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Abstract: We demonstrate a practical Bayesian Optimization system for wavelength reconfiguration
at Facebook backbone. Our system uses a firewall for safe deployment. It is open-source, compatible
with any vendor, and achieves 4.76× faster wavelength reconfiguration. © 2021 The Author(s)

1. Introduction
Large-scale online service providers (such as Facebook, Google, Amazon, Microsoft) operate their own global
long-haul optical backbones. These backbones carry over 10,000 optical wavelengths through millions of miles
of fiber. To keep up with the increased traffic from users, these backbones continue to grow by continuously
deploying new wavelengths [1]. However, deploying new wavelengths on a fiber that already carries live traffic
in production optical backbones is non-trivial. This is because any wavelength reconfiguration system needs to
control the complex relationship between amplifiers’ gain, newly-added wavelengths, and wavelengths that are
already traversing the fiber carrying live traffic [2]. Specifically, a sudden change to the set of wavelengths on a
fiber, i.e., deploying or decommissioning wavelengths, could result in power fluctuations on each amplifier which,
in turn, leads to packet loss/errors in the user traffic at the IP layer.

To quantitatively demonstrate the challenge of wavelength reconfiguration in real-world, we shadow today’s
process of deploying new wavelengths at Facebook optical backbone between two major cities in Southeast Asia
using the state-of-the-art devices and algorithms. Fig. 1 presents per-wavelength OSNR and BER over time on a
360-km production fiber with six cascaded amplifier sites. Initially, the fiber is carrying one wavelength. The figure
shows that it takes ≈11 minutes (671 seconds) to add seven new wavelengths. We observe that each wavelength’s
power is slowly increased to its desired level, while inducing non-negligible power excursions on both new and
existing wavelengths. As a result, it is common practice to add wavelengths in a serial manner to avoid power
instabilities, thus increasing the entire time span of the process. Even worse, this approach requires all amplifiers on
the same fiber to be purchased from a single vendor so the amplifiers can work with the proprietary power control
algorithm embedded in vendor devices. This requirement is undesirable because it limits each fiber segment into
a single vendor and hinders innovation in the optical layer.
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Fig. 1: In a real-world production optical backbone, on a fiber with one existing wavelength (λ1), deploying seven
new wavelengths (λ2, · · · ,λ8) takes 671 seconds using the state-of-the-art devices. This includes 179s for control
software’s calculation (t1), 370s for wavelength turn-up (t2), and 122s for post-provisioning adjustments (t3).

2. A Firewall-based Bayesian Optimization System to Enable Multi-Vendor Amplifier Control
The core challenge in wavelength reconfiguration is how to control and optimize all cascaded amplifiers jointly. In
this paper, we propose a firewall-based system for in-situ decision making without a priori training by leveraging
Bayesian Optimization (BO).
Proprietary amplifier control ossifies optical layer. Today’s systems use a three-step control loop for deploying
new wavelengths [3]: (i) observe the status of the network by collecting performance data from devices; (ii) use
a proprietary control algorithm to decide how to adjust the amplifiers; and (iii) push the changes to devices. This
process is repeated until BER and OSNR converge to the desired targets. To move towards open white-box and
multi-vendor backbone, prior proposals [4, 5] have focused on using optical-layer SDN and open interfaces for
steps (i) and (iii). However, an important missing piece is step (ii) that is the amplifier control algorithm. This
algorithm is not open-source since it requires proprietary data, such as amplifier gain profiles and noise figures,
for its internal analytical model. As a result, this control algorithm is embedded inside ROADM line cards without
external accessibility. This prevents large operators, to scale their backbone by leasing existing optical networks
equipped with other vendors’ devices or building new networks with different vendors. Inspired by recent efforts
on open optical networks [6], we aim to fully open-source this process.
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Fig. 2: Our BOW system uses both
GNPy simulator and measurements
from real network for amplifier
gain control.

