ARROW: Restoration-Aware Traffic Engineering

Zhizhen Zhong
Massachusetts Institute of Technology

Manya Ghouabi
Massachusetts Institute of Technology

Alaa Khaddaj
Massachusetts Institute of Technology

Jonathan Leach
Facebook

Yiting Xia
Max Planck Institute for Informatics

Ying Zhang
Facebook

ABSTRACT
Fiber cut events reduce the capacity of wide-area networks (WANs) by several Tbps. In this paper, we revive the lost capacity by reconfiguring the wavelengths from cut fibers into healthy fibers. We highlight two challenges that made prior solutions impractical and propose a system called Arrow to address them. First, our measurements show that contrary to common belief, in most cases, the lost capacity is only partially restorable. This poses a cross-layer challenge from the Traffic Engineering (TE) perspective that has not been considered before: “Which IP links should be restored and by how much to best match the TE objective?” To address this challenge, Arrow’s restoration-aware TE system takes a set of partial restoration candidates (that we call LotteryTickets) as input and proactively finds the best restoration plan. Second, prior work has not considered the reconfiguration latency of amplifiers. However, in practical settings, amplifiers add tens of minutes of reconfiguration delay. To enable fast and practical restoration, Arrow leverages optical noise loading and bypasses amplifier reconfiguration altogether. We evaluate Arrow using large-scale simulations and a testbed. Our testbed demonstrates Arrow’s end-to-end restoration latency is eight seconds. Our large-scale simulations compare Arrow to the state-of-the-art TE schemes and show it can support 2.0×–2.4× more demand without compromising 99.99% availability.

1 INTRODUCTION
Fiber cuts are undesirable events in Wide-Area Networks (WANs) because (i) each fiber carries several Tbps of traffic, and (ii) fiber cuts tend to take a long time to repair. Our analysis of failure tickets at Facebook shows fiber cuts account for 67% of total downtime and 50% of the fiber cut events take over nine hours to repair (§2).

Today’s service providers cope with the loss of capacity caused by fiber cut events by over-provisioning the network. In particular, to protect from massive packet loss, WAN operators pre-allocate extra capacity for failover paths using (i) failure-aware Traffic Engineering (TE) [17, 40, 48, 63, 79] and (ii) optical path protection [14, 19, 59, 68, 80, 81, 84]. In such techniques, when fiber cuts occur, traffic is automatically shifted from failed IP links to pre-allocated backup paths. We argue that pre-allocating paths is unnecessarily expensive because when a fiber is cut, the router ports and transponders associated with that fiber are still usable.

A more attractive solution is to reconfigure the cut fiber’s wavelengths to healthy fibers enabling the transponders and router ports associated with the cut fiber to carry traffic while the fiber itself is out of commission. This idea is called optical restoration and was proposed two decades ago [30]. Despite several follow up papers [32, 45, 49, 52, 56, 72, 74, 82] and the presence of commercially available devices capable of wavelength reconfiguration, such as Reconfigurable Optical Add Drop Multiplexers (ROADMs) [2, 4], the deployment of prior proposals of optical restoration at scale has several challenges, as we describe next.

Our measurements of a global WAN with over 200,000 IP links and 1,000 optical fiber links show that in practice, 62% of fiber cuts have to be partially restored because the remaining fibers do not have enough available spectrum to host all the wavelengths of the cut fiber. Hence, a practical restoration system must be able to choose which IP links to restore partially and by how much.

We demonstrate that when full restoration is not possible, simply maximizing the restored bandwidth from the optical layer’s perspective, without considering IP links’ traffic demand, leads to sub-optimal throughput. Hence, an IP/optical cross-layer TE is needed to ensure the partially restored capacity is carefully allocated across IP links and is efficiently utilized to match the current traffic demand.

However, today’s TE schemes [17, 40, 42, 47, 48, 58, 60, 63, 77, 79] do not consider optical restoration for fiber cuts. Instead, they consider fiber cuts as fatal events: an IP link is down until the fiber is repaired. To incorporate partial restoration into the TE, we propose a restoration-aware TE system, called Agile RestoRation of Optical Wavelengths (ARROW). ARROW grapples with the algorithmic challenges of formulating a restoration-aware TE, such as how to find
2 BACKGROUND AND MEASUREMENTS

To motivate our work, we investigate the impact of fiber cuts in a subset of Facebook’s WAN with more than 200,000 IP links and 10,000 optical wavelengths traversing 1,000 optical fiber cables across the world.

The best partial restoration plan while optimizing network throughput, and also with system-level challenges, such as how to reduce the end-to-end restoration latency.

In particular, ARROW’s TE formulation accounts for partial restoration candidates for IP links during hypothetical fiber cut scenarios and plans according to the best restoration plan proactively. We show when full restoration is not possible, many partial restoration candidates can maximize the total restored bandwidth from the optical layer’s perspective, but not all of them maximize network throughput from the TE perspective. Taking all of them into account in a joint IP/optical optimization is computationally infeasible, while taking only one of them is sub-optimal.

Arrow solves this problem in a two-stage approach. The first stage involves an offline analysis of the available fiber spectrum to find a set of potential restoration candidates, which we call LotteryTickets (§3.2). Each LotteryTicket represents one possible restoration candidate without taking instantaneous traffic demand into account. The LotteryTickets serve as an abstraction between the optical and IP layers. The second stage solves an online TE formulation for the current traffic demand to find the winning LotteryTicket for each hypothetical fiber cut scenario (§3.3). The TE formulation finds the appropriate tunnel allocations and restoration plans proactively, before fiber cuts happen, enabling the network to react quickly when a particular fiber cut happens.

An important practical consideration is the end-to-end reconfiguration latency. Although ROADMs [4] have been ubiquitously deployed in our WAN, reconfiguring a set of wavelengths from a cut fiber to healthy ones results in optical power instability on the amplifiers of the new optical path(s). Such power excursions will cause packet loss until all the amplifiers adjust their optical gain, a process that takes several minutes in practice [16, 67, 90, 92]. To address this challenge, Arrow leverages a recently commoditized device called the Amplified Spontaneous Emission (ASE) noise source [83] to bypass the amplifier reconfiguration time altogether, reducing the end-to-end restoration latency from tens of minutes to eight seconds. Prior work showed this device is currently being deployed in large-scale WANs to facilitate wavelength installation [33, 35, 54].

To evaluate Arrow, we build a production-level testbed with 4 ROADM sites, 34 amplifiers, and over 2000 km fiber that faithfully emulate part of our production backbone. Using this testbed, we demonstrate the feasibility of reconfiguring 2.8 Tbps IP capacity (14 wavelengths) within eight seconds. To evaluate the impact of Arrow on throughput and availability, we conduct extensive simulations, comparing state-of-the-art TE algorithms (TeaVaR [17], FFC [63], and ECMP [21]) with Arrow. Our simulations show Arrow supports between 2.0×–2.4× more demand without compromising 99.99% availability. Moreover, we demonstrate that Arrow sustains the same throughput at the same availability level while requiring 2.8× fewer router ports and optical transponders.

2.1 Overview

Figure 1 illustrates how IP links and optical wavelengths are mapped onto each other in Facebook. As shown, several router ports are grouped into one port-channel. Each port-channel represents an IP link and carries several Tbps of traffic via multiple wavelengths. Flows destined for an IP address are load-balanced across all the interfaces of a port-channel [9, 25, 46]. The aggregation device aggregates multiple grey router ports into tunable Dense Wavelength-Division Multiplexing (DWDM) transponders. For simplicity of representation, the figure shows a 1-to-1 mapping between router ports and transponders, but a real deployment is more complex. The mapping between wavelengths and fibers is configured in the ROADM. ROADMs can dynamically reconfigure wavelengths to map to any fiber [1, 3, 37], but as we show in this paper, using this feature is not without challenges.

Today, once a fiber is cut, router ports and transponders associated with the failed fiber become unusable and sit idle until the fiber is repaired. However, several healthy fibers are often available to reconfigure the wavelengths traversing the cut fiber by reconfiguring the ROADMs on the fiber path. For example, in Fig. 1, if fiber 2 is cut, IP link 2 goes down, causing wavelengths λ3 to λ6, their corresponding transponders, and their router ports (Eth1/1 to Eth1/1/6) to become idle. Our goal is to reconfigure these four idle wavelengths (or some of them) on fiber 1 and/or fiber 3. We refer to fiber 1 and fiber 3 as surrogate fibers. The decision of which surrogate fiber to choose for each port-channel (i.e., IP link) and how much capacity to restore depends on several factors discussed later in the paper.

Figure 2 presents a high-level example of Arrow in action. The top row shows the network in a healthy state. The first and last columns show the optical and IP-layer views of the network, respectively. The middle column represents the mapping between the two layers. Note the purple IP link between A and C in Figs. 2(b) and (c): even though there are no direct fibers between A and C, the provider configured site D to pass through the light between A and

The term grey router ports is a common term in the optics community [5]. It means the transceivers on routers use optical wavelengths outside the DWDM’s color range. The device that aggregates multiple grey ports and converts them to DWDM light is often called an Optical Transport Network (OTN) switch.
C entirely in the optical domain. As a result, the light is not terminated on intermediate hop D, and from the IP layer’s perspective, IP1 is a direct IP link between nodes A and C.

