vertex set V into light vertices L and heavy vertices
H, where

L = {v ∈ V : deg(v) ≤ n1/2} and H = {v ∈ V : deg(v) > n1/2}

1. Let E ′1 be the set of all edges incident to some vertex in L.

2. Initialize E ′2 = ∅.

104 CHAPTER 9. PRESERVING DISTANCES

• Choose S ⊆ V by independently putting each vertex into S with
probability 10n−1/2 log n.

• For each s ∈ S, add a Breadth-First-Search (BFS) tree rooted at
s to E ′2.

Select edges in spanner to be E ′ = E ′1 ∪ E ′2.
Number of edges We can bound the expected number of edges in the
spanner. There are at most n light vertices, so

|E ′1| ≤ n · n1/2 = n3/2.

By Claim 9.4 for p = 10n−1/2 log n, the expected size of S is

E[|S|] = n · 10n−1/2 log n = 10n1/2 log n.

The number of edges in each BFS tree is at most n− 1, so

E[|E ′2|] ≤ nE[|S|].

Therefore,

E[|E ′|] = E[|E ′1 ∪ E ′2|] ≤ E[|E ′1|+ |E ′2|]
= |E ′1|+ E[|E ′2|]
≤ n3/2 + n · 10n1/2 log n ∈ Õ

(
n3/2

)
.

Stretch factor Consider two arbitrary vertices u and v with the shortest
path Pu,v in G. Let h be the number of heavy vertices in Pu,v. We split the
analysis into two cases: (i) h ≤ 1; (ii) h ≥ 2. Recall that a heavy vertex has
degree at least n1/2.

Case (i) All edges in Pu,v are adjacent to a light vertex and are thus in E ′1.
Hence, dG′(u, v) = dG(u, v), with additive stretch 0.

Case (ii)

Claim 9.6. Suppose there exists a vertex w ∈ Pu,v such that (w, s) ∈ E
for some s ∈ S, then dG′(u, v) ≤ dG(u, v) + 2.

u w v

s ∈ S

.

.

9.2. β-ADDITIVE SPANNERS 105

Proof.

dG′(u, v) ≤ dG′(u, s) + dG′(s, v) (1)

= dG(u, s) + dG(s, v) (2)

≤ dG(u,w) + dG(w, s) + dG(s, w) + dG(w, v) (3)

≤ dG(u,w) + 1 + 1 + dG(w, v) (4)

≤ dG(u, v) + 2 (5)

(1) By triangle inequality

(2) Since we add the BFS tree rooted at s

(3) By triangle inequality

(4) Since {s, w} ∈ E, dG(w, s) = dG(s, w) = 1

(5) Since w lies on Pu,v

Let w be a heavy vertex in Pu,v with degree d(w) > n1/2. By Claim 9.4
with p = 10n−1/2 log n, Pr[|N(w) ∩ S| = 0] ≤ e−10 logn = n−10. Taking
union bound over all possible pairs of vertices u and v,

Pr [∃u, v ∈ V, Pu,v has h ≥ 2 and no neighbour in S] ≤
(
n

2

)
n−10 ≤ n−8

Then, Claim 9.6 tells us that the additive stretch factor is at most 2
with probability ≥ 1− 1

n8 .

Therefore, with high probability (≥ 1 − 1
n8), the construction yields a 2-

additive spanner.

Remark A way to remove log factors from Theorem 9.5 is to sample only
n1/2 nodes into S, and then add all edges incident to nodes that don’t have an
adjacent node in S. The same argument then shows that this costs O(n3/2)
edges in expectation.

Theorem 9.7. [Che13] Every graph G on n vertices has a 4-additive spanner

with Õ(n7/5) edges.

Proof.
Construction Partition vertex set V into light vertices L and heavy vertices
H, where

L = {v ∈ V : deg(v) ≤ n2/5} and H = {v ∈ V : deg(v) > n2/5}

106 CHAPTER 9. PRESERVING DISTANCES

1. Let E ′1 be the set of all edges incident to some vertex in L.

2. Initialize E ′2 = ∅.

• Choose S ⊆ V by independently putting each vertex into S with
probability 30n−3/5 log n.

• For each s ∈ S, add a Breadth-First-Search (BFS) tree rooted at
s to E ′2

3. Initialize E ′3 = ∅.

• Choose S ′ ⊆ V by independently putting each vertex into S ′ with
probability 10n−2/5 log n.

• For each heavy vertex w ∈ H, if there exists an edge (w, s′) for
some s′ ∈ S ′, add one such edge to E ′3.

• ∀s, s′ ∈ S ′, add the shortest path among all paths from s and s′

with ≤ n1/5 internal heavy vertices.
Note: If all paths between s and s′ contain > n1/5 heavy vertices,
do not add any edge to E ′3.

Select edges in the spanner to be E ′ = E ′1 ∪ E ′2 ∪ E ′3.

Number of edges

• Since there are at most n light vertices, |E ′1| ≤ n · n2/5 = n7/5.

• By Claim 9.4 with p = 30n−3/5 log n, E[|S|] = n · 30n−3/5 log n =
30n2/5 log n. Then, since every BFS tree has n − 1 edges3, E[|E ′2|] ≤
n · |S| = 30n7/5 log n ∈ Õ(n7/5).

• Since there are ≤ n heavy vertices, ≤ n edges of the form (v, s′) for
v ∈ H, s′ ∈ S ′ will be added to E ′3. Then, for shortest s − s′ paths
with ≤ n1/5 heavy internal vertices, only edges adjacent to the heavy
vertices need to be counted because those adjacent to light vertices
are already accounted for in E ′1. By Claim 9.4 with p = 10n−2/5 log n,
E[|S ′|] = n · 10n−2/5 log n = 10n3/5 log n. As |S ′| is highly concentrated

around its expectation, we have E[|S ′|2] ∈ Õ(n6/5). So, E ′3 contributes

≤ n+
(|S′|

2

)
· n1/5 ∈ Õ(n7/5) edges to the count of |E ′|.

3Though we may have repeated edges

9.2. β-ADDITIVE SPANNERS 107

Stretch factor Consider two arbitrary vertices u and v with the shortest
path Pu,v in G. Let h be the number of heavy vertices in Pu,v. We split the
analysis into three cases: (i) h ≤ 1; (ii) 2 ≤ h ≤ n1/5; (iii) h > n1/5. Recall
that a heavy vertex has degree at least n2/5.

Case (i) All edges in Pu,v are adjacent to a light vertex and are thus in E ′1.
Hence, dG′(u, v) = dG(u, v), with additive stretch 0.

Case (ii) Denote the first and last heavy vertices in Pu,v as w and w′ re-
spectively. Recall that in Case (ii), including w and w′, there are
at most n1/5 heavy vertices between w and w′. By Claim 9.4, with
p = 10n−2/5 log n,

Pr[|N(w) ∩ S ′| = 0], Pr[|N(w′) ∩ S ′| = 0] ≤ e−n
2/5·10n−2/5 logn = n−10

Let s, s′ ∈ S ′ be vertices adjacent in G′ to w and w′ respectively.
Observe that s− w − w′ − s′ is a path between s and s′ with at most
n1/5 internal heavy vertices. Let P ∗s,s′ be the shortest path of length l∗

from s to s′ with at most n1/5 internal heavy vertices. By construction,
we have added P ∗s,s′ to E ′3. Observe:

• By definition of P ∗s,s′ , we have l∗ ≤ dG(s, w)+dG(w,w′)+dG(w′, s′) =
dG(w,w′) + 2.

• Since there are no internal heavy vertices between u − w and
w′−v, Case (i) tells us that dG′(u,w) = dG(u,w) and dG′(w

′, v) =
dG(w′, v).

Thus,

dG′(u, v)

≤ dG′(u,w) + dG′(w,w
′) + dG′(w

′, v) (1)

≤ dG′(u,w) + dG′(w, s) + dG′(s, s
′) + dG′(s

′, w′) + dG′(w
′, v) (2)

≤ dG′(u,w) + dG′(w, s) + l∗ + dG′(s
′, w′) + dG′(w

′, v) (3)

≤ dG′(u,w) + dG′(w, s) + dG(w,w′) + 2 + dG′(s
′, w′) + dG′(w

′, v) (4)

= dG′(u,w) + 1 + dG(w,w′) + 2 + 1 + dG′(w
′, v) (5)

= dG(u,w) + 1 + dG(w,w′) + 2 + 1 + dG(w′, v) (6)

≤ dG(u, v) + 4 (7)

(1) Decomposing Pu,v in G′

108 CHAPTER 9. PRESERVING DISTANCES

(2) Triangle inequality

(3) P ∗s,s′ is added to E ′3

(4) Since l∗ ≤ dG(w,w′) + 2

(5) Since (w, s) ∈ E ′, (s′, w′) ∈ E ′ and dG′(w, s) = dG′(s
′, w′) = 1

(6) Since dG′(u,w) = dG(u,w) and dG′(w
′, v) = dG(w′, v)

(7) By definition of Pu,v

u w
First heavy vertex

w′
Last heavy vertex

v

s ∈ S ′ s′ ∈ S ′

.

. . .
P ∗s,s′ of length l∗

Case (iii)

Claim 9.8. There cannot be a vertex y that is a common neighbour to
more than 3 heavy vertices in Pu,v.

Proof. Suppose, for a contradiction, that y is adjacent to w1, w2, w3, w4 ∈
Pu,v as shown in the picture. Then u − w1 − y − w4 − v is a shorter
u − v path than Pu,v, contradicting the fact that Pu,v is the shortest
u− v path.

u w1 w2 w3 w4 v

y

.

Note that if y is on Pu,v it can have at most two neighbours on Pu,v.

Claim 9.8 tells us that |
⋃
w∈H∩Pu,v N(w)| ≥

∑
w∈H∩Pu,v |N(w)| · 1

3
. Let

Nu,v = {x ∈ V : (x,w) ∈ E for some w ∈ Pu,v.}

Applying Claim 9.4 with p = 30 · n−3/5 · log n and Claim 9.8, we get

Pr[|Nu,v ∩ S| = 0] ≤ e−p·|Nu,v | ≤ e−p·
1
3
·|H∩Pu,v |·n2/5

= e−10 logn = n−10.