Algorithm 1 Our Bayesian Optimization-based algorithm for BOW.
1: procedure AUTONOMOUS AMPLIFIER CONTROL WITH BO

. Input: A = {a1,a2, ...,an}: Optical amplifier set on the fiber link;

. Input: sobol num: number of Sobol trials at the beginning of BO process (e.g., 10);

. Input: gpei num: number of GPEI trials for adaptive termination (e.g., 5);

. Output: Gains set∗ = {g∗1,g∗2, ...,g∗n}: Selected target gain parameter for amplifiers;
2: OSNR set0 =ReadOSNR Real(Dest WSS) . Get initial per-wavelength OSNR set
3: reward0 = min(OSNR set0)×M+sum(OSNR set0) . M is a large number (e.g., 104)
4: while i− sobol num < gpei num do . i is the index of BO trials
5: if i < sobol num then
6: Gains seti = Sobol Acquisition(i,rewardi−1);
7: else
8: Gains seti = GPEI Acquisition(i,rewardi−1);
9: OSNR seti = Simulator Firewall(Gains seti,A); . Get OSNR from simulation

10: rewardi = min(OSNR seti)×M+sum(OSNR seti); . M is a large number (e.g., 104)
11: if rewardi > reward0 then . If the parameters do not deteriorate OSNR
12: OSNR seti =ReadOSNR Real(Gains seti,A); . Get OSNR from real network
13: rewardi = min(OSNR seti)×M+sum(OSNR seti); . M is a large number (e.g., 104)
14: if (rewardi− rewardi−1)/rewardi−1 > δ then
15: gpei num= gpei num+ i−sobol num . If reward improvement> δ , update gpei num
16: return Gains set∗ = {g∗1,g∗2, ...,g∗n} with the highest rewardi value

BOW: Learning to control wavelengths powers with BO. Finding an optimal control algorithm is challenging,
because it requires to have a priori knowledge of the status of the network as well as faithful modeling of all
optical components such as fibers and amplifiers. In real-world network environments, the states of these optical
components are variable (e.g., fiber cut repairs impact span loss and weather conditions affect wavelength signal
quality in aerial fibers), and are usually costly to collect (e.g., operators tend not to profile an amplifier’s gain curve
and noise figure once it is carrying live traffic) or even proprietary. To address this challenge, we propose Bayesian-
Optimized Wavelengths (BOW), a system that leverages BO to adapt to various optical-layer conditions and
learns in-situ to make optimal amplifier control decisions on-the-fly without a priori knowledge about network
devices, hence free of vendor lock. BO is a global optimization method that leverages Bayesian learning to model
expensive-to-evaluate black-box functions with an efficient number of samples. Hence, BO is a perfect fit for the
amplifier control problem without the need to pre-model or pre-collect optical-layer characteristics in real-world.
Augment BO with simulation firewalls. Fig. 2 shows the high-level design of our BOW system, and Algo-
rithm 1 shows its detailed pseudo-code. We define the BO objective function as: Reward = min(OSNR set)×
M + sum(OSNR set), where M is a large number (i.e., 104). The intuitions behind this formula is that we aim to
optimize worst-case OSNR as the primary goal, and improve overall OSNR as the secondary goal (lines 3, 10,
13 in Algorithm 1). We use OSNR as our primary performance metric because it can be collected directly and
quickly from the layer-0 ROADM line systems without the need to query transponders. Inside the BO engine,
we use Sobol [7] for the first 10 trials to explore the problem space, then GPEI [8] to fit a Gaussian process
and make predictions that optimize expected improvements (lines 5–8). BO trials terminate if the reward value
is not improved by δ during gpei num consecutive GPEI trials (lines 4, 14, 15). Importantly, a key challenge is
that BO is a probabilistic exploration process. As a result, naively using BO cannot provide guarantees on “safe”
parameters during BO trials. To avoid network disruptions that would result in service interruptions to billions of
users at Facebook during BO’s exploration phase, we augment the conventional BO framework with a firewall.
The intuition behind our augmentation is to place a “simulation firewall” module between the BO engine and the
real-world network. The “firewall” module is based on GNPy’s open-source simulator [9] and is responsible for
pre-evaluating the BO-generated parameters in real-time and estimating per-wavelength OSNR to decide if it is
safe to deploy to real network or not (lines 9–13). Finally, BOW selects and returns the parameters with the largest
reward value (lines 16).