The second row in Fig. 2 shows the status of the network after a fiber cut without Arrow. As shown in Figs. 2(c) and (f), IP1 and IP2 become unavailable because they were traversing the cut fiber. Consequently, the IP layer has to operate with reduced capacity while the router ports corresponding to IP1 and IP2 sit idle. In contrast, Arrow (third row) restores the IP-layer view back to the healthy state by reconfiguring the wavelengths corresponding to IP1 and IP2 to traverse healthy fibers (through node B), as shown in Figs. 2(h) and (i).

2.2 Impact of Fiber Cuts on IP Capacity

We begin by studying 600 WAN-related failure tickets in Facebook over a period of three years (March 2016–June 2019). For each ticket, we record the duration of the failure and its root cause.

Fig. 3(a) plots the CDF of the mean time to repair for all tickets categorized by their root cause. It shows that 50% of the fiber cut events last longer than nine hours, and 10% last over a day. Fig. 3(b) shows the percentage of downtime for each category. As shown, the duration of fiber cut events accounts for 67% of the total downtime. Note that a fiber cut can occur for a variety of reasons including accidental damage by construction workers, aerial poles falling, extreme weather conditions, and fiber being chewed by animals.

To quantify how much IP-layer capacity is lost because of fiber cuts, we dig deeper into the fiber-related failure tickets. We find that, on average, 16 fiber cut events happen every month. Given that Facebook’s datacenter sites have multiple fibers between them (see Fig. 1) a fiber cut will take away some capacity between site-pairs. We study the impact of fiber cuts on all site-pairs in Facebook.

Fig. 4(a) shows the time series of lost capacity between four site-pairs. We study the impact of fiber cuts on all site-pairs in Facebook. We begin by studying 600 WAN-related failure tickets in Facebook while the router ports corresponding to IP1 and IP2 sit idle. In contrast, Arrow (third row) restores the IP-layer view back to the healthy state by reconfiguring the wavelengths corresponding to IP1 and IP2 to traverse healthy fibers (through node B), as shown in Figs. 2(h) and (i).

2.3 Partial Restoration

An immediate question to answer is: “Is there enough room in the optical domain such that for every fiber cut scenario, we can reconfigure all affected wavelengths to healthy fibers?” The answer depends on the number of wavelengths that are already provisioned on fibers. Fig. 5(a) shows the CDF of the spectrum utilization (number of provisioned wavelengths divided by the total number of available wavelengths) of Facebook’s fibers. The figure shows that 95% of fibers have a spectrum utilization less than 60%. This means 95% of the fibers have 40% spare room for Arrow’s wavelength reconfiguration.

Note that the usable spectrum for wavelength reconfiguration is usually smaller than the available spectrum of each fiber link. This is because, in optical domain, a wavelength’s frequency must remain the same throughout the entire fiber path. This property is called wavelength continuity constraint in optical networking literature [12, 20, 64, 88]. For example, as shown in Fig. 5(b), although the three fiber links (fiber DA, fiber AB, and fiber BC) all have 75% of their spectrum available (spectrum utilization is 25%), it turns out that only 25% of the spectrum is usable for reconfiguring λ4. If the failed IP link between nodes C and D contains more than one wavelength, it will result in partial restoration, whereby only one wavelength (λ4) can be restored.

To quantify the amount of partial restoration in Facebook, we define the restoration ratio of a fiber φ as $U_\phi = \frac{W_\phi}{W^*_\phi}$, where W_ϕ is the provisioned bandwidth capacity (in Gbps) in healthy state and W^*_ϕ is the restorable bandwidth capacity after φ is cut. Each fiber in
Facebook carries several wavelengths, \(\lambda \in \Lambda \). Hence, \(W'_\phi = \sum_\lambda \beta'_\lambda \), where \(\beta'_\lambda \) is the bandwidth capacity of wavelength \(\lambda \). \(W'_\phi = \sum_\lambda \beta'_\lambda \), where \(\beta'_\lambda \) is the restorable bandwidth capacity of wavelength \(\lambda \). To calculate \(W'_\phi \) we iterate over every wavelength \(\lambda \) on fiber \(\phi \) and check whether we can reconfigure it using the same frequency and modulation on any of the fibers adjacent to \(\phi \). Most of the time, the modulation of all wavelengths can be kept the same (details in Appendix A.1). But the frequency of some wavelengths must be tuned to avoid frequency collisions with existing wavelengths already working on surrogate fiber paths using tunable transponders which are already deployed in Facebook. Even with frequency tuning, in some cases, we may not be able to find a common available wavelength frequency end-to-end on all of the fibers along the new fiber path, as different fibers may not have an overlapping available spectrum due to the wavelength continuity constraint. When there is no available frequency, the wavelength is not reconfigurable, and its restorable bandwidth becomes zero, resulting in \(W'_\phi < W_\phi \).

Hence fiber \(\phi \) becomes partially restorable.

For instance, in Fig. 2(b), fiber DC has two wavelengths (\(\lambda_1 \) and \(\lambda_2 \)) in its healthy state. Fig. 2(b) shows the restoration path traverses three surrogate fibers (DA, AB, BC). Hence, both \(\lambda_1 \) and \(\lambda_2 \) frequencies must be available on all three fibers. If one of the fibers is already occupying the same frequency as \(\lambda_2 \), Arrow searches for another frequency available across all three fibers. If no such frequency exists, Arrow will not reconfigure \(\lambda_2 \), and the restoration ratio for fiber DC becomes 50%.

To quantify the degree of partial restoration in Facebook, we simulate all single fiber cut scenarios in our WAN and calculate the restoration ratio, \(U_\phi \), of each fiber \(\phi \). Fig. 6(a) plots the CDF of the restoration ratio (percentage) for all fibers. It shows 34% of fibers are fully restorable, 4% are not restorable at all, and 62% are partially restorable. Further, Fig. 6(b) plots the relationship between the restoration ratio and provisioned bandwidth capacity for all fibers. For fibers with provisioned bandwidth capacity larger than 10 Tbps, the restoration ratio is almost never 100%. In disaster scenarios where multiple fiber cuts can happen, partial restoration plays a bigger role because more capacity is lost. Thus, selecting which IP links to recover becomes even more important.

When full restoration is not possible, deciding which IP link to restore and by how much is challenging. Consider the network in Fig. 7(a), with IP\(_1\) and IP\(_2\) traversing fiber BC. In healthy state, IP\(_1\) and IP\(_2\) have four and eight wavelengths, respectively. Assuming each wavelength’s bandwidth is 100 Gbps, \(W_{BC} = 1200 \) Gbps. When fiber BC is cut, its wavelengths can be reconfigured into the top or bottom (or both) surrogate fibers. But suppose the available spectrum is such that the top fiber has three free wavelengths, and the bottom one has two. This means we can only reconfigure five wavelengths, each with 100 Gbps bandwidth (\(W'_{BC} = 500 \) Gbps). However, there are several different options to distribute these wavelengths to each IP link. Fig. 7(b) illustrates restoration candidate 1, where IP\(_1\)’s restored bandwidth is 200 Gbps (one wavelength restored on the top fiber and another on the bottom fiber). This leaves three wavelengths (two on the top fiber and one on the bottom) for IP\(_2\). Two other candidates are illustrated in Figs. 7(c) and (d). Note that all candidate options ultimately contain the maximum amount of restorable bandwidth (\(W'_{BC} = 500 \) Gbps). The difference is how they distribute the wavelengths across IP links. From the optical layer’s perspective, all of the above restoration candidates are equal. Now, consider the case where IP\(_1\)’s and IP\(_2\)’s traffic demands are 100 Gbps and 400 Gbps, respectively. The throughput of restoration candidates 1, 2, and 3 (Figs. 7(b), (c), and (d)) is 400 Gbps, 500 Gbps, and 300 Gbps, respectively. Hence, considering the traffic demand, candidate 2 in Fig. 7(c) is optimal, and the other candidates are sub-optimal.
3 HANDLING PARTIAL RESTORATION

Thus far we have shown that, in practice, most optical fibers are not fully restorable. An important question is: when full restoration is not possible, which partial restoration candidate leads to the best network throughput? In response, this section explains Arrow’s cross-layer approach to handle partial restoration.

3.1 High-level Design

We start with a high-level explanation of our design.

Joint IP/optical formulation is not scalable. A strawman approach to take partial restorations into account is to jointly optimize the IP-layer’s instantaneous traffic demand with optical-layer wavelength assignment by formulating the problem as an Integer Linear Program (ILP). However, solving the ILP is not scalable, even for networks of moderate size (≤20 nodes) [40, 91]. In Appendix A.4, we present the joint cross-layer IP/optical optimal formulation. We then report the number of variables and constraints for three network topologies (Table 7) and find that the size of the optimization problem grows massively. Hence, the joint optimization cannot be solved even within several days, making it not suitable for modern TE systems that re-optimize traffic allocation periodically (every few minutes).

Optical restoration during capacity planning is not optimal. Instead of taking the instantaneous traffic demand, a common technique in prior work is to plan for optical restoration during the capacity planning phase [13, 23, 30, 31, 39, 40, 79]. While this approach is useful, our evaluations show it is less effective compared to Arrow (§6) because the instantaneous traffic demand can be different from the traffic matrix considered during capacity planning. Moreover, prior-proposals still take several minutes, if not hours, to execute as capacity planning is an infrequent event (e.g., months) and does not have a tight execution deadline.