9.2. β-ADDITIVE SPANNERS 109

Taking union bound over all possible pairs of vertices u and v,

Pr[∃u, v ∈ V, Pu,v has h > n1/5 and no neighbour in S] ≤
(
n

2

)
n−10 ≤ n−8.

Then, Claim 9.6 tells us that the additive stretch factor is at most 4
with probability ≥ 1− 1

n8 .

Therefore, with high probability (≥ 1 − 1
n8), the construction yields a 4-

additive spanner.

Remark Suppose the shortest u − v path Pu,v contains a vertex from S,
say s. Then, Pu,v is contained in E ′ since we include the BFS tree rooted at
s because it is the shortest u− s path and shortest s− v path by definition.
In other words, the triangle inequality between u, s, v becomes tight.

Concluding remarks

Additive β Number of edges Remarks

[ACIM99] 2 Õ(n3/2) Almost 4tight [Woo06]

[Che13] 4 Õ(n7/5) Open: Is Õ(n4/3) possible?

[BKMP05] ≥ 6 Õ(n4/3) Tight [AB17]

Remark 1 A k-additive spanner is also a (k + 1)-additive spanner.

Remark 2 The additive stretch factors appear in even numbers because
current constructions “leave” the shortest path, then “re-enter” it later, in-
troducing an even number of extra edges. Regardless, it is a folklore theorem
that it suffices to only consider additive spanners with even error. Specif-
ically, any construction of an additive (2k + 1)-spanner on ≤ E(n) edges
implies a construction of an additive 2k-spanner on O(E(n)) edges. Proof
sketch: Copy the input graph G and put edges between the two copies to
yield a bipartite graph H; Run the spanner construction on H; “Collapse”
the parts back into one. The distance error must be even over a bipartite
graph, and so the additive (2k + 1)-spanner construction must actually give
an additive 2k-spanner by showing that the error bound is preserved over
the “collapse”.

4O(n4/3/2
√

(logn)) is still conceivable — i.e. The gap is bigger than polylog, but still
subpolynomial.

110 CHAPTER 9. PRESERVING DISTANCES

Chapter 10

Preserving cuts

In the previous chapter, we looked at preserving distances via spanners. In
this chapter, we look at preserving cut sizes.

Definition 10.1 (Cut and minimum cut). Consider a graph G = (V,E).

• For S ⊆ V, S 6= ∅, S 6= V , a non-trivial cut in G is defined as the edges
CG(S, V \ S) = {(u, v) : u ∈ S, v ∈ V \ S}

• The cut size is defined as EG(S, V \ S) =
∑

e∈CG(S,V \S) w(e).

If the graph G is unweighted, we have w(e) = 1 for all e ∈ E, so
EG(S, V \ S) = |CG(S, V \ S)|

• The minimum cut size of the graph G is the minimum over all non-
trivial cuts, and it is denoted by µ(G) = minS⊆V,S 6=∅,S 6=V EG(S, V \ S)

• A cut CG(S, V \ S) is said to be minimum if EG(S, V \ S) = µ(G)

Given an undirected graph G = (V,E), our goal in this chapter is to
construct a weighted graph H = (V,E ′) with E ′ ⊆ E and weight function
w : E ′ → R+ such that

(1− ε) · EG(S, V \ S) ≤ EH(S, V \ S) ≤ (1 + ε) · EG(S, V \ S)

for every S ⊆ V, S 6= ∅, S 6= V . Recall Karger’s random contraction algo-
rithm [Kar93]1:

1Also, see https://en.wikipedia.org/wiki/Karger%27s_algorithm

111

https://en.wikipedia.org/wiki/Karger%27s_algorithm

112 CHAPTER 10. PRESERVING CUTS

Algorithm 27 RandomContraction(G = (V,E))

while |V | > 2 do
e← Pick an edge uniformly at random from E
G← G/e . Contract edge e

end while
return The remaining cut . This may be a multi-graph

Theorem 10.2. For a fixed minimum cut S∗ in the graph, RandomCon-
traction returns it with probability ≥ 1/

(
n
2

)
.

Proof. Fix a minimum cut S∗ in the graph and suppose |S∗| = k. In order
for RandomContraction to successfully return S∗, none of the edges in
S∗ must be selected in the whole contraction process.

Consider the i-th step in the cycle of RandomContraction. By con-
struction, there will be n − i vertices in the graph at this point. Since
µ(G) = k, each vertex has degree ≥ k (otherwise that vertex itself gives a
cut with size smaller than k), so there are ≥ (n− i)k/2 edges in the graph.
Thus,

Pr[Success] ≥
(

1− k

nk/2

)
·
(

1− k

(n− 1)k/2

)
· · ·
(

1− k

3k/2

)
=

(
1− 2

n

)
·
(

1− 2

n− 1

)
· · ·
(

1− 2

3

)
=

(
n− 2

n

)
·
(
n− 3

n− 1

)
· · ·
(

1

3

)
=

2

n(n− 1)

=
1(
n
2

)
Corollary 10.3. There are ≤

(
n
2

)
minimum cuts in a graph.

Proof. Since RandomContraction successfully produces any given min-
imum cut with probability at least 1/

(
n
2

)
by Theorem 10.2, there can be at

most
(
n
2

)
many minimum cuts.

Remark There exist (multi-)graphs with
(
n
2

)
minimum cuts: consider a

cycle where there are µ(G)
2

edges between every pair of adjacent vertices (the
bound is tight when µ(G) is even).

10.1. WARM UP: G = KN 113

. . .

µ(G)

In general, we can generalize the bound on the number of cuts that are
of size at most α · µ(G) for α ≥ 1.

Theorem 10.4. In an undirected graph, the number of α-minimum cuts is
less than n2α.

Proof. See Lemma 2.2 and Appendix A (in particular, Corollary A.7) of a
version2 of [Kar99].

10.1 Warm up: G = Kn

Consider the following procedure to construct H:

1. Let p = Ω(logn
ε2n

)

2. Independently put each edge e ∈ E into E ′ with probability p

3. Define w(e) = 1
p

for each edge e ∈ E ′

One can check3 that this suffices for G = Kn.

10.2 Uniform edge sampling

Given a graph G with minimum cut size µ(G) = k, consider the following
procedure to construct H:

1. Set p = c logn
ε2k

for some constant c

2. Independently put each edge e ∈ E into E ′ with probability p

3. Define w(e) = 1
p

for each edge e ∈ E ′

2Version available at: http://people.csail.mit.edu/karger/Papers/

skeleton-journal.ps
3Fix a cut, analyze, then take union bound.

http://people.csail.mit.edu/karger/Papers/skeleton-journal.ps
http://people.csail.mit.edu/karger/Papers/skeleton-journal.ps

114 CHAPTER 10. PRESERVING CUTS

Theorem 10.5. With high probability, for every S ⊆ V, S 6= ∅, S 6= V ,

(1− ε) · EG(S, V \ S) ≤ EH(S, V \ S) ≤ (1 + ε) · EG(S, V \ S)

Proof. Fix an arbitrary cut CG(S, V \S). Suppose EG(S, V \S) = k′ = α · k
for some α ≥ 1.

S V \ S

k′

Let Xe be the indicator for the edge e ∈ CG(S, V \ S) being inserted
into E ′. By construction, E[Xi] = Pr[Xi = 1] = p. Then, by linearity of
expectation, E[|CH(S, V \ S)|] =

∑
e∈CG(S,V \S) E[Xi] = k′p. As we put 1/p

weight on each edge in E ′, E[EH(S, V \ S)] = k′. Using Chernoff bound, for
sufficiently large c, we get:

Pr[Cut CG(S, V \ S) is badly estimated in H]

= Pr[|EH(S, V \ S)− E[EH(S, V \ S)]| > ε · k′] Definition of bad estimation

≤ 2e−
ε2k′p

3 Chernoff bound

= 2e−
ε2αkp

3 Since k′ = αk

≤ n−10α For sufficiently large c

Using Theorem 10.4 and union bound over all possible cuts in G,

Pr[Any cut is badly estimated in H]

≤
∫ ∞

1

n2α · 1

n−10α
dα From Theorem 10.4 and above

≤ n−5 Loose upper bound

Therefore, all cuts in G are well estimated in H with high probability.

Theorem 10.6. [Kar99] Given a graph G, consider sampling every edge
e ∈ E into E ′ with independent random weights in the interval [0, 1]. Let
H = (V,E ′) be the sampled graph and suppose that the expected weight of
every cut in H is ≥ c logn

ε2
, for some constant c. Then, with high probability

every cut in H has weighted size within (1± ε) of its expectation.

Theorem 10.6 can be proved by using a variant of the earlier proof. In-
terested readers can see Theorem 2.1 of [Kar99].

10.3. NON-UNIFORM EDGE SAMPLING 115

10.3 Non-uniform edge sampling

Unfortunately, uniform sampling does not work well on graphs with small
minimum cut. Consider the following example of a graph composed of two
cliques of size n with only one edge connecting them:

Kn Kn

Running the uniform edge sampling will not sparsify the above dumbbell
graph as µ(G) = 1 leads to large sampling probability p.

Before we describe a non-uniform edge sampling process [BK96], we first
introduce the definition of k-strong components.

Definition 10.7 (k-connected). A graph is k-connected if the value of each
cut of G is at least k.

Definition 10.8 (k-strong component). A k-strong component is a maximal
k-connected vertex-induced subgraph.

Definition 10.9 (edge strength). Given an edge e, its strength (or strong
connectivity) ke is the maximum k such that e is in a k-strong component.
We say an edge is k-strong if ke ≥ k.

Remark The (standard) connectivity of an edge e = (u, v) is the minimum
cut size over all cuts that separate its endpoints u and v. In particular, an
edge’s strong connectivity is no more than the edge’s (standard) connectivity
since a cut size of k between u and v implies there is no (k + 1)-connected
component containing both u and v.

