
Advanced Algorithms 2021 Deadline: December 8, 11:59 pm

Graded Homework 2

Lecturer: Mohsen Ghaffari Student Name:

Note 1: Solutions must be typeset in LATEX and the related pdf file should be uploaded via moodle
by 11:59 pm on December 8, 2021 (e.g., the pdf of your solution to problem i should be uploaded
in the assignment titled “GHW2: Problem i” on the moodle homepage). Late submissions will not
be graded. If you would like to add a drawing in your solution, you can simply include a picture
of a hand-drawn figure in your latex. You can submit only pdf one file for each problem and the
drawing should be incorporated in the rest of your explanation.

Note 2: This is a theory course and any claim should be substantiated with a proof. You can dis-
cuss the problems with the other students but you should write your own solutions independently,
and you should be able to orally explain your submitted solution to the instructors, if asked. It is
strictly prohibited to share any (hand)written or electronic (partial) solutions with fellow students.
Moreover, if you discussed a problem with another student, you must list their names on your
submitted solution.

1 Randomized Ski Rental and Yao’s Principle (25 points)

Recall that the in the lecture we demonstrated a deterministic 2-competitive algorithm for Ski
Rental and noted that no (2− ε)-competitive deterministic algorithm exists for any ε > 0.

1. Show that, given a known input distribution (the algorithm knows in advance the probability
of the season lasting exactly i days), there exists an at most 1.99-competitive deterministic
algorithm. Hint: the standard algorithm shown in class is 1-competitive if the season length
is of length at most B.

2. [Nothing to submit] Convince yourself that Yao’s principle is equivalent to proving “any
randomized algorithm running on an unknown input distributions cannot be α-competitive”
by proving “any deterministic algorithm running on a known input distribution cannot be
α-competitive”. Conclude that, due to subtask 1, it is impossible to show a lower bound of
2 for competitiveness of randomized Ski Rental algorithms using Yao’s principle.

3. Yao’s principle is tight under very mild technical conditions. In particular, Yao’s principle
is tight for Ski Rental. Demonstrate this by designing a 1.99-competitive randomized algo-
rithm for Ski Rental (the algorithm does not know the probabilities in advance). Note: the
competitive ratio in this subtask does not need to match nor reference the one in subtask 1).
Hint: since the algorithm does not know the input distribution, the worst-case input can be
assumed to be deterministic.

2 Maximizing ProfitMinimizing Cost (25 points)

We are given a stream of n elements x1, · · · , xn ∈ {1, · · · , n}, all distinct (i.e., the input is a
permutation). We have to choose xi, xj with j ≥ i on arrival, meaning that when an element
arrives, we must immediately decide if we include it in one of the two elements. The profit cost
function is given as xj − xi + 1 1

xj−xi+1 . We would like to minimize this cost. (Note that any

sensible strategy will have xj − xi + 1 > 0 1
xj−xi+1 ≤ 1, as we can choose i = j = n).

1

gmohsen
Typewritten Text
Updated on Dec 1. Deadline for problem 2 is extended to Dec 15.



1. Find a deterministic algorithm that achieves competitive ratio at most
√
n.

2. Show that any randomized algorithm has competitive ratio at least Ω(
√
n)

3 Near-Additive Spanners (25 points)

In class, we discussed construction of purely multiplicative and purely additive spanners. In this
exercise, we will see a construction of (1 + ε, β)-spanners. These spanners are called near-additive
spanners, as the multiplicative stretch is close to 1. These spanners are useful, as they give a stretch
that is close to additive, but can be significantly sparser compared to purely additive spanners.

In the construction we have parameters d1, d2, p1, p2, to be specified later. We have two sampled
sets S1 ⊇ S2, where S1 is obtained by sampling each vertex independently with probability p1,
and S2 is obtained by sampling each vertex from S1 independently with probability p2. We say
that a vertex s ∈ S1 is s-heavy if it has at least d2 vertices from S1 in its (1ε + 2)-neighborhood.
Otherwise, we say it is s-light. We have the following guarantees:

1. Each vertex of degree at least d1, has a neighbor in S1 with high probability.

2. Each s-heavy vertex in S1 has a vertex from S2 at its (1ε + 2)-neighborhood with high prob-
ability.

We next assume that the above properties hold, which happens with high probability. We add
the following edges to the spanner:

1. We add all edges adjacent to vertices of degree at most d1.

2. For each vertex of degree at least d1, we add an edge to a neighbor in S1.

3. We add BFS trees from all vertices in S2.

4. For each s-light vertex in S1 we add the shortest paths from s to all vertices from S1 in the
(1ε + 2)-neighborhood of s.

We next analyze the size and stretch of the spanner.

1. Choose values for d1, d2, p1, p2 such that the above properties hold with high probability, and
such that the expected size of the spanner is minimized. You can assume that ε is a small
constant. There is no need to optimize the logarithmic and constant terms in the size of
spanner.

2. Prove that the spanner has stretch of (1 + 4ε,Θ(1/ε)). You can assume that the properties
discussed above hold, which happens with high probability. Guidance: divide the vertices
into 3 types: light, medium and heavy, where light are vertices of degree at most d1, heavy
are vertices of degree at least d1 that have a neighbor in S1 that is s-heavy, and medium are
the rest. First analyze the stretch for pairs of vertices u, v, where the shortest u − v path
has a heavy vertex. For shortest paths that have only light and medium vertices, divide the
path into segments of length at most 1/ε, and prove that in each of them we lose at most a
+4 additive stretch.

4 Number of Minimum Cuts (25 points)

In the class, it was shown that the number of minimum cuts of any unweighted graph is at most(
n
2

)
. Here we want to discuss two generalizations of this result.

1. In the lecture we proved that the number of minimum cuts in any unweighted graph is at
most

(
n
2

)
. Prove the same result for weighted graphs. All the weights are positive.

2



2. For a graph G = (V,E), a subset of edges E′ ⊆ E is a k-cut if G′ = (V,E \E′) has at least k
connected components. Prove that the number of minimum k-cuts in any unweighted graph
is at most 2O(k)n2k−2.

3