Centralized TE has a tight execution time. Modern WANs use centralized TE formulations to reduce congestion and increase efficiency [42, 47, 58, 61]. The TE controller periodically (e.g., every five minutes [6, 42]) adjusts the traffic allocation on network paths to satisfy the current traffic demand. As a result, the TE formulation has a tight execution deadline. Our production operators in Facebook allow 5 minutes for TE execution deadline. Hence, to be deployable, Arrow’s restoration-aware TE must maintain this tight deadline.

Abstracting optical layer for TE (§3.2). To embed restoration awareness into centralized TE formulations, we design a two-stage solution. The first stage is executed offline using IP/optical mapping in the WAN, without considering instantaneous traffic demand. As the IP/optical mapping does not change frequently, this stage does not have to be executed as frequently as the TE. The output of this stage is an abstraction between the optical layer and the TE. Our abstraction contains a set of partial restoration candidates, which we call LotteryTickets.

Restoration-aware TE formulation (§3.3). The second stage of our solution is an online restoration-aware TE formulation using LotteryTickets. Using the current traffic demand, our TE formulation computes the best traffic flow allocation and restoration plan for each failure scenario proactively, before fiber cuts happen. Finally, Arrow installs the wavelength reconfiguration plans into the ROADMs to be able to react quickly when a particular fiber cut happens. Fig. 8 illustrates Arrow’s high-level system design. The LotteryTicket abstraction is explained in Section 3.2. Details of the traffic engineering formulation, including traffic splitting ratios \((\omega_{ij})\) and restoration plans \((Z^*)\), are in Section 3.3.

3.2 The LotteryTicket Abstraction

LotteryTicket design. The intuition for our LotteryTicket abstraction is shown in Fig. 7: all three restoration candidates are optimal from the optical layer’s perspective (maximizing total restorable capacity) but only one, candidate 2, maximizes the throughput. In other words, all three candidates are *lottery tickets* with good chances of winning, but depending on the traffic demand, only one is the winner. Given that the traffic matrix changes periodically, simply hard coding one of them into the TE is sub-optimal. Instead, Arrow finds a set \(Z\) containing several LotteryTickets and feeds them into the TE as input parameters. The number of LotteryTickets is a configurable parameter. Section 6 evaluates the impact of the number of LotteryTickets on Arrow’s performance.

More formally, assume a fiber cut scenario \(q\) causes the IP links between \(n\) source-destination ROADMs to fail. We generate a set \(Z\) containing \(|Z|\) LotteryTickets, where each ticket \(Z^q = \{r^q_1, \ldots, r^q_\lambda\}\) corresponds to the restorable bandwidth capacity of failed IP links indexed from 1 to \(n\), where \(z \in Z\). For instance, the LotteryTickets corresponding to Fig. 7 (b), (c), and (d) are Ticket1: (200 Gbps, 300 Gbps), Ticket2: (100 Gbps, 400 Gbps), and Ticket3: (300 Gbps, 200 Gbps). Note that all tickets restore a total of 500 Gbps of capacity but the restoration capacity of individual IP links differs across tickets.

Arrow’s LotteryTicket algorithm. Algorithm 1 shows the pseudocode of our LotteryTicket generation procedure. The algorithm consists of two parts. First, it starts by solving the Routing and Wavelength Assignment (RWA) problem [88], where the ILP is relaxed to LP (line 2). Second, it uses the RWA’s solution as the seed for randomized rounding to generate LotteryTickets (lines 3–13).

Routing and Wavelength Assignment (RWA). Our RWA_LP module takes three inputs: (1) optical-layer network graph \(G(\Psi, \Phi)\) with ROADM set \(\Psi\) and fiber set \(\Phi\); (2) \(\Psi\) representing the source-destination ROADMs of failed IP links; (3) \(\Lambda\) representing the wavelength information of failed IP links. The RWA module explores the
Algorithm 1 Arrow’s LotteryTicket Pseudocode

```java
1: procedure CreateLotteryTicketsForAFiberCutScenario q that has caused n IP links to be down
   2: > Input: G(V, Ψ): optical-layer network graph with ROADM set Ψ and fiber set Φ
   3:   > Input: Ψ = (ψrec, ψdis infringement); vector representing source-destination ROADM pairs of n failed IP links
   4:   > Input: Λ = (λ1, ..., λn): vector representing wavelength information (frequency, modulation) of failed IP links
   5: > Input: δ: rounding stride
   6: > Input: Z: number of LotteryTickets to be generated
   7: > Output: Z| LotteryTickets {R²q}, where R²q = {r₁q, ..., rₙq} corresponds to the restorable bandwidth capacity of failed IP links, 1 ≤ z ≤ |Z|
   8:   ⊲ Find restorable wavelengths Λ using RWA
   9:   2: = RWA_LP(G(V, Ψ), Ψ, Φ); (Appendix A.2)
10: 3: for all z ∈ Z do
11:     for all 1 ≤ e ≤ n do
12:         λₐₑ = Λ[e].num_wavelengths
13:         ⊲ Step 1: decide the rounding stride
14:         x₁ = randInt(1, δ)
15:         ⊲ Step 2: decide rounding up or down
16:         x₂ = randFloat(0, 1)
17:         if x₂ < λₑ – (λₑ) then
18:             ⊲ round up
19:             rₐₑ = min((λₑ) + x₁, Λ[e].num_wavelengths)
20:         else
21:             ⊲ round down
22:             rₐₑ = max((λₑ) – x₁, 0)
23:   ⊲ Find the restorable capacity according to modulations
24:   3: = rₐₑ × Λ[e].modulation;
25:   ⊲ Append the result into LotteryTickets
26:   3: append (rₐₑ)
27: return Z| LotteryTickets {R²q}, z ∈ Z
```

<table>
<thead>
<tr>
<th>G(V, E)</th>
<th>IP-layer network graph with datacenter sites set V and IP links set E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F = {f}</td>
<td>Flows aggregated by ingress-egress sites.</td>
</tr>
<tr>
<td>dᵣ</td>
<td>Bandwidth demand of flow f.</td>
</tr>
<tr>
<td>cₑ</td>
<td>Bandwidth capacity of IP link e ∈ E.</td>
</tr>
<tr>
<td>Tₑ</td>
<td>Set of tunnels for flow f, Tₑ ⊂ T.</td>
</tr>
<tr>
<td>I[t, e]</td>
<td>1 if tunnel t uses IP link e and 0 otherwise.</td>
</tr>
<tr>
<td>Q = {q}</td>
<td>Considered failure scenarios.</td>
</tr>
<tr>
<td>Tₖ</td>
<td>Residual tunnels for flow f under scenario q.</td>
</tr>
</tbody>
</table>

Table 1: Standard TE input parameters.

rounding up [78] (lines 7–11). During the rounding process, we make sure the rounded integer is never smaller than zero or goes beyond the initial number of wavelengths for that IP link (lines 9 and 11). Finally, we calculate the amount of restorable bandwidth capacity by multiplying the number of restorable wavelengths by the modulation format (line 12).³ The algorithm returns |Z| LotteryTickets.

Handling LotteryTickets’ feasibility. Before Arrow feeds the LotteryTickets into the TE, it performs an additional check to make sure all LotteryTickets are feasible in the optical domain. We add a feasibility check module to drop infeasible LotteryTickets that do not meet all the constraints of our RWA formulation (Appendix A.2). More specifically, since the LotteryTickets are generated using a randomized rounding process agnostic to the optical topology, some of them may violate the RWA constraints. Hence, it is necessary to check the feasibility of the generated tickets and filter out the infeasible ones.

3.3 Restoration-Aware Traffic Engineering

This section describes Arrow’s restoration-aware TE formulation. For clarity of presentation, we use FFC’s [63] notation. Note that other techniques that improve over FFC, such as TeaVaR [17] and PCF [48], can also be applied on top of our formulation.

Standard TE input. We begin by considering the standard TE input parameters listed in Table 1. Similar to prior work, we model the WAN as a directed graph G = (V, E), where the vertex set V represents the datacenter sites, and edge set E represents the IP links between them. In each time epoch, there is a set of source-destination pairs (or “flows”), where each such pair f is associated with a demand dₑ, and a fixed set of paths (or “tunnels”) Tₑ ⊂ T on which its traffic should be routed. Link capacities are given by C = (c₁, ..., cₑ) (e.g., in bps). Similar to FFC, Arrow assumes the tunnels are part of the input, but the formulation can be extended to approaches such as k-shortest paths, traffic oblivious tunnels [58], or logical sequences [48]. Failure scenarios are denoted by q ∈ Q, including fiber cuts, switch failures, and control plane failures. In this paper, we only consider IP link failures caused by fiber cuts, since optical restoration does not apply to switch or control plane failures. To avoid having an exponential number of failure-related

³For example, if the floating point number is 6.3, it should be more likely for the number to be rounded down to 6 and less likely to be rounded up to 7. Hence, we define the probability to round down as [6.3] - 6.3 = 0.7 and the probability to round up as 6.3 - [6.3] = 0.3.

³In practice, different wavelengths might have different modulations; in our implementation, we account for this by iterating over all wavelengths. To simplify the notation, we omit this detail.
constraints, we use TeaVaR’s probabilistic approach [17] and only consider highly-probable failure scenarios (see §6 for details).