Lemma 10.10. The following holds for k-strong components:

1. ke is uniquely defined for every edge e

2. For any k, the k-strong components are disjoint.

3. For any 2 values k1, k2 (k1 < k2), k2-strong components are a refine-
ment of k1-strong components

4.
∑

e∈E
1
ke
≤ n− 1

Intuition: If there are a lot of edges, then many of them have high
strength.

116 CHAPTER 10. PRESERVING CUTS

Proof.

G

k1-strong components

k2-strong components

1. By definition of maximum

2. Suppose, for a contradiction, there are two different intersecting k-
strong components. Since their union is also k-strong, this contradicts
the fact that they were maximal.

3. For k1 < k2, a k2-strong component is also k1-strong, so it is a subset
of some k1-strong component.

4. Consider a minimum cut CG(S, V \ S). Since ke ≥ µ(G) for all edges
e ∈ CG(S, V \S), these edges contribute ≤ µ(G)· 1

ke
≤ µ(G)· 1

µ(G)
= 1 to

the summation. Remove these edges from G and repeat the argument
on the remaining connected components (excluding isolated vertices).
Since each cut removal contributes at most 1 to the summation and
the process stops when we reach n components, then

∑
e∈E

1
ke
≤ n− 1.

For a graph G with minimum cut size µ(G) = k, consider the following
procedure to construct H:

1. Set q = c logn
ε2

for some constant c

2. Independently put each edge e ∈ E into E ′ with probability pe = q
ke

3. Define w(e) = 1
pe

= ke
q

for each edge e ∈ E ′

Lemma 10.11. E[|E ′|] ≤ O(n logn
ε2

)

10.3. NON-UNIFORM EDGE SAMPLING 117

Proof. Let Xe be the indicator random variable whether edge e ∈ E was
selected into E ′. By construction, E[Xe] = Pr[Xe = 1] = pe. Then,

E[|E ′|] = E[
∑
e∈E

Xe] By definition

=
∑
e∈E

E[Xe] Linearity of expectation

=
∑
e∈E

pe Since E[Xe] = Pr[Xe = 1] = pe

=
∑
e∈E

q

ke
Since pe =

q

ke

≤ q(n− 1) Since
∑
e∈E

1

ke
≤ n− 1

∈ O
(
n log n

ε2

)
Since q =

c log n

ε2
for some constant c

Remark One can apply Chernoff bounds to argue that |E ′| is highly con-
centrated around its expectation.

Theorem 10.12. With high probability, for every S ⊆ V, S 6= ∅, S 6= V ,

(1− ε) · EG(S, V \ S) ≤ EH(S, V \ S) ≤ (1 + ε) · EG(S, V \ S)

Proof. Let k1 < k2 < · · · < ks be all possible strength values in the graph.
Consider G′ as a weighted graph with edge weights ke

q
for each edge e ∈ E,

and a family of unweighted graphs F1, . . . , Fs, where Fi = (V,Ei) is the graph
with edges Ei = {e ∈ E : ke ≥ ki} belonging to the ki-strong components of
G. Observe that:

• s ≤ |E| since each edge has only 1 strength value

• By construction of Fi’s, if an edge e has strength ki in Fi, ke = ki in G

• F1 = G

• For each i ≤ s− 1, Fi+1 is a subgraph of Fi

• By defining k0 = 0, one can write G′ =
∑s

i=1
ki−ki−1

q
Fi. This is because

an edge with strength ki will appear in Fi, Fi−1, . . . , F1 and the terms
will telescope to yield a weight of ki

q
.

118 CHAPTER 10. PRESERVING CUTS

The sampling process in G′ directly translates to a sampling process in
each graph in {Fi}i∈[s] — when we add an edge e into E ′, we also add it to
the edge sets of Fke , . . . , Fs.

First, consider the sampling on the graph F1 = G. We know that each
edge e ∈ E is sampled with probability pe = q/ke, where ke ≥ k1 by construc-
tion of F1. In this graph, consider any non-trivial cut CF1(S, V \ S) and let
e be any edge of this cut. We can observe that ke ≤ EF1(S, V \S), otherwise
contradicting its strength ke. Then, by using the indicator random variables
Xe whether the edge e ∈ E1 has been sampled, the expected size of this cut
in F1 after the sampling is

E[EF1(S, V \ S)] = E

 ∑
e∈CF1 (S,V \S)

Xe


=

∑
e∈CF1 (S,V \S)

E[Xe] Linearity of expectation

=
∑

e∈CF1 (S,V \S)

q

ke
Since E[Xe] = Pr[Xe = 1] =

q

ke

≥
∑

e∈CF1 (S,V \S)

q

EF1(S, V \ S)
Since ke ≤ EF1(S, V \ S)

=
c log n

ε2
Since q =

c log n

ε2

Since this holds for any cut in F1, we can apply Theorem 10.6 to conclude
that, with high probability, all cuts in F1 have size within (1 ± ε) of their
expectation. Note that the same holds after scaling the edge weights in
k1−k0
q
F1 = k1

q
· F1.

In a similar way, consider any other subgraph Fi ⊆ G as previously
defined. Since an Fi contains the edges from the ki-strong components of
G, any edge e ∈ Ei belongs only to one of them. Let D be the ki-strong
component such that e ∈ D. By observing that e necessarily belongs to a
ke-connected subgraph of G by definition, and that ke ≥ ki, then such a
ke-connected subgraph is entirely contained in D. Hence, the strength of e
with respect to the graph D is equal to ke. By a similar argument as done
for F1, we can show that the expected size of a cut CD(S, V \ S) in D after

10.3. NON-UNIFORM EDGE SAMPLING 119

the sampling of the edges is

E[ED(S, V \ S)] =
∑

e∈CD(S,V \S)

q

ke
Since E[Xe] = Pr[Xe = 1] =

q

ke

≥
∑

e∈CD(S,V \S)

q

ED(S, V \ S)
Since ke ≤ ED(S, V \ S)

=
c log n

ε2
Since q =

c log n

ε2

Therefore, we can once again apply Theorem 10.6 to the subgraph D, which
states that, with high probability, all cuts in D are within (1 ± ε) of their
expected value. We arrive at the conclusion that this also holds for Fi by
applying the same argument to all the ki-strong components of Fi.

To sum up, for each i ∈ [s] Theorem 10.6 tells us that every cut in Fi
is well-estimated with high probability. Then, a union bound over {Fi}i∈[s]

provides a lower bound of the probability that all Fi’s have all cuts within
(1± ε) of their expected values, and we can see that this also happens with
high probability. This tells us that any cut in G is well-estimated with high
probability, also because all multiplicative factors ki−ki−1 in the calculation
G′ =

∑s
i=1

ki−ki−1

q
Fi are positive.

120 CHAPTER 10. PRESERVING CUTS

Part IV

Online algorithms and
competitive analysis

121

Chapter 11

Warm up: Ski rental

We now study the class of online problems where one has to commit to
provably good decisions as data arrive in an online fashion. To measure the
effectiveness of online algorithms, we compare the quality of the produced
solution against the solution from an optimal offline algorithm that knows
the whole sequence of information a priori. The tool we will use for doing
such a comparison is competitive analysis.

Remark We do not assume that the optimal offline algorithm has to be
computationally efficient. Under the competitive analysis framework, only
the quality of the best possible solution matters.

Definition 11.1 (α-competitive online algorithm). Let σ be an input se-
quence, c be a cost function, A be the online algorithm and OPT be the
optimal offline algorithm. Then, denote cA(σ) as the cost incurred by A
on σ and cOPT (σ) as the cost incurred by OPT on the same sequence. We
say that an online algorithm is α-competitive if for any input sequence σ,
cA(σ) ≤ α · cOPT (σ).

Definition 11.2 (Ski rental problem). Suppose we wish to ski every day but
we do not have any skiing equipment initially. On each day, we can choose
between:

• Rent the equipment for a day at CHF 1

• Buying the equipment (once and for all) for CHF B

In the toy setting where we may break our leg on each day (and cannot ski
thereafter), let d be the (unknown) total number of days we ski. What is the
best online strategy for renting/buying?

123

124 CHAPTER 11. WARM UP: SKI RENTAL

Claim 11.3. A = “Rent for B days, then buy on day B+1” is a 2-competitive
algorithm.

Proof. If d ≤ B, the optimal offline strategy is to rent everyday, incurring
a cost of cOPT (d) = d. A will rent for d days and also incur a loss of
cA(d) = d = cOPT (d). If d > B, the optimal offline strategy is to buy
the equipment immediately, incurring a loss of cOPT (d) = B. A will rent
for B days and then buy the equipment for CHF B, incurring a cost of
cA(d) = 2B ≤ 2cOPT (d). Thus, for any d, cA(d) ≤ 2 · cOPT (d).

Chapter 12

Linear search

Definition 12.1 (Linear search problem). We have a stack of n papers on
the desk. Given a query, we do a linear search from the top of the stack.
Suppose the i-th paper in the stack is queried. Since we have to go through
i papers to reach the queried paper, we incur a cost of i doing so. We have
the option to perform two types of swaps in order to change the stack:

Free swap Move the queried paper from position i to the top of the stack
for 0 cost.

Paid swap For any consecutive pair of items (a, b) before i, swap their rel-
ative order to (b, a) for 1 cost.

What is the best online strategy for manipulating the stack to minimize total
cost on a sequence of queries?

Remark One can reason that the free swap costs 0 because we already
incurred a cost of i to reach the queried paper.

12.1 Amortized analysis

Amortized analysis1 is a way to analyze the complexity of an algorithm on a
sequence of operations. Instead of looking the worst case performance on a
single operation, it measures the total cost for a batch of operations.

The dynamic resizing process of hash tables is a classical example of
amortized analysis. An insertion or deletion operation will typically cost

1See https://en.wikipedia.org/wiki/Amortized_analysis

125

https://en.wikipedia.org/wiki/Amortized_analysis

126 CHAPTER 12. LINEAR SEARCH

O(1) unless the hash table is almost full or almost empty, in which case we
double or halve the hash table of size m, incurring a runtime of O(m).

