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Exercise 01

Lecturer: Mohsen Ghaffari Teaching Assistant: Jiahao Qu

1 Monotone Submodular Maximization [Recommended]

Consider a set U of n elements that we can buy and a function f : 2U → R+, where for each
subset S ⊆ U , the value f(S) determines our profit if we buy exactly the elements of set S.

We assume two properties about this profit function: (A) Function f is monotone in the
sense that f(S) ≤ f(T ) for any two sets S, T such that S ⊆ T , and (B) Function f is submodular
in the sense that f(S ∪ i) − f(S) ≥ f(T ∪ i) − f(T ) for any i ∈ U and any two sets S, T such
that S ⊆ T . In simple words, the submodularity means that the marginal gain that we have by
adding i to our purchase set diminishes as we move from one purchase set S to a superset of it
T . That is, roughly speaking, the more that we already have in the purchase set, the less extra
gain by adding an element to it.

Devise an algorithm that purchases a set S of (approximately) maximum profit, subject
to the constraint that |S| ≤ k, for some given value k ∈ {1, 2, 3, . . . , n}. What approximation
factor do you get?

2 2-Approximation for Knapsack (Vazirani 8.2)

In the knapsack problem (discussed in the class), discard all elements that are larger than the
budget B, and then sort the remaining elements by decreasing ratio of profit to size, let this
order be a1, a2, . . . , an. Let k be the smallest number such that the total size of the first k
elements a1, a2, . . . , ak exceeds the budget B. Pick the more profitable of the following two
options: {a1, a2, . . . , ak−1} and {ak}. Prove that this gives a 2-approximation for the most
profitable set that fits in the knapsack.

3 Connected Dominating Set

Given an n-node graph G = (V,E), a set S ⊂ V of vertices is called a Connected Dominating
Set (CDS) if the following two properties are satisfied: (1) each node v ∈ V is either in S or
has a neighbor in S, (2) the subgraph G[S] induced by S—i.e., the one made of S-vertices and
all edges whose both endpoints are in S—is connected. Devise an approximation algorithm for
finding a minimum-cardinality CDS.
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4 Max-weight Matroid Base (Williamson-Shmoys 2.12)

A matroid (E , I) is defined by a ground set E of elements and a collection I = {S1, S2, . . . , S`}
of independent subsets Si ⊆ E , subject to the following conditions:

1. For any two subsets S and S′ such that S ⊆ S′, if S′ is independent, then so is S, i.e.,
(S′ ∈ I)⇒ (S ∈ I).

2. For any two independent sets S and T such that |S| < |T |, there exists an element e ∈ T \S
such that (S ∪ {e}) ∈ I.

We call an independent set S a base if there is no T ∈ I such that S ( T . That is, S is in some
sense maximal with regard to independence.

Suppose that each element e ∈ E has a weight we ≥ 0. Devise an algorithm that finds a
maximum-weight base of the matroid.

5 k-Center

Consider a set of n points P = {p1, p2, . . . , pn} and a distance metric d : P ×P → [0,∞) where
d(pi, pj) indicates the distance between the two points pi, pj ∈ P . For a set S ⊆ P , and an
arbitrary point p′ ∈ P , the distance of p′ to S is equal to minp′′∈S d(p′, p′′). The objective is
to find a set S ⊆ P of k points, called centers, such that the maximum distance of any point
p′ ∈ P to the set S is minimized. Devise a 2-approximation algorithm for this problem.

6 Walking on the Hypercube

Consider the d-dimensional hypercube, which has vertex set {0, 1}d and where every two vertices
that differ in exactly one coordinate are connected by an edge. Suppose that each edge has a
random length drawn from an exponential distribution with mean 1, and the lengths of different
edges are independent. Devise an algorithm that finds a walk from the vertex (0, 0, . . . , 0) to
the vertex (1, 1, . . . , 1) with expected length O(log d).
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