ARROW’s two phase formulation. Given a set of LotteryTickets, our goal is to find the winning LotteryTicket for each failure scenario and instantaneous traffic matrix. However, this formulation would require solving an ILP (as shown in Table 9 in Appendix A.5) which violates the tight runtime deadline for ARROW TE. To address this challenge, we introduce a two-phase formulation that separates the LotteryTickets selection from the traffic allocation process while keeping both of them in LP form. Phase I selects the winning LotteryTicket for each failure scenario based on the input traffic demand and Phase II uses the winning LotteryTicket to find the best traffic allocation on tunnels. Tables 2 and 3 present ARROW’s Phase I and II formulations, respectively.

Phase I input parameters. In addition to the standard TE inputs, Phase I formulation takes the following input parameters: a series of LotteryTickets (from Algorithm 1) where the amount of restorable bandwidth capacity for IP link e is given as r_e^q. Moreover, Phase I’s input parameters include a set of restorable tunnels for flow f under scenario q and LotteryTicket z, denoted by $Y_{z,f}^q$. A tunnel is considered restorable if some (or all) of its IP links are restorable during failure scenario q. The set $Y_{z,f}^q$ is calculated based on r_e^q. In scenario q, if every failed link e that tunnel t traverses is available after restoration (i.e., $\prod_{e \in E} L[t,e] \times r_e^q > 0$), then this tunnel is restorable under scenario q (i.e., $t \in Y_{z,f}^q$). Finally, we introduce a new input parameter called $M^{z,f}$ calculated as $a \times \sum_{e \in E} r_e^q$ to capture the α-fraction of total restorable bandwidth capacity for scenario q and LotteryTicket z (details below).

Phase I optimization goal and constraints. We use the same optimization goal as FPC to maximize the network throughput. Constraints (1-3) are standard TE constraints to ensure the following: the sum of the bandwidth of all tunnels of flow f should be larger than f’s allocated bandwidth b_f with Constraint (1); the sum of the bandwidth of all tunnels on a given IP link e should be no larger than the link capacity c_e with Constraint (2); and the allocated bandwidth of flow f should be less than the demand of f with Constraint (3). Constraint (4) considers ARROW’s restorable tunnels by ensuring the sum of the bandwidth of both residual and restorable tunnels for flow f under failure scenario q is larger than f’s allocated bandwidth b_f. Constraint (5) considers ARROW’s restorable links and ensures the sum of the bandwidth of all restorable tunnels routed on link e does not exceed e’s bandwidth capacity with a slack variables Δ_e^q. For the slack variable Δ_e^q for link e under scenario q and LotteryTicket z, we also set a bound $M^{z,f}$ for the sum of Δ_e^q to ensure the total slack is within a reasonable region in Constraint (6).

Phase I output. To select the winning LotteryTicket without solving an ILP, Phase I outputs a floating-point slack variable Δ_e^q that allows the bandwidth allocation of restorable tunnels on IP link e to go beyond the link’s restorable capacity r_e^q. After solving ARROW’s Phase I formulation, we run a post-processing step to find the winning LotteryTickets. This is done by comparing $r_e^q + \Delta_e^q$ with all LotteryTickets. Then, for each failure scenario q, we select the LotteryTicket z with the minimum $\sum_{e \in E} \max(0, \Delta_e^q)$. Z^* is a set of size $|Q|$ that contains the winning LotteryTickets for each failure scenario $q \in Q$. ARROW maps the restoration plan Z^* into wavelengths’ reconfiguration rules and installs them on ROADM config files.

Phase II input parameters. As shown in Table 3, Phase II’s input parameters include the winning LotteryTicket’s restorable bandwidth capacity (denoted by r_e^q) and restorable tunnels (denoted by $Y_{z,f}^q$). These parameters are calculated from ARROW’s Phase I post-processing step.

Phase II optimization goal and constraints. Phase II uses the same optimization goal (maximizing total network throughput) as Phase I. Moreover, the Constraints (7-9) of Phase II are the same as Constraints (1-3) in Phase I. However, Constraints (10-11) use this technique is similar to the ReLU function commonly used in machine learning.
the \(r_{\alpha,q} \) and \(y_{\alpha,q} \) of the winning LotteryTickets (selected by Phase I) for each failure scenario \(q \).

Phase II output. The output of the Phase II consists of two parts: (1) the total bandwidth \(b_f \) that flow \(f \) is permitted to utilize (across all of its tunnels in \(T_f \)); and (2) the allocation of \(b_f \) over flow \(f \)'s tunnels \(T_f \), denoted by \(a_{f,t} \). Arrow periodically computes the optimal values of bandwidth allocations, based on the current demand matrix. Similar to prior TE schemes, after each TE run, Arrow finds the traffic splitting ratio for flow \(f \) among its tunnels, calculated as \(\omega_{f,t} = a_{f,t}/\sum_{t \in T_f} a_{f,t} \). These traffic splitting ratios are then installed on routers [53].

Probabilistic optimality guarantee. Our goal is to find the optimal restoration plan \(z^{opt} \) while maximizing throughput. However, as discussed in §3.1, simply formulating a joint IP/optical formulation is not scalable. As a result, Arrow relies on the LotteryTickets abstraction. However, given that the input LotteryTicket set \(Z \) is generated by randomized rounding, Arrow’s optimality depends on whether the optimal restoration plan appears in LotteryTickets set \(Z \). Consequently, Arrow has a probabilistic optimality guarantee that depends on the probability of selecting \(z^{opt} \) during its randomized rounding process. Note that we do not provide a deterministic optimality guarantee, hence, Arrow’s solution can be sub-optimal. We leave finding a restoration-aware TE formulation, with a practical runtime and a deterministic optimality guarantee, to future work.

Theorem 3.1 (Arrow Probabilistic Optimality). An Arrow TE with \([Z^q]\), LotteryTickets finds the optimal allocation under failure scenario \(q \) with probability

\[
\rho^q = 1 - (1 - \kappa)^{|2^\mathcal{Z}|}
\]

where \(\kappa \) is the probability of finding the optimal LotteryTicket \(z^{opt} \) for scenario \(q \). This probability can be calculated as

\[
\kappa = \prod_{1 \leq e \leq n} \frac{1}{\delta} \times \Pr(\text{round up/down})
\]

where \(1 \leq e \leq n \) is the index of the failed IP link under scenario \(q \) (as defined in line 4 of Algorithm 1), and \(\Pr(\text{round up/down}) \) is the probability of rounding up or down to determine each failed IP link’s restoration option (as defined in lines 6–11 of Algorithm 1).

Please see Appendix A.3 for proof.

4 NOISE LOADING IN ARROW

For decades, wavelength reconfiguration in large-scale WANs has been deemed slow and complicated, even with ROADMs being already deployed. This is because newly reconfigured wavelengths change the power distribution over the fiber spectrum. Hence, the cascaded optical amplifiers along the fiber path need to adjust accordingly. This process introduces a non-trivial challenge to adjust amplifier gain configurations to equalize wavelength power/Signal-to-Noise Ratio (SNR) with repetitive observe-analyze-act loops which take a few minutes per amplifier to converge (Appendix A.7). This problem is commonly referred to as wavelength channel equalization and has been studied extensively in the optics community [7, 8, 16, 51, 55, 62, 67, 92]. Recent work used machine learning to shorten this amplifier reconfiguration delay [90], but it requires a simulation-based firewall to ensure the parameters are safe to deploy on live production networks. Noise loading enables agile wavelength reconfigurations. Arrow bypasses the amplifier reconfiguration latency by leveraging a technology called “noise loading” in modern optical backbones [33, 35, 83]. A programmable optical noise generation device, called the Amplified Spontaneous Emission (ASE) device [83], generates an optical noise signal for all unused wavelengths on all fibers. As a result, from the amplifier’s perspective, all wavelengths are present at all times. Although all wavelength channels are turned up in all fibers, some wavelengths carry noise generated by the ASE device, and some carry IP layer data generated by routers.

Noise loading example. Consider the WAN depicted in Fig. 9. Assume all fibers can carry eight wavelengths in total.\(^7\) In healthy state, two of Fiber1’s available frequencies, \(\lambda_1 \) and \(\lambda_2 \), are connected to router ports and carry data while the other six frequencies, \(\lambda_3 \) to \(\lambda_8 \), are loaded with noise (Fig. 9(a)). Fiber2 has four wavelengths carrying data (\(\lambda_3, \lambda_4, \lambda_5, \) and \(\lambda_6 \)), while the other frequencies (\(\lambda_1, \lambda_2, \lambda_7, \) and \(\lambda_8 \)) are carrying noise (Fig. 9(b)). Now, assume Fiber1 is cut, causing wavelengths \(\lambda_1 \) and \(\lambda_2 \) to fail. Arrow reconfigures these two wavelengths onto Fiber2’s \(\lambda_1 \) and \(\lambda_2 \) slots, which are initially loaded with noise, by configuring ROADM A and B, as well as their noise sources (Fig. 9(d)). All of this is hidden from the amplifiers on both fibers because replacing noise with data is performed locally on the ROADMs (Appendix A.6). As a result, Arrow circumvents amplifier reconfiguration latency because amplifiers will no longer experience power changes as the total number of powered up spectrum frequencies (i.e., eight frequencies) is the same throughout.