Worst case analysis tells us that dynamic resizing will incur O(m) run
time per operation. However, resizing only occurs after O(m) insertion/dele-
tion operations, each costing O(1). Amortized analysis allows us to conclude
that this dynamic resizing runs in amortized O(1) time. There are two equiv-
alent ways to see it:

• Split the O(m) resizing overhead and “charge” O(1) to each of the
earlier O(m) operations.

• The total run time for every sequential chunk of m operations is O(m).
Hence, each step takes O(m)/m = O(1) amortized run time.

12.2 Move-to-Front

Move-to-Front (MTF) [ST85] is an online algorithm for the linear search
problem where we move the queried item to the top of the stack (and do no
other swaps). We will show that MTF is a 2-competitive algorithm for linear
search. Before we analyze MTF, let us first define a potential function Φ and
look at examples to gain some intuition.

Let Φt be the number of pairs of papers (i, j) that are ordered differently
in MTF’s stack and OPT’s stack at time step t. By definition, Φt ≥ 0 for
any t. We also know that Φ0 = 0 since MTF and OPT operate on the same
initial stack sequence.

Example One way to interpret Φ is to count the number of inversions
between MTF’s stack and OPT’s stack. Suppose we have the following stacks
(visualized horizontally) with n = 6:

1 2 3 4 5 6

MTF’s stack a b c d e f
OPT’s stack a b e d c f

We have the inversions (c, d), (c, e) and (d, e), so Φ = 3.

Scenario 1 We swap (b, e) in OPT’s stack — A new inversion (b, e) was
created due to the swap.

1 2 3 4 5 6

MTF’s stack a b c d e f
OPT’s stack a e b d c f

12.2. MOVE-TO-FRONT 127

Now, we have the inversions (b, e), (c, d), (c, e) and (d, e), so Φ = 4.

Scenario 2 We swap (e, d) in OPT’s stack — The inversion (d, e) was de-
stroyed due to the swap.

1 2 3 4 5 6

MTF’s stack a b c d e f
OPT’s stack a b d e c f

Now, we have the inversions (c, d) and (c, e), so Φ = 2.

In either case, we see that any paid swap results in ±1 inversions, which
changes Φ by ±1.

Claim 12.2. MTF is 2-competitive.

Proof. We will consider the potential function Φ as before and perform amor-
tized analysis on any given input sequence σ. Let at = cMTF (t) + (Φt−Φt−1)
be the amortized cost of MTF at time step t, where cMTF (t) is the cost MTF
incurs at time t. Suppose the queried item x at time step t is at position k
in MTF’s stack. Denote:

F = {Items on top of x in MTF’s stack and on top of x in OPT’s stack}
B = {Items on top of x in MTF’s stack and underneath x in OPT’s stack}

Let |F | = f and |B| = b. There are k−1 items in front x, so f+b = k−1.

x

MTF

k
F ∪B

x

OPT

≥ |F | = f

≥ |B| = b

Since x is the k-th item, MTF will incur cMTF (t) = k = f + b + 1 to
reach item x, then move it to the top. On the other hand, OPT needs to

128 CHAPTER 12. LINEAR SEARCH

spend at least f + 1 to reach x. Suppose OPT does p paid swaps, then
cOPT (t) ≥ f + 1 + p.

To measure the change in potential, we first look at the swaps done by
MTF and how OPT’s swaps can affect them. Let ∆MTF (Φt) be the change
in Φ due to MTF and ∆OPT (Φt) be the change in Φt due to OPT. Thus,
∆(Φt) = ∆MTF (Φt) + ∆OPT (Φt). In MTF, moving x to the top destroys
b inversions and creates f inversions, so the change in Φ due to MTF is
∆MTF (Φt) = f − b. If OPT chooses to do a free swap, Φ does not increase
as both stacks now have x before any element in F . For every paid swap
that OPT performs, Φ changes by one since inversions only locally affect the
swapped pair and thus, ∆OPT (Φt) ≤ p.

Therefore, the effect on Φ from both processes is: ∆(Φt) = ∆MTF (Φt) +
∆OPT (Φt) ≤ (f − b) + p. Putting together, we have cOPT (t) ≥ f + 1 + p and
at = cMTF (t)+ (Φt−Φt−1) = k+∆(Φt) ≤ 2f +1 +p ≤ 2 · cOPT (t). Summing
up over all queries in the sequence yields:

2 · cOPT (σ) =

|σ|∑
t=1

2 · cOPT (t) ≥
|σ|∑
t=1

at

With at = cMTF (t) + (Φt − Φt−1) and using the fact that the sum over the
change in potential is telescoping, we get:

|σ|∑
t=1

at =

|σ|∑
t=1

cMTF (t) + (Φt − Φt−1)

=

|σ|∑
t=1

cMTF (t) + (Φ|σ| − Φ0)

Since Φt ≥ 0 = Φ0 and cMTF (σ) =
∑|σ|

t=1 cMTF (t):

|σ|∑
t=1

cMTF (t) + (Φ|σ| − Φ0) ≥
|σ|∑
t=1

cMTF (t) = cMTF (σ)

We have shown that cMTF (σ) ≤ 2 · cOPT (σ) which completes the proof.

Chapter 13

Paging

Definition 13.1 (Paging problem [ST85]). Suppose we have a fast memory
(cache) that can fit k pages and an unbounded sized slow memory. Accessing
items in the cache costs 0 units of time while accessing items in the slow
memory costs 1 unit of time. After accessing an item in the slow memory,
we can bring it into the cache by evicting an incumbent item if the cache was
full. What is the best online strategy for maintaining items in the cache to
minimize the total access cost on a sequence of queries?

Denote cache miss as accessing an item that is not in the cache. Any
sensible strategy should aim to reduce the number of cache misses. For
example, if k = 3 and σ = {1, 2, 3, 4, . . . , 2, 3, 4}, keeping item 1 in the cache
will incur several cache misses. Instead, the strategy should aim to keep items
{2, 3, 4} in the cache. We formalize this notion in the following definition of
conservative strategy.

Definition 13.2 (Conservative strategy). A strategy is conservative if on
any consecutive subsequence that includes only k distinct pages, there are at
most k cache misses.

Remark Some natural paging strategies such as “Least Recently Used
(LRU)” and “First In First Out (FIFO)” are conservative.

Claim 13.3. If A is a deterministic online algorithm that is α-competitive,
then α ≥ k.

Proof. Consider the following input sequence σ on k + 1 pages: since the
cache has size k, at least one item is not in the cache at any point in time.
Iteratively pick σ(t+ 1) as the item not in the cache after time step t.

Since A is deterministic, the adversary can simulate A for |σ| steps and
build σ accordingly. By construction, cA(σ) = |σ|.

129

130 CHAPTER 13. PAGING

On the other hand, since OPT can see the entire sequence σ, OPT can
choose to evict the page i that is requested furthest in the future. The next
request for page i has to be at least k requests ahead in the future, since by
definition of i all other pages j 6= i ∈ {1, ..., k+1} have to be requested before

i. Thus, in every k steps, OPT has ≤ 1 cache miss. Therefore, cOPT ≤ |σ|
k

which implies: k · cOPT ≤ |σ| = cA(σ).

Claim 13.4. Any conservative online algorithm A is k-competitive.

Proof. For any given input sequence σ, partition σ into m maximal phases
— P1, P2, . . . , Pm — where each phase has k distinct pages, and a new phase
is created only if the next element is different from the ones in the current
phase. Let xi be the first item that does not belong in Phase i.

σ = x1k distinct pages x2k distinct pages . . .

Phase 1 Phase 2

By construction, OPT has to pay ≥ 1 to handle the elements in Pi∪{xi},
for any i; so cOPT ≥ m. On the other hand, since A is conservative, A has
≤ k cache misses per phase. Hence, cA(σ) ≤ k ·m ≤ k · cOPT (σ).

Remark A randomized algorithm can achieve O(log k)-competitiveness.
This will be covered in the next lecture.

13.1 Types of adversaries

Since online algorithms are analyzed on all possible input sequences, it helps
to consider adversarial inputs that may induce the worst case performance
for a given online algorithm A. To this end, one may wish to classify the
classes of adversaries designing the input sequences (in increasing power):

Oblivious The adversary designs the input sequence σ at the beginning. It
does not know any randomness used by algorithm A.

Adaptive At each time step t, the adversary knows all randomness used
by algorithm A thus far. In particular, it knows the exact state of the
algorithm. With these in mind, it then picks the (t+ 1)-th element in
the input sequence.

Fully adaptive The adversary knows all possible randomness that will be
used by the algorithmA when running on the full input sequence σ. For

13.2. RANDOM MARKING ALGORITHM (RMA) 131

instance, assume the adversary has access to the same pseudorandom
number generator used by A and can invoke it arbitrarily many times
while designing the adversarial input sequence σ.

Remark If A is deterministic, then all three classes of adversaries have the
same power.

13.2 Random Marking Algorithm (RMA)

Consider the Random Marking Algorithm (RMA), a O(log k)-competitive
algorithm for paging against oblivious adversaries:

• Initialize all pages as marked

• Upon request of a page p

– If p is not in cache,

∗ If all pages in cache are marked, unmark all

∗ Evict a random unmarked page

– Mark page p

Example Suppose k = 3, σ = (2, 5, 2, 1, 3).

Suppose the cache is initially: Cache 1 3 4

Marked? 3 3 3

When σ(1) = 2 arrives, all pages
were unmarked. Suppose the random
eviction chose page ‘3’. The newly
added page ‘2’ is then marked.

Cache 1 2 4

Marked? 7 3 7

When σ(2) = 5 arrives, suppose
random eviction chose page ‘4’ (be-
tween pages ‘1’ and ‘4’). The newly
added page ‘5’ is then marked.

Cache 1 2 5

Marked? 7 3 3

When σ(3) = 2 arrives, page ‘2’
in the cache is marked (no change).

Cache 1 2 5

Marked? 7 3 3

132 CHAPTER 13. PAGING

When σ(4) = 1 arrives, page ‘1’
in the cache is marked. At this point,
any page request that is not from
{1, 2, 5} will cause a full unmarking
of all pages in the cache.

Cache 1 2 5

Marked? 3 3 3

When σ(5) = 3 arrives, all pages
were unmarked. Suppose the random
eviction chose page ‘5’. The newly
added page ‘3’ is then marked.