3. Real-World Experimental Evaluation
To demonstrate the feasibility of our proposed BOW system, we use a real-world network at Facebook backbone
in Southeast Asia with 3 ROADM sites, 14 amplifier sites, and over 900 km fiber, as shown in Fig. 3a (this is
identical to the network we measure in Fig. 1). Our BO module is implemented with Ax [10] and BoTorch [11],
and the simulator firewall is implemented based on a GNPy QoT simulator [9]. The BO module reads/writes
parameters from/to devices through open-source FCR/SSH sockets [12]. Our code is publicly available at [13].

Using this setup, we deploy 2.1 Tbps IP capacity (seven wavelengths, each of them modulated to 300 Gbps at
56 GBaud with FEC threshold 2.661×10−2). Then, we disable the vendor-proprietary amplifier control module,
and leverage our BOW system to control amplifiers during wavelength reconfiguration, and show the results in
Fig. 3b. The top figure shows OSNR, and the bottom one shows Pre-FEC BER. The results show that BOW can
cut down the control software calculation time (period t1 in Fig. 1) to zero, because BOW is an in-situ learning
method that decides amplifier control parameters after wavelengths are added without a priori modeling, hence
no need for pre-calculations. Also, BOW cuts the post-provisioning adjustment delay (period t3 in Fig. 1) by a
factor of 1.39 because it is a sample-efficient learning approach that can learn the amplifier configurations with
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Fig. 3: (a) Real-world optical network setup and geographical information. (b) Wavelength reconfiguration with
BOW. (c) Wavelength reconfiguration with “aggressive” state-of-the-art by adding all wavelength all-together.

less number of iterations, while state-of-the-art methods use analytical models and require more control loops,
hence, taking longer time to converge. As a result, BOW reduces the overall wavelength reconfiguration time by
4.76× (from 671 seconds to 141 seconds).

To benchmark the impact of the control loop algorithm, and as an extreme data point, we also test an “ag-
gressive” version of the state-of-the-art method by adding all the wavelengths simultaneously, instead of serially.
Note that our production operators will not adopt this aggressive approach since it runs the risk of dropping user-
facing traffic. But we use this as a benchmark shown in Fig. 3c. The top figure shows OSNR, and the bottom one
shows Pre-FEC BER. The results show that by “aggressively” adding all wavelengths at the same time, only the
t2 wavelength turn-up delay can be directly reduced. However, t1 and t3, which are mostly related to the amplifier
control algorithm, remain almost the same as in Fig. 1. This experiment confirms the importance of developing
new algorithmic systems for open and intelligent amplifier control so as to shorten the t1 and t3 delays.

Approach Avg. OSNR Min. OSNR Avg. Pre-
FEC BER

Max. Pre-
FEC BER

State-of-the-art 22.27 dB 22.07 dB 1.07×10−3 1.56×10−3

BOW 22.99 dB 22.77 dB 1.23×10−3 1.52×10−3

Difference +0.72 dB +0.7 dB +1.6×10−4 -4×10−5

Table 1: Reporting OSNR and pre-FEC BER in each experiment.

Table 1 shows OSNR and pre-FEC BER
when new wavelengths are in steady state (af-
ter t3) for both methods in our experiments.
It shows that BOW performs wavelength re-
configuration with comparable performance
with the state-of-the-art (0.7 dB higher in Min
OSNR, and 4×10−5 less in Max BER).

4. Related Work and Conclusion
Related work. Open-source amplifier control is a crucial step towards realizing optical-layer SDNs [4]. Prior
work proposed to leverage analytical models [3, 14], case-based reasoning [15], and multi-objective optimiza-
tions [16] for adaptive amplifier control. Others proposed to use ASE noise loading to simplify optical-layer oper-
ations [17], but they require extra devices such as ASE-compatible line systems to fully load the entire network at
all times, with the cost of increased fiber nonlinear impairments and compromised system margin (3 dB) [18].
Conclusion. We demonstrate a novel learning-based system, called BOW, for autonomous amplifier control in
long-haul open optical backbones. Our method is 4.76× faster than the state-of-the-art vendor-proprietary method
with 0.7 dB higher in minimum OSNR, and 4×10−5 lower in maximum BER, and is open-source.
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