5 PRODUCTION-LEVEL TESTBED

Setup. To faithfully evaluate Arrow in a real-world setting, we select a subset of Facebook’s global WAN and separate it from production for experimental purposes. Fig. 10 shows our testbed setup with four ROADMs, 34 amplifiers, and over 2,160 km unidirectional fiber. In our testbed, all hardware devices and software (control, monitoring, failure detection and management, etc.) are identical to those installed on routers [53].
to Facebook’s global WAN. This testbed demonstrates that ARROW can be readily deployed.

A fiber cut restoration trial. Fig. 11 shows an end-to-end experiment for a fiber cut restoration trial. Fig. 11(a) shows the network in healthy state. The top topology represents the IP-layer, and the bottom one represents optical fibers and devices (same layout as Fig. 10(b)). The color of each IP link matches its underlying fiber path. There are 16 wavelengths (each wavelength occupies 75 GHz spectrum frequency width modulated at 200 Gbps bandwidth capacity) grouped into 4 port-channels to support 4 IP links: A→B (0.4 Tbps), A→C (1.2 Tbps), B→D (1.2 Tbps), and C→D (0.4 Tbps). Fig. 11(b) shows the state of the network after fiber CD is cut. This fiber was carrying 14 wavelengths (λ3-λ16) and its cut caused 3 IP links, A→C, B→D, C→D, to fail. To restore the IP-layer capacity, ARROW reconfigures the wavelengths as shown in Fig. 11(c).

Quantifying the restoration latency. Fig. 12 compares the restoration latency of ARROW with the state-of-the-art method [72]. We first use the current amplifier reconfiguration approach in Facebook to reconfigure the wavelengths (the same failure scenario as in Fig. 11). Figs. 12(a) and (b) show the normalized IP layer capacity and optical power measured on fiber AB; as the figure shows, it requires 1,021 seconds (≈17 mins) to restore 2.8 Tbps. We then use ARROW’s noise loading device to bypass the amplifier reconfiguration latency. Figs. 12(c) and (d) show the entire restoration latency is eight seconds; i.e., 127× faster than the state-of-the-art method. We believe this latency can be further reduced to milliseconds with more advanced hardware, as shown in prior work [22]. Moreover, ARROW’s reconfiguration does not affect existing wavelengths (λ1 and λ2) running on the fiber AB, as shown in Fig. 12(d).

Other factors affecting the latency. Two other factors affect ARROW’s restoration latency in practice: 1) wavelength tuning (if there is a frequency collision on the surrogate fiber path); 2) modulation change (if the length of the surrogate fiber path increases). Note that these two steps are optional, as appropriate, and can be adjusted in parallel with ROADM reconfiguration because they affect the transponders only. Prior work has demonstrated frequency tuning [10, 29] and modulation change [76, 77] in milliseconds.

6 LARGE-SCALE SIMULATIONS

We use simulations to quantify the performance gains of ARROW. Our simulation framework is implemented with the Julia programming language [15] and the Gurobi solver [66]. Our code is available online.9 We compare ARROW to the following schemes:

- FFC [63]. FFC is a failure-aware TE formulation that guarantees zero loss for up to k IP-link failure scenarios. We extend FFC to the optical layer by considering scenarios with k fiber cuts, and evaluate both k = 1 and k = 2 cases and refer to them as FFC-1 and FFC-2, respectively.
- TeaVaR [17]. TeaVaR is also a failure-aware TE formulation but instead of absolute guarantees, it provides a probabilistic guarantee depending on the failure probability of fibers. In our simulations, we set TeaVaR’s availability target (β) at 99.9%.
- ECMP [21]. ECMP is not a failure-aware TE and serves as a baseline in our evaluations. It does not consider failure scenarios, hence it does not provide any guarantees with respect to failures; it simply assigns equal amount of traffic to all tunnels of each flow.

9http://arrow.csail.mit.edu
• **ARROW-Naive.** To evaluate the impact of ARROW’s two-phased approach, we consider a naive version of ARROW, called ARROW-Naive, that consists of only phase II. Hence, instead of using LotteryTickets, this approach considers restoration solely at the optical layer without taking instantaneous traffic matrices into account. To do so, ARROW-Naive solves the RWA formulation (Appendix A.2) only once and uses its output as a winning LotteryTicket and bypasses Phase I at every TE run.

Topologies. We evaluate ARROW on three WAN topologies: Facebook, IBM, and B4 (Table 4). For Facebook topology, we use a subset of the optical-layer topology in production. For B4 and IBM, we take the topologies in [58] and use them as the optical-layer topology. Note that in large-scale WANs, the IP-layer topology tends to be denser than the optical-layer topology [65, 71]. To generate realistic IP-layer topologies, we measure the number of IP links per fiber and the number of wavelengths per IP link in Facebook (shown in Fig. 22 in Appendix A.8) and use these distributions to guide us to generate the IP-layer topologies. Unless otherwise stated, we use 120, 90, and 80 as the number of LotteryTickets for running ARROW on Facebook, IBM, and B4, respectively.

Traffic matrix. For B4 and IBM networks, we use 30 traffic matrices from SMORE [58] generated by fitting the real-world traffic considering time variations and diurnal/weekly patterns. For the Facebook topology, we use 12 real traffic matrices from production.

Tunnel selection. ARROW is orthogonal to tunnel selection methods. In our evaluations, we use both fiber-disjoint routing and k-shortest path routing algorithms to route tunnels over the IP-layer topology, while ensuring that there is at least one residual tunnel for every flow under each failure scenario. We set the number of tunnels per flow at 8, 12, and 16, for B4, IBM, and Facebook, respectively.

Fiber cut scenarios. Following the methodology in TeaVaR [17], we use a Weibull distribution (shape=0.8, scale=0.02) to model the failure probability of each fiber. We then generate fiber cut scenarios using cutoff values of 0.001, 0.001, 0.0002 for B4, IBM, Facebook, respectively. Note that depending on the failure probabilities and the cutoff value, the generated fiber cut scenarios may contain both single fiber cut or double fiber cut scenarios. When a fiber fails, all IP links on this fiber fail simultaneously.

Demand scaling. Given the fact that production WANs are over-provisioned, we start with a network state where 100% of traffic demand is satisfied. Similar to prior work [17, 48, 63], we scale the demand matrix uniformly to evaluate each TE’s traffic allocation over tunnels under different traffic loads and failure scenarios.

6.1 Availability and Satisfied Demand Gains

In this section, we show that ARROW improves availability and throughput by restoring the lost IP capacity and reviving the IP-layer network.

Availability metric definition. Availability is a key metric to evaluate the satisfaction of Service Level Agreements (SLAs), and it is directly related to the revenue of network providers [41, 85]. Our availability metric is calculated as follows: for each topology and traffic matrix, we first solve each TE formulation to obtain traffic splitting rules. We then simulate all probabilistic failure scenarios and calculate the availability of each scenario based on the percentage of total demand satisfaction during that scenario. We then take the sum of the availabilities of all failure scenarios weighted by each scenario’s probability as availability of a given traffic matrix. For each topology and demand scale, we then take the average availability across all traffic matrices.

Impact of demand scaling on availability. Fig. 13 shows the availability of different TE schemes on B4, IBM, and Facebook topologies. We focus on availability performance region larger than 99% because network operators need to maintain their network at high availability [41, 43, 85]. Fig. 13 shows that ARROW maintains higher availability levels as the demand is scaled for all three topologies. Specifically, we find that on B4 topology, ARROW can guarantee 99.99% availability, even when the traffic demand is scaled by 3.61×, while FFC-1 can sustain at most 1.63× demand increase at 99.99% availability. As a result, ARROW provides 2.2× gain in throughput compared to FFC-1 without sacrificing 99.99% availability. Table 5 summarizes ARROW’s gains with respect to all considered prior
}| # of LotteryTickets | 1 | 10 | 100 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput (%)</td>
<td>100</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>Optimization time (s)</td>
<td>0.1</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

approaches for the B4 topology at different availability levels. We observe a similar trend for IBM and Facebook topologies, as shown in Fig. 13(b) and (c). At 99.9% availability, ARROW improves the network throughput by 1.6× and 2.4× compared to FFC-1. Note that FFC-1 only provides failure guarantees for single fiber cut scenarios while ARROW considers a combination of single and double fiber cuts. FFC-2 considers all double fiber failures but it has a considerably lower availability than ARROW (ECMP and FFC-2 curves are often overlapping). Although TeaVaR and ARROW both consider the same set of failure scenarios, ARROW outperforms TeaVaR by 2.4×, 2.8×, and 2.7× at 99.9% availability in B4, IBM, and Facebook, respectively.

6.2 Impact of LotteryTickets

Throughput metric definition. Network throughput is another core metric to evaluate TE algorithms because it shows the total traffic that a network can accommodate. For each topology and traffic matrix, our throughput metric is calculated as the ratio of total admissible bandwidth over total demand ($\frac{\sum_{i} b_i}{\sum_{i} d_i}$) returned by the TE optimization formulation. We then take the average network throughput across all traffic matrices.

