
Advanced Algorithms 2021 10/22, 2021

Exercise 05

Lecturer: Mohsen Ghaffari Teaching Assistant: Michal Dory

1 Shorter Sketches for Connectivity

In the lectures, we saw an algorithm for building a maximal spanning forest using O(log4 n)-bit
sketches per vertex. Show that the same task can be solved using shorter sketches of O(log3 n)
bits. More concretely, design an algorithm in the coordinator model, in which each vertex sends
an O(log3 n) bit message to the coordinator, and based on these messages the coordinator can
determine if the graph is connected with high probability.

2 Streaming a Minimum Spanning Tree

In this question, we will see algorithms for computing a minimum spanning tree (MST) in the
streaming model. Throughout the question, you can assume that the weights of the edges in
the input graphs are non-negative integers, and that they are polynomially bounded.

1. Design a streaming algorithm for computing a 2-approximation for the MST of the graph,
using Õ(n) total memory.

2. Design a streaming algorithm for computing the MST of the graph, using Õ(n) total
memory and O(log2 n) passes. In a k-pass streaming algorithm, the algorithm is allowed
to have k passes over the input graph.

3 Streaming 3-Connectivity

In the class, we saw an algorithm with memory n · poly(log n) that solves the connectivity
problem in the streaming setting where we have a stream edge of arrivals and departures on a
set V of n vertices. Devise an algorithm with n·poly(log n) memory that solves the 3-connectivity
problem in the same setting. That is, if the graph at the end of the stream is 3-edge-connected
your algorithm should say YES with probability at least 1− 1/n2, and otherwise it should say
NO with probability at least 1 − 1/n2. Recall that a graph is 3-edge-connected if the graph
remains connected after removing any set of at most 2 edges.

4 Communication with a Coordinator

Consider n-players numbered 1, 2, . . . , n. A set S ⊆ {1, 2, . . . , n} of players is selected and
revealed, where each player gets to know whether itself is in S or not, but it does not get to
know about the other members. Each player can send a B-bit message to the coordinator,
but unfortunately, the coordinate receives the bit-wise AND of the sent messages, instead of
receiving each of them. Devise a scheme with B = O(log2 n) so that the coordinator can still
approximate s = |S| up to a 2-factor, with probability 1− 1/n2.

More formally, you should describe the B-bit message mi = (mi
1,m

i
2, . . . ,m

i
B) that each

player i ∈ {1, . . . , n} sends, as well as how the coordinator infers a 2-factor approximation s̃ of
s = |S| by receiving just the B-bit bitwise AND of these messages. That is, the coordinator will

1

receive only
(
(m1

1∧m2
1∧m3

1∧· · ·∧mn
1), (m

1
2∧m2

2∧m3
2∧· · ·∧mn

2), . . . , (m
1
B∧m2

B∧m3
B∧· · ·∧mn

B)).
Your algorithm should guarantee that Pr[s̃ ∈ [s, 2s)] ≥ 1− 1/n2.

2

