
6.8S99 Distributed Graph Algorithms September 5, 2014

Lecture 1
Lecturer: Mohsen Ghaffari Scribe: Mira Radeva

1 Main Topics and Models

The two main concepts covered in the class will be locality and congestion.

First, we describe a basic abstract model that we use in studying these two
concepts.

The Model:

• the network is represented as a graph G = (V,E), where |V | = n

• each node knows its neighbors

• the execution of an algorithm proceeds in synchronous rounds where in
each round each node sends a message to each of its neighbors

• each node may know some approximation of a global property of G; for
instance, nodes might know an approximation of n.

In the first half of the course, we assume that the message sizes are unbounded,
and thus, each node can send all the information that it has to its neighbors.
This model is called the LOCAL model. In the second half of the course, we
assume that the each message size has at most B-bits, and where typically one
assumes B = O(log n). The model with this restriction is called the CONGEST
model.

2 On Locality in Graph Problems

In the rest of this lecture, and generally the first half of the course, our focus
will be on the issue of locality. We start with a simple question:

• With how many colors can we color a graph within k rounds? Note that
in k rounds, each node learns information only of its neighborhood of size
k. Thus, a rephrasing of the question is, with how many colors can we
color a graph if all that each node knows is only its k-neighborhood.

1-1

Problem Statement for Coloring: Each node v ∈ V needs to be assigned
a color cv ∈ {1, · · · , c} such that for all edges e = (u, v) ∈ E, cv 6= cu.

For this lecture, we assume ∆ = Θ(1), where ∆ is the maximum degree in
the graph, and we seek coloring with Θ(1)-many colors. We cover two main
results:

1. Cole-Vishkin [86]: Θ(1)-coloring for graphs with ∆ = Θ(1), in log∗ n+
O(1) rounds 1.

2. Linial [89]: 1/2 log∗ n− 1 rounds are necessary.

3 The Cole-Vishkin Algorithm

3.1 Main Algorithm Idea

We start with a simpler setting where G is an arbitrary rooted tree, in which
each node knows its parent, and each node has a unique ID ∈ {1, · · · , n}. Note
that the node ids induce a coloring with palette size n.

Outline The objective is to reduce the size of the palette from n to 3 in
log∗ n + O(1) rounds. We will reduce the size of the palette exponentially in
each round, which will result in a running time of approximately log∗ n to go
from palette size n to a constant palette size. After that, we will use extra Θ(1)
rounds to get to a 3-coloring.

Remark: Any tree can be colored in 2 colors. However, finding a 2-coloring
distributedly might take Ω(n) rounds (see intuition for this at the end of the
section).

Notation: Let civ denote the color of node v after round i.

Algorithm: Each round of the algorithm is as follows:

• (Rule for non-root) if v 6= r, ci+1
v = (`, b`), where ` and b` are defined as

follows:

– ` is the index2 of the first bit in the binary representation of the color
of v that differs from v’s parent’s color.

– b` is the value of v’s bit at index `

• (Rule for root) if v = r, pick an arbitrary index `, let b` be v’s bit at index
`, and set ci+1

v = (`, b`).

1Definition of log∗ n: log∗ n = 0 for n ≤ 1, and log∗ n = 1 + log∗(logn) for n > 1
2The direction from which the bits are counted does not matter, as long as it is consistent

throughout the algorithm.

1-2

Lemma 1 If the old coloring ci is good, so is the new coloring ci+1.

Proof (Sketch) Consider two neighbors v and w; WLOG, assume w is the
parent of v. Let ci+1

v = (xv, yv) and ci+1
w = (xw, yw). Note that xv and xw exist

because ci was a legal coloring. If xv 6= xw, the new coloring is good. Otherwise,
by the choice of xv, which is the index of the bit in which civ and ciw differ, it
must be true that yv 6= yw. That completes the proof.

Lemma 2 If the old coloring uses m bits, then the new coloring can be repre-
sented using dlogme+ 1 bits.

Therefore, applying this lemma iteratively, it is easy to see that the algorithm
results in a Θ(1)-coloring in log∗ n+O(1) rounds.

3.2 Reducing the number of colors from Θ(1) to 3

We will show how to get from c = Θ(1) ≥ 4-coloring to a c − 1 coloring in 2
rounds. In particular, we show how to get rid of color number c:

• (Round 1):

– if v = r, ci+1
v ∈ {1, 2, 3} such that civ 6= ci+1

v .

– if v 6= r, v adopts the color of its parent.

• (Round 2): if civ = c, ci+1
v = {1, 2, 3}, such that ci+1

v is different from the
color of all neighbors of v.

From the algorithm, we can see that after round 1, each node has neighbors
colored in at most two colors. So, in round 2, a node has at least one of the
colors {1, 2, 3} to pick that is different from its neighbors’ colors.