Cache 1 2 3

Marked? 7 7 3

We denote a phase as the time period between 2 consecutive full unmark-
ing steps. That is, each phase is a maximal run where we access k distinct
pages. In the above example, {2, 5, 2, 1} is such a phase for k = 3.

Observation As pages are only unmarked at the beginning of a new phase,
the number of unmarked pages is monotonically decreasing within a phase.

marked pages

time

k

phase 1 phase 2 phase 3

Figure 13.1: The number of marked pages within a phase is monotonically
increasing.

Theorem 13.5. RMA is O(log k)-competitive against any oblivious adver-
sary.

Proof. Let Pi be the set of pages at the start of phase i. Since requesting a
marked page does not incur any cost, it suffices to analyze the first time any
request occurs within the phase.

Let mi be the number of unique new requests (pages that are not in Pi)
and oi as the number of unique old requests (pages that are in Pi). By
definition, oi ≤ k and mi + oi = k.

We have cRMA(Phase i) = (Cost due to new requests) + (Cost due to old
requests). We first focus on the extra cost incurred from the old requests,

13.2. RANDOM MARKING ALGORITHM (RMA) 133

that is when an old page is requested that has already been kicked out upon
the arrival of a new request.

Order the old requests in the order which they appear in the phase and
let xj be the jth old request, for j ∈ {1, . . . , oi}. Define lj as the number of
distinct new requests before xj.

For j ∈ {1, . . . , oi}, consider the first time the jth old request xj occurs.
Since the adversary is oblivious, xj is equally likely to be in any position in
the cache at the start of the phase. After seeing (j − 1) old requests and
marking their cache positions, there are k − (j − 1) initial positions in the
cache that xj could be in. Since we have only seen lj new requests and (j−1)
old requests, there are at least1 k − lj − (j − 1) old pages remaining in the
cache. So, the probability that xj is in the cache when requested is at least
k−lj−(j−1)

k−(j−1)
. Then,

Cost due to old requests =

oi∑
j=1

Pr[xj is not in cache when requested] Sum over old requests

≤
oi∑
j=1

lj
k − (j − 1)

From above

≤
oi∑
j=1

mi

k − (j − 1)
Since lj ≤ mi = |N |

≤ mi ·
k∑
j=1

1

k − (j − 1)
Since oi ≤ k

= mi ·
k∑
j=1

1

j
Rewriting

= mi ·Hk Since
n∑
i=1

1

i
= Hn

Since every new request incurs a unit cost, the cost due to these requests
is mi.

Together for new and old requests, we get cRMA(Phase i) ≤ mi +mi ·Hk.
We now analyze OPT’s performance. By definition of phases, among all

requests between two consecutive phases (say, i− 1 and i), a total of k +mi

distinct pages are requested. So, OPT has to incur at least ≥ mi to bring in

1We get an equality if all these requests kicked out an old page.

134 CHAPTER 13. PAGING

these new pages. To avoid double counting, we lower bound cOPT (σ) for both
odd and even i: cOPT (σ) ≥

∑
odd imi and cOPT (σ) ≥

∑
even imi. Together,

2 · cOPT (σ) ≥
∑
odd i

mi +
∑

even i

mi ≥
∑
i

mi

Therefore, we have:

cRMA(σ) ≤
∑
i

(mi +mi ·Hk) = O(log k)
∑
i

mi ≤ O(log k) · cOPT (σ)

Remark In the above example, k = 3, phase 1 = (2, 5, 2, 1), P1 = {1, 3, 4},
new requests = {2, 5}, old requests = {1}. Although ‘2’ appeared twice, we
only care about analyzing the first time it appeared.

Chapter 14

Yao’s Minimax Principle

Given the sequence of random bits used, a randomized algorithm behaves
deterministically. Hence, one may view a randomized algorithm as a random
choice from a distribution of deterministic algorithms.

Let X be the space of problem inputs and A be the space of all possible
deterministic algorithms. Denote probability distributions over A and X by
pa = Pr[A = a] and qx = Pr[X = x], where X and A are random variables
for input and deterministic algorithm, respectively. Define c(a, x) as the cost
of algorithm a ∈ A on input x ∈ X.

Theorem 14.1 ([Yao77]).

C = max
x∈X

Ep[c(a, x)] ≥ min
a∈A

Eq[c(a, x)] = D

Proof.

C =
∑
x

qx · C Sum over all possible inputs x

≥
∑
x

qxEp[c(A, x)] Since C = max
x∈X

Ep[c(A, x)]

=
∑
x

qx
∑
p

pac(a, x) Definition of Ep[c(A, x)]

=
∑
a

pa
∑
q

qxc(a, x) Swap summations

=
∑
a

paEq[c(a,X)] Definition of Eq[c(a,X)]

≥
∑
a

pa ·D Since D = min
a∈A

Eq[c(a,X)]

= D Sum over all possible algorithms a

135

136 CHAPTER 14. YAO’S MINIMAX PRINCIPLE

Implication If one can argue that no deterministic algorithm can do well
on a given distribution of random inputs (D), then no randomized algorithm
can do well on all inputs (C).

14.1 Application to the paging problem

Theorem 14.2. Any (randomized) algorithm has competitive ratio Ω(log k)
against an oblivious adversary.

Proof. Fix an arbitrary deterministic algorithm A. Let n = k + 1 and |σ| =
m. Consider the following random input sequence σ where the i-th page is
drawn from {1, . . . , k + 1} uniformly at random.

By construction of σ, the probability of having a cache miss is 1
k+1

for A,
regardless of what A does. Hence, E[cA(σ)] = m

k+1
.

On the other hand, an optimal offline algorithm may choose to evict the
page that is requested furthest in the future. As before, we denote a phase
as a maximal run where there are k distinct page requests. This means that
E[cOPT (σ)] = Expected number of phases = m

Expected phase length
.

To analyze the expected length of a phase, suppose there are i distinct
pages so far, for 0 ≤ i ≤ k. The probability of the next request being new
is k+1−i

k+1
, and one expects to get k+1

k+1−i requests before having i + 1 distinct

pages. Thus, the expected length of a phase is
∑k

i=0
k+1
k+1−i = (k + 1) ·Hk+1.

Therefore, E[cOPT (σ)] = m
(k+1)·Hk+1

.

So far we have obtained that D = E[cA(σ)] = m
k+1

; from Yao’s Minimax
Principle we know that C ≥ D, hence we can also compare the competitive
ratios C

E[cOPT (σ)]
≥ D

E[cOPT (σ)]
= Hk+1 = Θ(log k).

Remark The length of a phase is essentially the coupon collector problem
with n = k + 1 coupons.

Chapter 15

The k-server problem

Definition 15.1 (k-server problem [MMS90]). Consider a metric space (V, d)
where V is a set of n points and d : V ×V → R is a distance metric between
any two points. Suppose there are k servers placed on V and we are given
an input sequence σ = (v1, v2, . . .). Upon request of vi ∈ V , we have to move
one server to point vi to satisfy that request. What is the best online strategy
to minimize the total distance travelled by servers to satisfy the sequence of
requests?

Remark We do not fix the starting positions of the k servers, but we com-
pare the performance of OPT on σ with same initial starting positions.

The paging problem is a special case of the k-server problem where the
points are all possible pages, the distance metric is unit cost between any
two different points, and the servers represent the pages in cache of size k.

Progress It is conjectured that a deterministic k-competitive algorithm ex-
ists and a randomized (log k)-competitive algorithm exists. The table below
shows the current progress on this problem.

Competitive ratio Type

[MMS90] k-competitive, for k = 2 and k = n− 1 Deterministic
[FRR90] 2O(k log k)-competitive Deterministic
[Gro91] 2O(k)-competitive Deterministic
[KP95] (2k − 1)-competitive Deterministic

[BBMN11] poly(log n, log k)-competitive Randomized
[Lee18] O(log6 k)-competitive Randomized

137

138 CHAPTER 15. THE K-SERVER PROBLEM

Remark [BBMN11] uses a probabilistic tree embedding, a concept we have
seen in earlier lectures.

15.1 Special case: Points on a line

Consider the metric space where V are points on a line and d(u, v) is the
distance between points u, v ∈ V . One can think of all points lying on the
1-dimensional number line R.

15.1.1 Greedy is a bad idea

A natural greedy idea would be to pick the closest server to serve any given
request. However, this can be arbitrarily bad. Consider the following:

s∗

0 1 + ε 2 + ε

...

Without loss of generality, suppose all servers currently lie on the left of “0”.
For ε > 0, consider the sequence σ = (1 + ε, 2 + ε, 1 + ε, 2 + ε, . . .). The first
request will move a single server s∗ to “1 + ε”. By the greedy algorithm,
subsequent requests then repeatedly use s∗ to satisfy requests from both
“1 + ε” and “2 + ε” since s∗ is the closest server. This incurs a total cost of
≥ |σ| while OPT could station 2 servers on “1 + ε” and “2 + ε” and incur a
constant total cost on input sequence σ.

15.1.2 Double coverage

The double coverage algorithm does the following:

• If request r is on one side of all servers, move the closest server to cover
it

• If request r lies between two servers, move both towards it at constant
speed until r is covered

Before r

After r

Before r

After r

15.1. SPECIAL CASE: POINTS ON A LINE 139

Theorem 15.2. Double coverage (DC) is k-competitive on a line.

Proof. Without loss of generality,

• Suppose location of DC’s servers on the line are: x1 ≤ x2 ≤ · · · ≤ xk

• Suppose location of OPT’s servers on the line are: y1 ≤ y2 ≤ · · · ≤ yk

Define potential function Φ = Φ1 + Φ2 = k ·
∑k

i=1 |xi − yi| +
∑

i<j(xj − xi),
where Φ1 is k times the “paired distances” between xi and yi and Φ2 is the
pairwise distance between any two servers in DC.

We denote the potential function at time step t by Φt = Φt,1 + Φt,2. For
a given request r at time step t, we will first analyze OPT’s action then
DC’s action. We analyze the change in potential ∆(Φ) by looking at ∆(Φ1)
and ∆(Φ2) separately, and further distinguish the effects of DC and OPT on
∆(Φ) via ∆DC(Φ) and ∆OPT (Φ) respectively.

