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Exercise 09

Lecturer: Mohsen Ghaffari Teaching Assistant: Michal Dory

1 Basic HopSets [Recommended]

Consider an arbitrary weighted n-node graph G = (V,E,w) where w : E → R+ indicates the
weight of the edges. For two nodes s, t ∈ V , let dist(s, t) denote the smallest total weight among
all paths that connect s and t. Moreover, define the shortest-path hop-distance of s and t to
be the smallest h such that there is a path with weight dist(s, t) and only h hops, connecting
s and t. We define the Shortest-Path Hop-Diameter (SPHD) of the graph to be the maximum
shortest-path hop-distance for any pair of vertices s and t.

In general, a graph might have a large SPHD, even if all nodes are within few hops of each
other (think of a wheel graph with heavy weights on the spokes and light weights around the
wheel). Working with graphs of smaller SPHD is much easier, in many computational settings.
Prove that if for each node v, we add weighted edges to its closest k nodes (breaking ties
arbitrarily) with weight equal to the shortest path between v and that node, we obtain a graph
that preserves pair-wise distances, while having SPHD at most 4n/k.

Hint:

Supposeanoptimalpathinthenewgraphandobservethatthereisnonewedgebetweenany
pairofnon-consecutivenodesofthispath.

2 A Near-Linear Time Algorithm for Multiplicative Spanner
[Recommended]

In the class, we saw that a simple greedy method yields a (2k − 1)-multiplicative spanner with
O(n1+1/k) edges, and the algorithm can be performed in polynomial time. In this exercise, we
see an algorithm that achieves essentially the same objective in near-linear time, that is, in
Õ(m) time, where m denotes the number of the edges in the graph.

The algorithm has k− 1 phases main phases, and works with a rooted clustering of vertices.
Initially, each vertex forms its own cluster. In each phase, we do as follows: first, for each
cluster, we add a BFS-tree confined to this cluster and rooted at the root of this cluster, to
the spanner. Then, we mark each cluster-root as surviving with probability n−1/k and dead
otherwise. The corresponding cluster is called similarly.

Then, each vertex v that was in a dead cluster panics and looks for a new cluster, as follows:
If v has a neighbor u that is in a surviving cluster of this phase, then v picks one of those
neighbors u and joins the same cluster as u. If v has no such neighbor u, then v becomes
hopeless and gives up on the clustering process: in that case, for each (dead) cluster C that has
a node u neighboring v, node v adds one edge connecting v to some node in C to the spanner.
From this point on, node v does not participate in the algorithm anymore.

Then, the algorithm has one final phase, where here each node behaves as a node in a dead
cluster, and adds one edge to each of its neighboring clusters.

(A) Prove that the expected number of edges added to the spanner in the above scheme is at
most O(kn1+1/k) 1.

1With some more care in the analysis, you can tighten the bound to O(n1+1/k + nk) edges.
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(B) Prove that, we always get a (2k − 1)-multiplicative spanner.

(C) Explain how the above algorithm can be performed in Õ(m) time.

Hint:

Afterphasei,thediameterofeachclusterisatmost2i.

3 Additive Approximation of All Pairs Shortest Path

Devise an algorithm with complexity Õ(n5/2) that computes a 2-additive approximation of all
pair shortest paths. That is, for every pair of vertices s, t, the algorithm should output a value
that is in [dist(s, t), dist(s, t) + 2].

Hint:

Findallthedistancesona2-additivespanneroftheoriginalgraph.

4 6-Additive Spanner

In this exercise, we prove theorem 6 of the lecture notes, by showing that each n-node graph
has a 6-additive spanner with Õ(n4/3) edges.

(A) As usual, the algorithm first easily takes care of low-degree vertices, those of degree at
most D1, by adding all of their edges. How large can we set D1?

(B) The second usual step in the algorithm is to take care of shortest paths that have at least
one high-degree vertex, by sampling a few nodes at random, and adding one BFS per
sampled node. We call a vertex high-degree if its degree is above D2. How small can we
set D2?

Now we remain with shortest paths that have no high-degree vertex, and for each such shortest
path, the edges incident on low-degree vertices are already purchased. So, we only need to pay
for the extra edges that we add. We handle these paths in O(log n) successive iterations, where
in the ith iteration we handle paths for which roughly 2i−1 edges are not purchased before. In
particular, for each i ∈ {0, 1, . . . , 2 log n}, define set Ti by randomly including each node v ∈ V in
Ti with probability C logn

D12i
, for some sufficiently large constant C. For each i ∈ {0, 1, . . . , 2 log n},

and for each t0 ∈ T0 and ti ∈ Ti, let Pi be the shortest path between t0 and ti that has at most
2i−1 edges that remain (not already in H) and add all of its edges to the spanner H.

For the last step of the construction, for each node that has a neighbor in T0, we add an
edge to one such neighbor in the spanner.

(C) Prove that the expected number of edges in the above scheme is Õ(n4/3).

(D) Prove that, with high probability, we get a 6-additive spanner.
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