Impact of number of LotteryTickets on throughput. Fig. 14 shows the impact of the number of LotteryTickets on ARROW’s network throughput for B4 topology when the demand is scaled by 4.2×. The figure shows that when the number of LotteryTickets is small, the throughput fluctuates. This is because LotteryTickets are generated using randomized rounding, hence, more LotteryTickets are probabilistically better. When the number of LotteryTickets is one, it means we only have one restoration candidate for each failure scenario and hence it represents the ARROW-Naive approach where the restoration plan comes from solving the optical restoration RWA formulation (Appendix A.2) offline. As the number of LotteryTickets increases, ARROW’s throughput gradually increases with less fluctuations until it reaches a plateau reflecting that the LotteryTickets have already covered a good set of restoration candidates, and continuing to add new LotteryTickets does not help much. To find a balance between TE execution time and throughput, the operator should select the appropriate number of LotteryTickets.

TE optimization runtime. We now compare ARROW’s optimization runtime for different number of LotteryTickets. ARROW’s optimization is formulated as an LP, and is solvable in polynomial time using Gurobi [66]. Fig. 15 presents Gurobi’s solve time for ARROW TE optimization (Phase I + Phase II runtime) on a Linux server with AMD EPYC 7502P 32-Core CPU processor and 256 GB RAM. Note that this runtime only captures the optimization solve time and excludes the time it takes to build the optimization model. The figure shows that, ARROW’s runtime increases as the number of LotteryTickets increase. For the Facebook topology with 120 LotteryTickets, ARROW’s formulation is solved within 104 seconds. As mentioned in Section 3.1, the deadline for our TE runtime is 5 minute. Hence, ARROW is within the acceptable runtime range in Facebook.

6.3 Cost Savings

Availability-guaranteed throughput. To compare the cost associated with each TE scheme, following TeaVaR’s approach, we first compute the availability-guaranteed throughput for each TE. This is because different TE algorithms that we consider provide different availability guarantees. For instance, FFC-1 guarantees 100% availability for all single fiber cut scenarios, but it does not guarantee anything for double fiber cuts. On the other hand, FFC-2 guarantees 100% availability for all double fiber cuts and hence achieves lower throughput. To make apples-with-apples comparison, we calculate the availability-guaranteed throughput. Specifically, for a given availability target (e.g., $\beta = 99.9\%$), we iterate over all failure scenarios of interest to compute the normalized demand loss for each scenario. We then sort the failure scenarios based on their loss values and find the scenario at the β-percentile. The normalized satisfied demand (1 - loss) of this scenario is reported as the availability-guaranteed throughput. In other words, the throughput is guaranteed to be no smaller than this value for β percent of failure scenarios.

Number of required router ports. The number of required router ports to sustain a highly available network directly relates to the cost of the network. To calculate the number of required router ports, we find the worst-case traffic allocated on each IP link e across all failure scenarios (CAP_e). We then calculate $CAP = \sum_e CAP_e$ to find the required network capacity for the entire topology. To make a fair comparison across different TE schemes, we then normalize CAP by the availability-guaranteed throughput value as a proxy for the number of required router ports for each TE scheme and network topology. Fig. 16 shows the number of required router ports to achieve the same availability-guaranteed throughput with $\beta = 99.9\%$ availability target for different TE algorithms. To put ARROW’s savings into perspective, we also calculate the minimum number of required router ports by considering a hypothetical TE that can achieve 100% availability at all times by fully restoring every failure scenario. This reflects a TE that does not require any over-provisioning of router ports to achieve 100% availability. We call this approach Fully Restorable TE and use it as the baseline in Fig. 16. The figure shows that ARROW has a fundamental advantage over...
Figure 16: Number of router ports required for different TE algorithms to support the same throughput with the same availability level (99.9%).

existing TEs because it can restore lost IP capacity. This feature allows ARROW to provide the same level of availability with less over-provisioning. Specifically, for the Facebook topology, ARROW requires 2.8× fewer router ports than the best failure-aware TE (i.e., TeaVaR). Importantly, TeaVaR, FFC-1, and FFC-2 require 4.1×, 5.2×, 311.4× more router ports compared to the fully restorable TE. However, ARROW only requires 1.5× more router ports to sustain high availability even with partially restorable fibers (see §2.3). Although our fully restorable TE case is a hypothetical best case scenario, this result highlights ARROW’s ability to maintain high throughput and high availability under failures without requiring extensive over-provisioning.

Number of required transponders. Similar to router ports, the number of required transponders also impact cost. In general, there is a 1-to-1 mapping between router ports and transponders (Fig. 1). Hence, the cost savings for router ports directly relate to cost savings for transponders as well.

7 RELATED WORK

Traffic Engineering. Traffic engineering is an important topic in WANs [6, 17, 42, 43, 47, 48, 57, 58, 63, 79]. Work related to ARROW includes failure-aware TE techniques [17, 48, 63], where the TE formulation considers failure scenarios and pre-allocates enough headroom on links so that when failures happen, traffic loss is minimized (or is zero). Although such techniques embed failure-recovery constraints in the TE formulation, in the case of fiber cuts, they end up under-utilizing the WAN significantly. TeaVaR [17] improves the utilization by assigning a probability to each failure scenario but it still needs to allocate headroom for probable failures. The first row in Table 10 (see Appendix A.9) illustrates the properties of this class of solutions. There are also other failure-oblivious TE algorithms that aim at assigning traffic that respecting link capacity [42], distributing traffic to equalize link utilization with traffic-oblivious tunnels [58], or contracting network topologies for runtime optimization [6]. These algorithms generally do not consider failure scenarios in their formulation and can only respond to failures in a reactive way without performance guarantees.

Optical path protection. Optical path protection techniques [14, 19, 59, 68, 80, 81, 84] pre-allocate failover paths solely on the optical domain using a device called the Optical Transport Network (OTN) switch. This is done by statically assigning a set of standby failover paths to each fiber during the capacity planning phase. When a failure happens, the OTN device quickly shifts the traffic from the failed fiber to its active back up path without notifying the TE. The second row in Table 10 illustrates this class of solutions. Although this approach saves on router ports, it still needs to pre-allocate transponders and keeps them idle to be prepared for fast failover. Moreover, since the failover is entirely configured in the optical layer, the TE is blind to the extra available capacity and cannot utilize it optimally.

Classical optical restoration. Classical optical restoration techniques are the most relevant work to this paper. Although the benefits of optical restoration have been demonstrated in prior work [30, 32, 45, 49, 52, 56, 74, 82], to the best of our knowledge, there is no practical study of optical restoration in modern WANs. ARROW makes two novel contributions. First, ARROW augments today’s TE formulations to capture partial restoration candidates for IP links (§3). Second, ARROW uses a noise source to fully populate the amplifiers’ spectrum to bypass their reconfiguration time (§4), achieving an end-to-end failover latency of eight seconds on a WAN-scale testbed (§5).

Reconfigurable WANs. Recently, there have been several proposals to enable reconfigurable WANs [18, 27, 33, 34, 37, 49, 71, 77, 87, 89, 91]. Iris proposed an all-optical circuit switched network to interconnect datacenter sites that are only a few tens of kilometers apart (metro-level) [33]. In contrast, ARROW considers sites that are thousands of kilometers apart and focuses on fiber cut restoration. Another class of prior work proposed enabling reconfigurability in the optical domain to accommodate traffic matrix changes [18, 27, 34, 49, 71, 87, 91]. Notably, OWAN demonstrated reconfiguring optical wavelengths to adapt topology to achieve better bulk transfer performance in the WAN [49]. However, OWAN did not consider failures and its emulated ROADMs did not consider reconfiguration latency. RADWAN [77] proposed changing transponder modulations according to changes to OSNR on fiber paths to achieve better link utilization and availability. But RADWAN did not consider fiber cuts. When a fiber cut happens, RADWAN cannot change the modulation of the wavelengths because the fiber is down and changing the modulations will not help. OptFlow [37] proposed a graph model to enable optical reconfigurability with no change to the TE. But it did not consider partial restoration; hence, the approach is not portable to ARROW.

8 CONCLUSION

We propose a restoration-aware TE system, called ARROW, to proactively consider partially restorable failures when optimizing traffic allocations. While the restoration is done on the optical layer and TE is done on the IP layer, we avoid the computational complexity of conventional cross-layer formulations by designing a novel abstraction, called LotteryTicket, to feed only essential information into the TE formulation to meet the stringent TE runtime requirement. Our experiments show ARROW supports up to 2.0×–2.4× more demand without compromising availability at 99.99% availability. This work does not raise any ethical issues.

Acknowledgment. We would like to acknowledge Facebook for providing resources for this research. In particular, we thank Omar Baldonado, Gaya Nagarajan, anonymous SIGCOMM reviewers, and our shepherd Behnaz Arzani. The MIT affiliated authors were supported by ARPA-E ENLITENED PINE, DARPA FastNICS, and NSF ASCENT-2023468.
A APPENDIX

Appendices are supporting material that has not been peer-reviewed.

A.1 Path Inflation and Modulation Change After Restoration

Fiber path length inflation. An important factor in ARROW is the potential path inflation when the length of the surrogate restoration fiber path (R-path) is significantly longer than the original primary fiber path (P-path). Fig. 17 plots the CDF of the path inflation ratio (restoration path length divided by primary path length) for ARROW to perform optical restoration with and without frequency tuning at Facebook. Interestingly, the figure shows that, on average, 50% of IP links’ restoration paths are shorter than the corresponding primary paths. This means the modulation formats of the restored wavelengths do not need to be reconfigured, thus simplifying ARROW’s operations. For the remaining IP links whose restoration paths are longer than their primary path, we plot the top 10 longest restoration paths in Fig. 17(b) (with transponder frequency tuning) and Fig. 17(c) (without transponder frequency tuning). We observe that all restoration fiber paths are shorter than 5,000 km; hence, they can support 100 Gbps modulation based on our device dataset in Table 6. Higher datarates may be possible for some shorter paths, and restoring such highly-modulated wavelengths to a longer restoration fiber path may trigger the change of modulation formats. Prior work has demonstrated that modulation change latency in WANs is 70 seconds using commodity hardware and can be improved to 35 ms [77].