Suppose OPT moves server s∗ by a distance of x = d(s∗, r) to reach the
point r. Then, cOPT (t) ≥ x. Since s∗ moved by x, ∆(Φt,1) ≤ kx. Since OPT
does not move DC’s servers, ∆(Φt,2) = 0. Hence, ∆OPT (Φt) ≤ kx.

There are three cases for DC, depending on where r appears.

1. r appears exactly on a current server position
DC does nothing. So, cDC(t) = 0 and ∆DC(Φt) = 0. Hence,

cDC(t) + ∆(Φt) = cDC(t) + ∆DC(Φt) + ∆OPT (Φt)

≤ 0 + kx+ 0 = kx

≤ k · cOPT (t)

2. r appears on one side of all servers x1, . . . , xk (say r > xk without loss
of generality)
DC will move server xk by a distance y = d(xk, r) to reach point r. That
is, cDC(t) = y. Since OPT has a server at r, yk ≥ r. So, ∆DC(Φt,1) =
−ky. Since only xk moved, ∆DC(Φt,2) = (k − 1)y. Hence,

cDC(t) + ∆(Φt) = cDC(t) + ∆DC(Φt) + ∆OPT (Φt)

≤ y − ky + (k − 1)y + kx

= kx

≤ k · cOPT (t)

3. r appears between two servers xi < r < xi+1

Without loss of generality, say r is closer to xi and denote z = d(xi, r).
DC will move server xi by a distance of z to reach point r, and server
xi+1 by a distance of z to reach xi+1 − z. That is, cDC(t) = 2z.

140 CHAPTER 15. THE K-SERVER PROBLEM

Claim 15.3. At least one of xi or xi+1 is moving closer to its partner
(yi or yi+1 respectively).

Proof. Suppose, for a contradiction, that both xi and xi+1 are moving
away from their partners. That means yi ≤ xi < r < xi+1 ≤ yi+1 at
the end of OPT’s action (before DC moved xi and xi+1). This is a
contradiction since OPT must have a server at r but there is no server
between yi and yi+1 by definition.

Since at least one of xi or xi+1 is moving closer to its partner, ∆DC(Φt,1) ≤
z − z = 0.

Meanwhile, since xi and xi+1 are moved a distance of z towards each
other, (xi+1 − xi) = −2z while the total change against other pairwise
distances cancel out, so ∆DC(Φt,2) = −2z.

Hence,

cDC(t)+∆(Φt) = cDC(t)+∆DC(Φt)+∆OPT (Φt) ≤ 2z−2z+kx = kx ≤ k·cOPT (t)

In all cases, we see that cDC(t) + ∆(Φt) ≤ k · cOPT (t). Hence,

|σ|∑
t=1

(cDC(t) + ∆(Φt)) ≤
|σ|∑
t=1

k · cOPT (t) Summing over σ

⇒
|σ|∑
t=1

cDC(t) + (Φ|σ| − Φ0) ≤ k · cOPT (σ) Telescoping

⇒
|σ|∑
t=1

cDC(t)− Φ0 ≤ k · cOPT (σ) Since Φt ≥ 0

⇒ cDC(σ) ≤ k · cOPT (σ) + Φ0 Since cDC(σ) =

|σ|∑
t=1

cDC(t)

Since Φ0 is a constant that captures the initial state, DC is k-competitive.

Remark One can generalize the approach of double coverage to points on
a tree. The idea is as follows: For a given request point r, consider the
set of servers S such that for s ∈ S, there is no other server s′ between
s and r. Move all servers in S towards r “at the same speed” until one

15.1. SPECIAL CASE: POINTS ON A LINE 141

of them reaches r. This generalization gives us a k-competitiveness on a
tree; building on this we can use the Probabilistic Tree Embedding approach
(stretching distances by only O(log n) in expectation) getting immediately
an O(k log n)-competitiveness in expectation on a graph.

142 CHAPTER 15. THE K-SERVER PROBLEM

Chapter 16

Multiplicative Weights Update
(MWU)

In this final lecture, we discuss the Multiplicative Weight Updates (MWU)
method. A comprehensive survey on MWU and its applications can be found
in [AHK12].

Definition 16.1 (The learning from experts problem). Every day, we are
to make a binary decision. At the end of the day, a binary output is revealed
and we incur a mistake if our decision did not match the output. Suppose we
have access to n experts e1, . . . , en, each of which makes a recommendation
for the binary decision to take per day. How does one make use of the experts
to minimize the total number of mistakes on an online binary sequence?

Toy setting Consider a stock market with only a single stock. Every day,
we decide whether to buy the stock or not. At the end of the day, the stock
value will be revealed and we incur a mistake/loss of 1 if we did not buy
when the stock value rose, or bought when the stock value fell.

Example — Why it is non-trivial Suppose n = 3 and σ = (1, 1, 0, 0, 1).
In hindsight, we have:

Days 1 1 0 0 1

e1 1 1 0 0 1
e2 1 0 0 0 1
e3 1 1 1 1 0

In hindsight, e1 is always correct so we would have incurred 0 mistakes if
we always followed e1’s recommendation. However, we do not know which

143

144 CHAPTER 16. MULTIPLICATIVE WEIGHTS UPDATE (MWU)

is expert e1 (assuming a perfect expert even exists). Furthermore, it is not
necessarily true that the best expert always incurs the least number of mis-
takes on any prefix of the sequence σ. Ignoring e1, one can check that e2

outperforms e3 on the example sequence. However, at the end of day 2, e3

incurred 0 mistakes while e2 incurred 1 mistake.
The goal is as follows: If a perfect expert exists, we hope to eventually

converge to always following him/her. If not, we hope to not do much worse
than the best expert on the entire sequence.

16.1 Warm up: Perfect expert exists

Suppose there exists a perfect expert. Do the following on each day:

• Make a decision by taking the majority vote of the remaining experts.

• If we incur a loss, remove the experts that were wrong.

Theorem 16.2. We incur at most log2 n mistakes on any given sequence.

Proof. Whenever we incur a mistake, at least half the experts were wrong
and were removed. Hence, the total number of experts is at least halved
whenever a mistake occurred. After at most log2 n removals, the only expert
left will be the perfect expert and we will be always correct thereafter.

16.2 A deterministic MWU algorithm

Suppose that there may not be a perfect expert. The idea is similar, but we
update our trust for each expert instead of completely removing an expert
when he/she makes a mistake. Consider the following deterministic algorithm
(DMWU):

• Initialize weights wi = 1 for expert ei, for i ∈ {1, . . . , n}.

• On each day:

– Make a decision by the weighted majority.

– If we incur a loss, set wi to (1− ε) · wi for each wrong expert, for
some constant ε ∈ (0, 1

2
).

Theorem 16.3. Suppose the best expert makes m∗ mistakes and DMWU
makes m mistakes. Then,

m ≤ 2(1 + ε)m∗ +
2 lnn

ε

16.3. A RANDOMIZED MWU ALGORITHM 145

Proof. Observe that when DMWU makes a mistake, the weighted majority
was wrong and their weight decreases by a factor of (1 − ε). Suppose that∑n

i=1 wi = x at the start of the day. If we make a mistake, x drops to
≤ x

2
(1− ε) + x

2
= x(1− ε

2
). That is, the overall weight reduces by at least a

factor of (1− ε
2
). Since the best expert e∗ makes m∗ mistakes, his/her weight

at the end is (1 − ε)m
∗
. By the above observation, the total weight of all

experts would be ≤ n(1− ε
2
)m at the end of the sequence. Then,

(1− ε)m∗ ≤ n(1− ε

2
)m Expert e∗’s weight is part of the overall weight

⇒ m∗ ln(1− ε) ≤ lnn+m ln(1− ε

2
) Taking ln on both sides

⇒ m∗(−ε− ε2) ≤ lnn+m(− ε
2

) Since −x− x2 ≤ ln(1− x) ≤ −x for x ∈ (0,
1

2
)

⇒ m ≤ 2(1 + ε)m∗ +
2 lnn

ε
Rearranging

Remark 1 In the warm up, m∗ = 0.

Remark 2 For x ∈ (0, 1
2
), the inequality −x− x2 ≤ ln(1− x) ≤ −x is due

to the Taylor expansion1 of ln. A more familiar equivalent form would be:
e−x−x

2 ≤ (1− x) ≤ e−x.

Theorem 16.4. No deterministic algorithm A can do better than 2-competitive.

Proof. Consider only two experts e0 and e1 where e0 always outputs 0 and
e1 always outputs 1. Any binary sequence σ must contain at least |σ|

2
zeroes

or |σ|
2

ones. Thus, m∗ ≤ |σ|
2

. On the other hand, the adversary looks at A
and produces a sequence σ which forces A to incur a loss every day. Thus,
m = |σ| ≥ 2m∗.

16.3 A randomized MWU algorithm

The 2-factor in DMWU is due to the fact that DMWU deterministically takes
the (weighted) majority at each step. Let us instead interpret the weights as
probabilities. Consider the following randomized algorithm (RMWU):

• Initialize weights wi = 1 for expert ei, for i ∈ {1, . . . , n}.
1See https://en.wikipedia.org/wiki/Taylor_series#Natural_logarithm

https://en.wikipedia.org/wiki/Taylor_series#Natural_logarithm

146 CHAPTER 16. MULTIPLICATIVE WEIGHTS UPDATE (MWU)

• On each day:

– Pick a random expert with probability proportional to their weight.
(i.e. Pick ei with probability wi/

∑n
i=1 wi)

– Follow that expert’s recommendation.

– For each wrong expert, set wi to (1 − ε) · wi, for some constant
ε ∈ (0, 1

2
).

Another way to think about the probabilities is to split all experts into
two groups A = {Experts that output 0} and B = {Experts that output
1}. Then, decide ‘0’ with probability wA

wA+wB
and ‘1’ with probability wB

wA+wB
,

where wA =
∑

ei∈Awi and wB =
∑

ei∈B wi are the sum of weights in each
set.