Therefore, we can get from a palette of size c = Θ(1) to a palette of size 3
in a constant number of rounds.

Note on 2-coloring for trees: As mentioned earlier, a tree can always be
colored in 2 colors (alternate colors between layers of the tree). Consider a tree
which is just a line of n nodes. Since colors need to alternate, it is necessary for
the two ends of the line to communicate through a chain of messages in order to
ensure correct coloring. Such a causal dependency necessitates a linear number
of rounds.

3.3 Extension to General Graphs with ∆ = Θ(1)

Idea: Treat each neighbor in the graph as a parent. Each node has at most
Θ(1) parents.

The algorithm in Section 3.1 can be modified in such a way that a node’s
color is not a pair anymore, but a sequence of ∆ fields as follows:

1-3

((`1, b`1), (`3, b`2), · · · , (`∆, b`∆)), where each field corresponds to a neighbor of
the node (numbered arbitrarily), and the `’s and b`’s are defined as before.

To show an equivalent of Lemma 1 above, consider two neighbors v and w
(w is a parent of v) and repeat the same arguments as in Lemma 1 with respect
to the field (`w, b`w) of the coloring of v.

To show an equivalent of Lemma 2 above, note that each field in the coloring
of a node is again dlogme + 1 bits, where m the the number of bits required
to encode the old coloring of the node. Therefore, the color of each node is at
most ∆(dlogme+ 1) bits. This results in a dependency on ∆ of the palette size
(final palette size of ∆ log ∆ bits), which is OK because we assume ∆ = Θ(1).

Exercise for the Next Lecture: Think about how to get a coloring with a
palette size of O(∆2 log n) in 1 round?

4 Linial’s Lower Bound

Consider a ring of n nodes, where each node can distinguish between its left
and right neighbor. We want to show that any 3-coloring of the ring requires
1/2 log∗ n−1 rounds3. The proof described here is based on the version presented
by Laurinharju and Suomela [Brief announcement: linial’s lower bound made
easy, PODC 2014], which is a streamlined version of Linial’s argument.

Suppose an algorithm uses T � n rounds to complete the coloring of the
ring. After T rounds, each node v in the ring has information about nodes T
hops away to the left and T hops away to the right. We can express this as
a vector of node ID’s: (x1, x2, · · · , x2T+1) (node v’s own ID in in the middle
of this vector). Therefore, the algorithm for each node can be thought of as a
mapping: (x1, x2, · · · , x2T+1)→ c ∈ {1, 2, 3}.

Notation: A is a k-ary c-coloring if:

• (P1) For all 1 ≤ x1 < x2 < · · · < xk ≤ n, A(x1, · · · , xk) ∈ {1, · · · , c}.

• (P2) For all 1 ≤ x1 < x2 < · · · < xk < xk+1 ≤ n, A(x1, · · · , xk) 6=
A(x2, · · · , xk+1).

We show that for any k-ary 3-coloring, k ≥ log∗ n− 1.

Lemma 3 For any 1-ary c-coloring, c ≥ n.

Lemma 4 For any k-ary c-coloring A, there is a (k − 1)-ary 2c-coloring B

Proof (Sketch) Given A, we need to define B(x1, · · · , xk−1). Let

B(x1, · · · , xk−1) = {A(x1, · · · , xk)|xk−1 < xk ≤ n}.
3It is easy to see that the lower bound remains 1/2 log∗ n − O(1) for any coloring with

constant colors.

1-4

Note that there are at most 2c possible values for B(x1, · · · , xk), i.e., the number
of the subsets of {1, . . . , c}. This shows that the coloring B has palette size 2c-
coloring (property P1 of the definition above).

We now prove property P2. For the sake of contradiction, suppose that
there exist 1 ≤ x1 < x2 < · · · < xk ≤ n such that B(x1, · · · , xk−1) =
B(x2, · · · , xk). Let α = A(x1, · · · , xk). By the definition of B, we know that
α ∈ B(x1, · · · , xk−1). Since B(x1, · · · , xk−1) = B(x2, · · · , xk), it must be true
that α ∈ B(x2, · · · , xk). Therefore, because of the way we defined B, we know
there exists xk+1 > xk such that α ∈ A(x2, · · · , xk+1). However, now we have
A(x1, · · · , xk) = A(x1, · · · , xk+1), which is in contradiction with property P2 of
the coloring A. This completes the proof.

Using Lemma 4 iteratively, we can build the following sequence: k-ary 3-
coloring → (k − 1)-ary 23-coloring → (k − 2)-ary 223

-coloring → · · · → 1-ary
(tower of height k + 1)-coloring. Now from Lemma 3, we know that tower of
height k + 1 of 2 must be at least n, which proves that k ≥ log∗ n− 1.

1-5