WAN transponders datarate vs. reach. We use the following specifications from our optical device vendors to plan and manage the optical layer at Facebook. For the same wavelength slot, higher capacity is achieved with more aggressive modulation, thus requiring shorter transmission distance [34, 76, 77]. Note that advanced modulation techniques, e.g., probabilistic constellation shaping, could even extend the optical reach with finer-granularity data rates [24].

<table>
<thead>
<tr>
<th>Datarate (Gbps)</th>
<th>Reach (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>5000</td>
</tr>
<tr>
<td>200</td>
<td>3000</td>
</tr>
<tr>
<td>300</td>
<td>1500</td>
</tr>
<tr>
<td>400</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table 6: Terrestrial long-haul optical transponder specification sheet at Facebook.

A.2 Routing and Wavelength Assignment (RWA) Formulation

The RWA is a classical problem in optical networking [88]. Here, we show the RWA formulation used in ARROW.

Separation of routing and wavelength assignment. Routing and wavelength assignment problems can be combined into one formulation, but ARROW separates the routing step from the wavelength assignment step. The RWA problem is known to be computationally intractable because it requires jointly optimizing a wavelength’s routing path length and the wavelength’s frequency and modulation assignment. ARROW’s separation significantly reduces the formulation complexity, making the problem solvable for large topologies like Facebook within several minutes, while not compromising optimality because routing paths are pre-computed respecting wavelengths’ modulation format maximum transmission reach as noted in Table 6. Note that our RWA is solved on a provisioned brown-field (some wavelengths are already populated to carry live traffic) optical network for restoring the failed wavelengths only, while prior proposals are for green-field optical network planning (the network uses dark fibers, and no wavelengths are populated). This is another reason why our RWA can be solved within several minutes.

Routing the restored wavelengths. Consider a fiber cut scenario where a set of IP links E is lost. To restore each IP link e ∈ E and revive its IP layer capacity, we run k-shortest-path algorithm [86] to find its k surrogate fiber paths (P_e,1,...,P_e,k) with path-length upper bounds based on the modulation format of the failed IP links. Note that we allow multiple restored wavelengths of an IP link to be routed over multiple surrogate restoration fiber paths because their IP-layer bandwidth capacity can be aggregated thanks to the link aggregation protocol (IEEE 802.3ad LACP) [44]. We then represent the routing information using a binary parameter π^e,κ as 1 if a fiber φ ∈ P_e,κ and 0 otherwise.

Wavelength assignment of the restored wavelengths. After obtaining the routing path for restored wavelengths, we need to assign a frequency to each restored wavelength. Consider a fiber φ on the optical layer topology; its spectrum occupancy can be represented by a binary vector φ.spectrum = [0, 0, 1, ..., 1, 0] (e.g., 96 wavelength slots under ITU-T DWDM standard [38]), where 0 means this wavelength slot is already utilized by some working wavelengths carrying live traffic, and 1 means this wavelength slot is available for hosting the reconfigured wavelength for optical restoration. Under one failure scenario, we define a binary variable τ^e,κ,ω as 1 if the restored IP link e’s k surrogate restoration fiber path uses wavelength slot ω on fiber φ and 0 otherwise. We further define an integer variable λ^e,κ as the number of restored wavelengths of failed IP link e on its k surrogate restoration fiber paths. Hence, the wavelength assignment of all restored wavelengths for each restored IP link e should follow the following constraints when maximizing the total restored wavelength number \(\sum_e \sum_k \lambda^e,k\).

\[
\forall \phi, w : \quad \sum_e \sum_k \tau^e,\phi,w \leq \phi.spectrum[w] \quad (14)
\]
\[
\forall e, k, \phi : \quad \lambda^e,k \times \pi^e,\phi,k = \sum_w \tau^e,\phi,w \quad (15)
\]
\[
\forall e, k, w : \quad \xi^e,\phi,w = \tau^e,\phi,w \quad \text{if } \phi, \phi' \in P^e,k \quad (16)
\]
\[
\forall e : \quad \sum_k \lambda^e,k \leq y_e \quad (17)
\]

Constraint (14) ensures each available wavelength on surrogate restoration fibers can only be used once. Constraint (15) formulates the relationship between restored capacity \(\lambda^e,k\) of IP link e routed on its k surrogate restoration fiber path \(P^e,k\) and the wavelength assignment on fibers \(\phi \in P^e,k\). Constraint (16) is the wavelength assignment.

10Higher-capacity links use more aggressive modulation on the optical layer and hence require shorter transmission distance [34, 76, 77].
continuity constraint that ensures the occupied wavelength slots are the same all along the fiber path [12]. Constraint (17) ensures failed IP link e’s total restored wavelength number on all k surrogate restoration fiber paths $\lambda_e = \sum_k \lambda_{k,e}$ does not exceed the initial wavelength number γ_e of failed IP link e.

Relaxation of the wavelength assignment ILP. The above wavelength assignment problem has been proven to be NP-hard [11, 12]. To solve this problem in practical network scale for polynomial time, we relax the 0-1 binary variable $\phi_{k,w}$ to be a floating-point value between 0 and 1 and transform the wavelength assignment problem into a LP. Hence, the restored capacity λ_e for link e also becomes a floating-point number.

Handling non-fractional λ_e. In some cases, the relaxed wavelength assignment LP will return integer numbers for $\lambda_e \in \mathbb{Z}^+$. They do not need rounding processing (desired case in normal rounding problems). However, in our problem setting, where we are generating a set of different restoration candidates, this non-fractional output will result in 0 probability to apply either rounding up or down. Note that in standard randomized rounding techniques, the non-fractional results mean no rounding operation is needed. But in our problem setting, this limits the exploration space of candidate restoration options. To address the non-fractional condition, in our evaluations, when we encounter this situation, we set the probability of rounding up and down as 0.3, and the probability of not rounding as 0.4.

A.3 Proof of Theorem 3.1
Following the discussion in §3.3, we aim to provide a probabilistic guarantee of LotteryTickets’ optimality with randomized rounding. Our proof is based on an assumption that if the optimal LotteryTicket appears in the set of LotteryTickets as input to Arrow ($z^{opt} \in Z$), Arrow’s TE will find the optimal allocation. This assumption is true for Arrow’s binary TE formulation (shown in Table 9).

To prove Theorem 3.1, we consider the case where there exists a restoration candidate z^{opt} that maximizes Arrow’s TE objective. Arrow’s randomized rounding technique (Algorithm 1) returns a set Z of candidate restoration options (LotteryTickets). Therefore, the probability of $z^{opt} \in Z$ equals the probability of Arrow finding the optimal allocation. We denote this probability as ρ^q in Equation (12). We denote κ as the probability of finding z^{opt} with randomized rounding. Hence, for each LotteryTicket, $1 - \kappa$ denotes the probability that this LotteryTicket is not optimal and $(1 - \kappa)|Z|$ denotes the probability that all $|Z|$ LotteryTickets are not optimal. Therefore, the probability of finding z^{opt} (at least one optimal LotteryTicket) is $1 - (1 - \kappa)|Z|$.

To find κ, we need to derive the probability of finding the best LotteryTicket using our randomized rounding algorithm (Algorithm 1). We apply probabilistic randomized rounding in two steps: 1) rounding stride decision (line 6); 2) rounding up/down decision (line 7). With δ as the maximum rounding stride, the probability that our chosen stride will be optimal is $1/\delta$. Therefore, for one failed IP link, the probability of obtaining the best LotteryTicket from the initial LP floating point solution is $1/\delta \times \Pr[\text{round up/down}]$. Since each failure scenario q may affect multiple IP links, every LotteryTicket may contain the restoration value of several IP links. Therefore, the probability κ of finding the optimal LotteryTicket is determined by multiplying the probabilities of all failed IP links. Hence, we derive Equation (13).

A.4 Optimal IP/Optical Formulation for Restoration-Aware TE
We present the difference between conventional TE and restoration-aware TE in Fig. 18. As we discussed in §3, the LotteryTicket design enables Arrow to balance computation complexity and solution optimality: 1) TE without optical restoration information (conventional TE that only operate on the IP layer, e.g., FFC, TeaVaR, etc, shown in Fig. 18(a)), and 2) TE with full optical restoration information (Table 7, shown in Fig. 18(b) and Fig. 18(c)). We present the optimal IP/optical version of Arrow formulation in Table 7. In Fig. 18(d), we depict the design of Arrow’s approach to avoid the excessive complexity of the joint IP/optical formulation based on abstracting optical layer with LotteryTickets.
Optimal IP/optical TE is computationally intractable. As we shown in Fig. 18(b), the cross-layer TE problem takes a set of failure scenarios as input, and for each failure scenario it also contains constraints on the routing (A1) and wavelength assignment (B1) problems on the optical layer following all the optical-layer constraints (e.g., wavelength continuity). This is a RWA problem, which has been proven to be NP-Complete [88]. Moreover, as shown in Fig. 18(c), another way to formulate the cross-layer TE is to convert flow conservation constraints of the wavelength routing problem into a set of pre-calculated surrogate restoration fiber paths (A2) and feed them into the optimization for wavelength assignment (B1). This operation reduces the problem size, but the selection of which surrogate restoration fiber path to use and which wavelength to restore is still an integer problem.