Theorem 16.5. Suppose the best expert makes m∗ mistakes and RMWU
makes m mistakes. Then,

E[m] ≤ (1 + ε)m∗ +
lnn

ε

Proof. Fix an arbitrary day j ∈ {1, . . . , |σ|}. DenoteA = {Experts that output 0 on day j}
and B = {Experts that output 1 on day j}, where wA =

∑
ei∈Awi and

wB =
∑

ei∈B wi are the sum of weights in each set. Let Fj be the weighted
fraction of wrong experts on day j. If σj = 0, then Fj = wB

wA+wB
. If σj = 1,

then Fj = wA
wA+wB

. By definition of Fj, RMWU makes a mistake on day j

with probability Fj. By linearity of expectation, E[m] =
∑|σ|

j=1 Fj.
Since the best expert e∗ makes m∗ mistakes, his/her weight at the end is

(1 − ε)m∗ . On each day, RMWU reduces the overall weight by a factor of
(1−ε ·Fj) by penalizing wrong experts. Hence, the total weight of all experts

would be n · Π|σ|j=1(1− ε · Fj) at the end of the sequence. Then,

(1− ε)m∗ ≤ n · Π|σ|j=1(1− ε · Fj) Expert e∗’s weight is part of the overall weight

⇒ (1− ε)m∗ ≤ n · e
∑|σ|
j=1(−ε·Fj) Since (1− x) ≤ e−x

⇒ (1− ε)m∗ ≤ n · e−ε·E[m] Since E[m] =

|σ|∑
j=1

Fj

⇒ m∗ ln(1− ε) ≤ lnn− ε · E[m] Taking ln on both sides

⇒ E[m] ≤ − ln(1− ε)
ε

m∗ +
lnn

ε
Rearranging

⇒ E[m] ≤ (1 + ε)m∗ +
lnn

ε
Since − ln(1− x) ≤ −(−x− x2) = x+ x2

16.4. GENERALIZATION 147

16.4 Generalization

Denote the loss of expert i on day t as lti ∈ [−ρ, ρ], for some constant ρ When

we incur a loss, update the weights of affected experts from wi to (1− ε l
t
i

ρ
)wi.

Note that
lti
ρ

is essentially the normalized loss ∈ [−1, 1].

Claim 16.6 (Without proof). With RMWU, we have

E[m] ≤ min
i

(
∑
t

lti + ε
∑
t

|lti|+
ρ lnn

ε
)

Remark If each expert has a different ρi, one can modify the update rule
and claim to use ρi instead of a uniform ρ accordingly.

16.5 Application: Online routing of virtual

circuits

Definition 16.7 (The online routing of virtual circuits problem). Consider
a graph G = (V,E) where each edge e ∈ E has a capacity ue. A request is
denoted by a triple 〈s(i), t(i), d(i)〉, where s(i) ∈ V is the source, t(i) ∈ V is
the target, and d(i) > 0 is the demand for the ith request respectively. Given
the ith request, we are to build a connection (single path Pi) from s(i) to t(i)
with flow d(i). The objective is to minimize the maximum congestion on all
edges as we handle requests in an online manner. To be precise, we wish to

minimize maxe∈E

∑|σ|
i=1

∑
Pi3e

d(i)

ue
on the input sequence σ where Pi 3 e is the

set of paths that include edge e.

Remark This is similar to the multi-commodity routing problem in lec-
ture 5. However, in this problem, each commodity flow cannot be split into
multiple paths, and the commodities appear in an online fashion.

Example Consider the following graph G = (V,E) with 5 vertices and 5
edges with the edge capacities ue annotated for each edge e ∈ E. Suppose
there are 2 requests: σ = (〈v1, v4, 5〉, 〈v5, v2, 8〉).

v3

v1

v2

v4

v5

13

11

10

8

20

148 CHAPTER 16. MULTIPLICATIVE WEIGHTS UPDATE (MWU)

Upon seeing σ(1) = 〈v1, v4, 5〉, we (red edges) commit to P1 = v1 – v3 –
v4 as it minimizes the congestion to 5/10. When σ(2) = 〈v5, v2, 8〉 appears,
P2 = v5 – v3 – v2 minimizes the congestion given that we committed to P1.
This causes the congestion to be 8/8 = 1. On the other hand, the optimal
offline algorithm (blue edges) can attain a congestion of 8/10 via P1 = v1 –
v3 – v5 – v4 and P2 = v5 – v4 – v3 – v2.

v3

v1

v2

v4

v5

5/13

0/11

5/10

0/8

0/21 v3

v1

v2

v4

v5

5/13

8/11

5/10

8/8

0/21 v3

v1

v2

v4

v5

5/13

8/11

8/10

5/8

13/21

To facilitate further discussion, we define the following notations:

• pe(i) = d(i)
ue

is the relative demand i with respect to the capacity of edge
e.

• le(j) =
∑

Pi3e,i≤j pe(i) as the relative load of edge e after request j

• l∗e(j) as the optimal offline algorithm’s relative load of edge e after
request j.

In other words, the objective is to minimize maxe∈E le(|σ|) for a given se-
quence σ. Denoting Λ as the (unknown) optimal congestion factor, we nor-

malize p̃e(i) = pe(i)
Λ

, l̃e(j) = le(j)
Λ

, and l̃∗e(j) = l∗e(j)
Λ

. Let a be a constant to be
determined. Consider algorithm A which does the following on request i+ 1:

• Denote the cost of edge e by ce = al̃e(i)+p̃e(i+1) − al̃e(i)

• Return the shortest (smallest total ce cost) s(i) − t(i) path Pi on G
with edge weights ce

Finding the shortest path via the cost function ce tries to minimize the load
impact of the new (i+ 1)th request. To analyze A, we consider the following

potential function: Φ(j) =
∑

e∈E a
l̃e(j)(γ − l̃∗e(j)), for some constant γ ≥ 2.

Because of normalization, l̃∗e(j) ≤ 1, so γ − l̃∗e(j) ≥ 1. Initially, when j = 0,
Φ(0) =

∑
e∈E γ = mγ.

Lemma 16.8. For γ ≥ 1 and 0 ≤ x ≤ 1, (1 + 1
2γ

)x < 1 + x
γ

.

Proof. By Taylor series2, (1 + 1
2γ

)x = 1 + x
2γ

+O(x
2γ

) < 1 + x
γ
.

2See https://en.wikipedia.org/wiki/Taylor_series#Binomial_series

https://en.wikipedia.org/wiki/Taylor_series#Binomial_series

16.5. APPLICATION: ONLINE ROUTING OF VIRTUAL CIRCUITS149

Lemma 16.9. For a = 1 + 1
2γ

, Φ(j + 1)− Φ(j) ≤ 0.

Proof. Let Pj+1 be the path that A found and P ∗j+1 be the path that the
optimal offline algorithm assigned to the (j + 1)th request 〈s(j + 1), t(j +
1), d(j + 1)〉. For any edge e, observe the following:

• If e 6∈ P ∗j+1, the load on e due to the optimal offline algorithm remains

unchanged. That is, l̃∗e(j + 1) = l̃∗e(j). On the other hand, if e ∈ P ∗j+1,

then l̃∗e(j + 1) = l̃∗e(j) + p̃e(j + 1).

• Similarly, (i) If e 6∈ Pj+1, then l̃e(j + 1) = l̃e(j); (ii) If e ∈ Pj+1, then

l̃e(j + 1) = l̃e(j) + p̃e(j + 1).

• If e is neither in Pj+1 nor in P ∗j+1, then al̃e(j+1)(γ− l̃∗e(j+1)) = al̃e(j)(γ−
l̃∗e(j)).
That is, only edges used by Pj+1 or P ∗j+1 affect Φ(j + 1)− Φ(j).

Using the observations above together with Lemma 16.8 and the fact that A
computes a shortest path, one can show that Φ(j + 1)−Φ(j) ≤ 0. In detail,

150 CHAPTER 16. MULTIPLICATIVE WEIGHTS UPDATE (MWU)

Φ(j + 1)− Φ(j)

=
∑
e∈E

al̃e(j+1)(γ − l̃∗e(j + 1))− al̃e(j)(γ − l̃∗e(j))

=
∑

e∈Pj+1\P ∗j+1

(al̃e(j+1) − al̃e(j))(γ − l̃∗e(j)) (1)

+
∑
e∈P ∗j+1

al̃e(j+1)(γ − l̃∗e(j)− p̃e(j + 1))− al̃e(j)(γ − l̃∗e(j))

=
∑
e∈Pj+1

(al̃e(j+1) − al̃e(j))(γ − l̃∗e(j))−
∑
e∈P ∗j+1

al̃e(j+1)p̃e(j + 1)

≤
∑
e∈Pj+1

(al̃e(j+1) − al̃e(j))γ −
∑
e∈P ∗j+1

al̃e(j+1)p̃e(j + 1) (2)

≤
∑
e∈Pj+1

(al̃e(j+1) − al̃e(j))γ −
∑
e∈P ∗j+1

al̃e(j)p̃e(j + 1) (3)

=
∑
e∈Pj+1

(al̃e(j)+p̃e(j+1) − al̃e(j))γ −
∑
e∈P ∗j+1

al̃e(j)p̃e(j + 1) (4)

≤
∑
e∈P ∗j+1

(
(al̃e(j)+p̃e(j+1) − al̃e(j))γ − al̃e(j)p̃e(j + 1)

)
(5)

=
∑
e∈P ∗j+1

al̃e(j)
(

(ap̃e(j+1) − 1)γ − p̃e(j + 1)
)

=
∑
e∈P ∗j+1

al̃e(j)
(

((1 +
1

2γ
)p̃e(j+1) − 1)γ − p̃e(j + 1)

)
(6)

≤ 0 (7)

(1) From observations above

(2) l̃∗e(j) ≥ 0

(3) l̃e(j + 1) ≥ l̃e(j)

(4) For e ∈ Pj+1, l̃e(j + 1) = l̃e(j) + p̃e(j + 1)

(5) Since Pj+1 is the shortest path

(6) Since a = 1 + 1
2γ

(7) Lemma 16.8 with 0 ≤ p̃e(j + 1) ≤ 1

16.5. APPLICATION: ONLINE ROUTING OF VIRTUAL CIRCUITS151

Theorem 16.10. Let L = maxe∈E l̃e(|σ|) be the maximum normalized load
at the end of the input sequence σ. For a = 1 + 1

2γ
and γ ≥ 2, L ∈ O(log n).

That is, A is O(log n)-competitive.

Proof. Since Φ(0) = mγ and Φ(j+1)−Φ(j) ≤ 0, we see that Φ(j) ≤ mγ, for
all j ∈ {1, . . . , |σ|}. Consider the edge e with the highest congestion. Since

γ − l̃∗e(j) ≥ 1, we see that

(1 +
1

2γ
)L ≤ aL · (γ − l̃∗e(j)) ≤ Φ(j) ≤ mγ ≤ n2γ

Taking log on both sides and rearranging, we get:

L ≤ (2 log(n) + log(γ)) · 1

log(1 + 1
2γ

)
∈ O(log n)

Handling unknown Λ Since Λ is unknown but is needed for the run of
A (to compute ce when a request arrives), we use a dynamically estimated

Λ̃. Let β be a constant such that A is β-competitive according to Theorem
16.10. The following modification to A is a 4β-competitive: On the first
request, we can explicitly compute Λ̃ = Λ. Whenever the actual congestion
exceeds Λ̃β, we reset3 the edge loads to 0, update our estimate to 2Λ̃, and
start a new phase.

• By the updating procedure, Λ̃ ≤ 2βΛ in all phases.

• Let T be the total number of phases. In any phase i ≤ T , the congestion
at the end of phase i is at most 2βΛ

2T−i
. Across all phases, we have∑T

i=1
2βΛ
2T−i
≤ 4βΛ.

3Existing paths are preserved, just that we ignore them in the subsequent computations
of ce.

Bibliography

[AB17] Amir Abboud and Greg Bodwin. The 4
3

additive spanner expo-
nent is tight. Journal of the ACM (JACM), 64(4):28, 2017.

[ACIM99] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Ra-
jeev Motwani. Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM Journal on Computing,
28(4):1167–1181, 1999.

[ADD+93] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph,
and José Soares. On sparse spanners of weighted graphs. Discrete
& Computational Geometry, 9(1):81–100, 1993.

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Ana-
lyzing graph structure via linear measurements. In Proceedings
of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 459–467. SIAM, 2012.

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplica-
tive weights update method: a meta-algorithm and applications.
Theory of Computing, 8(1):121–164, 2012.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space com-
plexity of approximating the frequency moments. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of com-
puting, pages 20–29. ACM, 1996.

[Bar96] Yair Bartal. Probabilistic approximation of metric spaces and its
algorithmic applications. In Foundations of Computer Science,
1996. Proceedings., 37th Annual Symposium on, pages 184–193.
IEEE, 1996.

[BBMN11] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph
Naor. A polylogarithmic-competitive algorithm for the k-server

i

ii Advanced Algorithms

problem. In Foundations of Computer Science (FOCS), 2011
IEEE 52nd Annual Symposium on, pages 267–276. IEEE, 2011.

[BK96] András A Benczúr and David R Karger. Approximating st min-

imum cuts in Õ(n2) time. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pages 47–55.
ACM, 1996.

[BKMP05] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and
Seth Pettie. New constructions of (α, β)-spanners and purely
additive spanners. In Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 672–681. Soci-
ety for Industrial and Applied Mathematics, 2005.

[BYJK+02] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and
Luca Trevisan. Counting distinct elements in a data stream. In
International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 1–10. Springer, 2002.

[BYJKS04] Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and
D Sivakumar. An information statistics approach to data stream
and communication complexity. Journal of Computer and Sys-
tem Sciences, 68(4):702–732, 2004.

[Che13] Shiri Chechik. New additive spanners. In Proceedings of the
twenty-fourth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 498–512. Society for Industrial and Applied Math-
ematics, 2013.

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel
repetition. In Proceedings of the forty-sixth annual ACM sym-
posium on Theory of computing, pages 624–633. ACM, 2014.

[Erd64] P. Erdös. Extremal problems in graph theory. In “Theory of
graphs and its applications,” Proc. Symposium Smolenice, pages
29–36, 1964.

[Fei98] Uriel Feige. A threshold of lnn for approximating set cover.
Journal of the ACM (JACM), 45(4):634–652, 1998.

[FM85] Philippe Flajolet and G Nigel Martin. Probabilistic counting
algorithms for data base applications. Journal of computer and
system sciences, 31(2):182–209, 1985.

BIBLIOGRAPHY iii

[FRR90] Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-
server algorithms. In Foundations of Computer Science, 1990.
Proceedings., 31st Annual Symposium on, pages 454–463. IEEE,
1990.

[FRT03] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight
bound on approximating arbitrary metrics by tree metrics. In
Proceedings of the thirty-fifth annual ACM symposium on Theory
of computing, pages 448–455. ACM, 2003.

[FS16] Arnold Filtser and Shay Solomon. The greedy spanner is exis-
tentially optimal. In Proceedings of the 2016 ACM Symposium
on Principles of Distributed Computing, pages 9–17. ACM, 2016.

[Gra66] Ronald L Graham. Bounds for certain multiprocessing anoma-
lies. Bell System Technical Journal, 45(9):1563–1581, 1966.

[Gro91] Edward F Grove. The harmonic online k-server algorithm is
competitive. In Proceedings of the twenty-third annual ACM
symposium on Theory of computing, pages 260–266. ACM, 1991.

[HMK+06] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger,
Michelle Effros, Jun Shi, and Ben Leong. A random linear net-
work coding approach to multicast. IEEE Transactions on In-
formation Theory, 52(10):4413–4430, 2006.

[IW05] Piotr Indyk and David Woodruff. Optimal approximations of
the frequency moments of data streams. In Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing,
pages 202–208. ACM, 2005.

[Joh74] David S Johnson. Approximation algorithms for combinatorial
problems. Journal of computer and system sciences, 9(3):256–
278, 1974.

[Kar93] David R Karger. Global min-cuts in rnc, and other ramifications
of a simple min-cut algorithm. In SODA, volume 93, pages 21–
30, 1993.

[Kar99] David R Karger. Random sampling in cut, flow, and network de-
sign problems. Mathematics of Operations Research, 24(2):383–
413, 1999.

iv Advanced Algorithms

[KP95] Elias Koutsoupias and Christos H Papadimitriou. On the k-
server conjecture. Journal of the ACM (JACM), 42(5):971–983,
1995.

[Lee18] James R Lee. Fusible hsts and the randomized k-server conjec-
ture. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 438–449. IEEE, 2018.

[LY94] Carsten Lund and Mihalis Yannakakis. On the hardness of
approximating minimization problems. Journal of the ACM
(JACM), 41(5):960–981, 1994.

[MMS90] Mark S Manasse, Lyle A McGeoch, and Daniel D Sleator. Com-
petitive algorithms for server problems. Journal of Algorithms,
11(2):208–230, 1990.

[Mor78] Robert Morris. Counting large numbers of events in small reg-
isters. Communications of the ACM, 21(10):840–842, 1978.

[NY18] Jelani Nelson and Huacheng Yu. Optimal lower bounds for
distributed and streaming spanning forest computation. arXiv
preprint arXiv:1807.05135, 2018.

[RT87] Prabhakar Raghavan and Clark D Tompson. Randomized round-
ing: a technique for provably good algorithms and algorithmic
proofs. Combinatorica, 7(4):365–374, 1987.

[ST85] Daniel D Sleator and Robert E Tarjan. Amortized efficiency
of list update and paging rules. Communications of the ACM,
28(2):202–208, 1985.

[Vaz13] Vijay V Vazirani. Approximation algorithms. Springer Science
& Business Media, 2013.

[Wen91] Rephael Wenger. Extremal graphs with no c4’s, c6’s, or c10’s.
Journal of Combinatorial Theory, Series B, 52(1):113–116, 1991.

[Woo06] David P Woodruff. Lower bounds for additive spanners, emu-
lators, and more. In Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on, pages 389–398.
IEEE, 2006.

[WS11] David P Williamson and David B Shmoys. The design of ap-
proximation algorithms. Cambridge university press, 2011.

BIBLIOGRAPHY v

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a
unified measure of complexity. In Foundations of Computer Sci-
ence, 1977., 18th Annual Symposium on, pages 222–227. IEEE,
1977.

	Notation and useful inequalities
	I Approximation algorithms
	Greedy algorithms
	Minimum set cover

	Approximation schemes
	Knapsack
	Bin packing
	Minimum makespan scheduling

	Randomized approximation schemes
	DNF counting
	Counting graph colorings

	Rounding ILPs
	Minimum set cover
	Minimizing congestion in multi-commodity routing

	Probabilistic tree embedding
	A tight probabilistic tree embedding construction
	Application: Buy-at-bulk network design
	Extra: Ball carving with O(logn) stretch factor

	II Streaming and sketching algorithms
	Warm up
	Typical tricks
	Majority element

	Estimating the moments of a stream
	Estimating the first moment of a stream
	Estimating the zeroth moment of a stream
	Estimating the kth moment of a stream

	Graph sketching
	Warm up: Finding the single cut
	Warm up 2: Finding one out of k > 1 cut edges
	Maximal forest with O(n log4 n) memory

	III Graph sparsification
	Preserving distances
	-multiplicative spanners
	-additive spanners

	Preserving cuts
	Warm up: G = Kn
	Uniform edge sampling
	Non-uniform edge sampling

	IV Online algorithms and competitive analysis
	Warm up: Ski rental
	Linear search
	Amortized analysis
	Move-to-Front

	Paging
	Types of adversaries
	Random Marking Algorithm (RMA)

	Yao's Minimax Principle
	Application to the paging problem

	The k-server problem
	Special case: Points on a line

	Multiplicative Weights Update (MWU)
	Warm up: Perfect expert exists
	A deterministic MWU algorithm
	A randomized MWU algorithm
	Generalization
	Application: Online routing of virtual circuits