Dynamic restorable tunnels. Unlike the Arrow formulation in Table 2 and Table 3, the state that whether a tunnel is restorable or not is not an input to the optimization, but being dynamically decided internally during the optimization. This is because which IP link can be restored on the optical layer is jointly decided with TE flow allocation, not as input (e.g., LotteryTickets). Therefore, in the joint IP/optical formulation, we do not have a restorable tunnels set $Y_f^\mathcal{R}$ as input. Instead, we take all failed tunnels $T_f - T_f^\mathcal{R}$ of flow f as candidates to be potentially restored and jointly make the decision with the optical-layer RWA.

Size of the optimal formulation. The optimal formulation is computationally intractable, and cannot yield solutions within reasonable amount of time. Therefore, we list the size of the optimization formulation in Table 8. As we can find in Table 8, for an ILP with such problem size, it is not feasible to obtain an optimal solution even in several days with state-of-the-art optimization solvers, e.g., Gurobi [66]. Hence, the cross-layer optimal formulation is computationally intractable for TE.

Constraints. Constraints (18-20) are identical as Constraints (1-3) in Table 2 and Constraints (7-9) in Table 3. Constraint (21) considers all failed tunnels as potential dynamic restorable tunnels and ensure that the total allocated bandwidth for flow f should be no larger than sum bandwidth of its residual tunnels and dynamic restorable tunnels. Constraint (22) ensures the total bandwidth capacity of restorable tunnels does not exceed the restorable bandwidth of the failed link e under failure scenario q. Constraints (23-26) are similar as Constraints (14-17) and ensure RWA constraints for restoring wavelengths of each failed IP link under failure scenario q. Constraint (27) connects the total number of restorable wavelength $\sum_e \lambda_e^q_{eq}$ of link e with the bandwidth capacity r_f^q of restorable IP links e under failure scenario q by multiplying each wavelength with its modulation format.

A.5 Binary ILP Formulation for Arrow’s TE with LotteryTickets

ARROW’s ticket selection process can be formulated as a binary-integer linear problem due to ticket selection (represented by a binary variable x_i^q), as shown in Table 9. The advantage of this binary formulation is that it can confirm the assumption in Proof 3.1 (if the optimal LotteryTicket appears in the set of LotteryTickets as input to ARROW ($z^* \in Z$), ARROW’s TE finds the optimal allocation), however, at the cost of computational complexity.

Constraints. Constraints (28-30) are identical to Constraints (1-3) in Table 2, Constraints (7-9) in Table 3 and Constraints (18-20) in Table 7. Constraint (31-32) are augmented from Constraints (4-5) with the binary selection of LotteryTicket. Constraint (33) ensures only one LotteryTicket can be selected for each failure scenario q.

A.6 ROADM Reconfigurations

Parallel ROADM configurations. In practice, the surrogate restoration fiber path includes multiple ROADM, and all of them need to be configured for data/noise replacement. In ARROW, we avoid serially configuring each of these ROADM. Instead, we group all ROADM into two categories: add/drop ROADM representing source/destination sites and intermediate ROADM representing ROADM that act as optical switches to steer light to a designated direction. ARROW reconfigures all ROADM in each group in parallel: it first reconfigures all add/drop ROADM as well as their
noise sources, and then switches to reconfiguring all intermediate ROADMs and noise sources.

Number of ROADMs to be reconfigured. Reconfiguring wavelengths from the cut fiber path to the surrogate restoration fiber path requires the ROADMs and ASE noise sources (at both add/drop nodes and intermediate nodes) to be reconfigured. We quantify the number of devices to be reconfigured with Arrow for every fiber on Facebook’s optical backbone. Fig. 19 shows the CDF of the number of add/drop and intermediate ROADMs to be reconfigured with Arrow at Facebook. We observe that for 80% of the光纤 cut events, the number of add/drop ROADMs is less than 10, while the number for intermediate ROADMs is less than 6. The reason why there may be more than 2 Add/drop ROADMs is that the failed wavelengths on a cut fiber do not necessarily originate and terminate at the endpoints of the broken fiber. Their source and destination sites could be any other ROADM sites on the optical layer.

A.7 Wavelength Reconfiguration in Legacy Optical Layer is Slow

Wavelength reconfiguration is non-trivial. The presence of amplifiers on fibers introduces a non-trivial challenge to wavelength reconfiguration because of the complex relationship between amplifiers’ gain control mechanism and the wavelengths traversing the fiber. A sudden change to the set of wavelengths, i.e., adding or removing wavelengths simultaneously, could result in unpredictable power fluctuations on each amplifier which, in turn, could lead to packet loss/errors in the IP layer. Current device manufacturers and backbone operators have settled on a conservative stabilization
process with multiple observe-analyze-act control loops that takes several minutes per amplifier. To understand the current practice, we shadowed the process of reconfiguring four wavelengths on a 2,000 km fiber path with 24 cascaded amplifier sites between Canada and US.

Slow wavelength reconfiguration is common in production. Even though wavelength reconfiguration is a slow process, it is an essential part of a production backbone’s operations. As shown in Fig. 20, it takes 14 minutes to reconfigure four wavelengths using legacy hardware without noise loading at Facebook.

A.8 IP-to-Optical Topology Mapping

As discussed in Section 6, in large-scale WANs, the IP-layer topology tends to be denser than the optical-layer topology [65, 71]. Fig. 22 shows the CDF of number of IP links per fiber and number of wavelengths per IP link in Facebook. We use these distributions to guide us to generate the IP-layer topologies for B4, IBM, and Facebook.

A.9 Prior Work Comparison

Three main techniques are used to mitigate the impact of lost capacity caused by fiber cuts: (i) failure-aware TE; (ii) optical path protection; (iii) optical restoration. Table 10 illustrates the key differences between these approaches and Arrow.

In TE-based solutions (first row in Table 10), Port1 and Port2, as well as Transponder1 and Transponder2, need to be pre-allocated in the WAN to enable the TE to quickly switch traffic from the cut fiber to the failover path. Hence, once a fiber cut occurs, the router ports and transponders associated with the failed fiber become unusable and sit idle until the fiber is repaired.

In OTN-based solutions (the second row in Table 10), Port1 remains active during the fiber cut repair from the IP layer’s perspective, but Transponder1 will become idle as traffic is shifted to Transponder2. The OTN approach can save on router ports, but it still requires an extra optical transponder to be in working state so as to be prepared for fast failover under failures.

The third row of Table 10 presents optical restoration [30, 32, 45, 49, 52, 56, 72, 74, 82]. Instead of pre-allocating failover paths, optical restoration techniques dynamically shift the wavelengths from the cut fiber onto healthy surrogate fibers. These approaches do not require pre-allocating router ports or transponders. Instead, they leverage optical devices, such as ROADMs, to shift the wavelengths after the fiber cut. The core idea of the optical restoration technique was proposed two decades ago [30] and it remains a popular solution in the optics community as it does not leave router ports or transponders idle during fiber cuts.

Arrow solves two challenges that make previously proposed optical restoration techniques inefficient in large-scale WANs. First, prior works do not consider the interplay between partially restorable IP links and failure-aware traffic engineering. As a result, they may choose sub-optimal restoration candidates. To solve this challenge...
<table>
<thead>
<tr>
<th>Approach</th>
<th>Failover plan configuration</th>
<th>Failover latency</th>
<th>Practical</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure-aware Traffic Engineering [17, 48, 58, 63]</td>
<td>Routing table</td>
<td>(O(\text{ms}))</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Optical Path Protection [14, 19, 59, 68, 80, 81, 84]</td>
<td>OTN configuration</td>
<td>(O(\text{ms}))</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Optical Restoration [30, 32, 45, 52, 56, 72, 74, 82]</td>
<td>ROADM configuration</td>
<td>10s mins</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>Arrow (this paper)</td>
<td>Routing table, ROADM configuration</td>
<td>(O(s)) now, (O(\text{ms})) future</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Table 10: Comparison with prior work.

Arrow augments today’s TE formulations to consider multiple partial restoration candidates for optimizing IP-layer network throughput (§3). Second, the failover latency of prior proposals is tens of minutes because they require amplifiers’ gains to be adjusted. Arrow uses a noise source to fully populate the amplifiers’ spectrum to bypass the reconfiguration time, achieving an end-to-end failover latency of eight seconds on a WAN-scale testbed (§5). The last row of Table 10 illustrates Arrow’s differences from prior approaches.

A.10 Extensions

Supporting next-generation C+L optical systems. There is a trend to expand the C-band spectrum in the optical layer to L-band to scale the network capacity [75], because of the efficient abstraction of LotteryTickets, Arrow’s TE is orthogonal to optical transmission techniques. The noise loading technique in Arrow’s optical layer can smoothly support the expansion of the L band by loading it with noise [83]. As recent advancements of L-band tunable transponders [26] and reconfigurable WSS [36] are becoming commercially available, Arrow can be easily extended to the L-band and support future WANs.