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Abstract
We present CASSINI, a network-aware job scheduler for

machine learning (ML) clusters. CASSINI introduces a novel
geometric abstraction to consider the communication pattern
of different jobs while placing them on network links. To
do so, CASSINI uses an Affinity graph that finds a series of
time-shift values to adjust the communication phases of a
subset of jobs such that the communication patterns of jobs
sharing the same network link are interleaved with each other.
Experiments with 13 common ML models on a 24-server
testbed demonstrate that compared to the state-of-the-art ML
schedulers, CASSINI improves the average and tail completion
time of jobs by up to 1.6× and 2.5×, respectively. Moreover,
we show that CASSINI reduces the number of ECN marked
packets in the cluster by up to 33×.

1 Introduction
The ever-growing increase in dataset and model sizes of
deep learning has created a massive demand for efficient
GPU clusters. Several studies have demonstrated that as the
number of GPUs increases, the communication overhead
of distributed Machine Learning (ML) training workloads
quickly takes up a significant portion of training iteration
time [12, 15, 28, 33, 45, 47, 55]. Yet state-of-the-art ML sched-
ulers tend to ignore the communication pattern of ML training
jobs when placing workers on GPUs.

In this paper, we develop a simple but effective approach,
called CASSINI, that integrates with existing ML schedulers to
allow them to efficiently place multiple ML jobs on network
links while minimizing the chances of network congestion.
Our approach requires no special support, such as reservations
and priorities, from switches/NICs and does not require any
changes to the congestion control protocol.

We demonstrate that for a specific combination of jobs,
introducing a small time-shift to delay the start of one of the
iterations enables CASSINI to interleave the computation and
communication patterns of different jobs, thereby improving
the training time. We refer to such combinations of jobs as
compatible and develop CASSINI as a pluggable module to

augment prior ML schedulers to consider a novel compatibil-
ity metric when determining where to place jobs and control
how jobs compete on network links.

Augmenting ML schedulers to take links and servers into
account is inherently challenging because jobs are likely to
traverse multiple links and may compete with different jobs
on different links. To address this challenge, we propose a geo-
metric abstraction that leverages the periodic communication
pattern of Deep Neural Network (DNN) training workloads.
The key idea of our abstraction is to “roll” time around a
circle whose perimeter is proportional to the training iteration
time of ML jobs. To determine the compatibility score of
two (or more) jobs on a link, CASSINI places each job on
its corresponding circle and overlays the circles on top of
each other. It then uses an optimization formulation to rotate
the circles into a position that maximizes interleaving. The
rotation angle of each job corresponds to a time-shift value
to delay the start of the next immediate training iteration to
achieve compatibility.

Looking beyond a single link and extending to jobs running
across a topology, we generalize the geometric abstraction to
cluster-level by introducing a bipartite Affinity graph whose
vertices are a subset of jobs and links. An edge in the Affinity
graph indicates a job is traversing a link. We then use a new
graph traversal algorithm to find unique time-shifts for all
jobs while maintaining their compatibility on all links. Using
our geometric abstraction and Affinity graph, we augment
Themis [40] and Pollux [50] with ≈1000 lines of code.

To evaluate CASSINI, we build a testbed with 24
servers, each with one NVIDIA A100 GPU [8] and
one 50 Gbps RDMA NIC. Our experiments with 13
representative DNN models (VGG11 [26], VGG16 [18],
VGG19 [32], ResNet50 [27], WideResNet101 [72],
BERT [20], RoBERTa [39], XLM [17], CamemBERT [43],
GPT-1 [51], GPT-2 [52], GPT-3 [11], and DLRM [6]) show
that CASSINI improves the tail completion time of jobs by up
to 2.2× and 2.5×, compared to Themis [40] and Pollux [50],
respectively. Moreover, we show that CASSINI reduces the
number of ECN marked packets in the cluster by up to 33×.



(a) Data parallelism in GPT-1 (b) Pipeline parallelism in GPT-2 (c) Tensor parallelism in GPT-3 (d) Hybrid data/pipeline/tensor parallelism in GPT-3
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Figure 1: The traffic pattern of different parallelization strategies when training GPT-1, GPT-2, and GPT-3 models.

2 Background and Motivation

2.1 Distributed DNN Training Traffic Pattern

CASSINI is designed for large GPU clusters with hundreds of
training jobs distributed with data, pipeline, and/or model par-
allel training paradigms. To this end, we study the impact of
different parallelization strategies on network demand using
a series of measurements. Each server in our testbed has one
A100 GPU and one ConnectX-5 Mellanox RDMA NIC with
50 Gbps capacity. In all our experiments, we choose batch
sizes such that the GPU utilization is higher than 80%, and
intra-job pipelining is enabled.

Data parallelism. In data parallel training, the DNN model
is copied into the memory of each GPU while the dataset is
distributed across them. Figure 1(a) shows the communication
pattern of a GPT-1 [51] model (12 layers, 9 GB memory) dis-
tributed across four GPU servers using data parallelism. The
figure shows the traffic pattern of three back-to-back training
iterations. Each iteration contains a forward pass with near-
zero network demand, followed by a period of high utilization
corresponding to the backpropagation and AllReduce phases.

Model/Pipeline parallelism. In model parallel training, the
DNN model is partitioned across workers [29, 35], and parts
of the DNN model are computed on different workers. The
two common techniques for model parallelism are tensor par-
allelism and pipeline (or layer) parallelism [10]. In pipeline
parallelism, the model is partitioned vertically at the layer
boundaries [28, 47]. Figure 1(b) shows the communication
pattern of a GPT-2 [52] model (24 layers, 27 GB memory)
distributed across two servers using pipeline parallelism. We
partition the model vertically in half (i.e., server1 contains
layer1 to layer12, and server2 contains layer13 to layer24) and
use PipeDream’s approach [47] to divide the batch size into
three minibatches. The three small communication peaks
during the forward pass correspond to the activation param-
eters of these three minibatches. The heavy communication
demand following the peaks corresponds to the AllReduce
operation between the embedding layers in the model.

Model/Tensor parallelism. Another variant of model par-
allel training is tensor parallelism [58, 59]. Tensor parallelism
techniques partition the model horizontally such that different

tensors are distributed across workers [31, 64]. Figure 1(c)
shows the communication pattern of a GPT-3 [11] model (96
layers, 35 GB memory) distributed across two servers using
tensor parallelism. We partition the model horizontally in
half, where each server contains half of all the layers. The
figure shows that both forward and backpropagation phases
introduce roughly 25 Gbps traffic followed by a short period
of near-zero network demand during data loading.

Hybrid data/pipeline/tensor parallelism. Today’s DNN
training systems tend to use a hybrid of data/pipeline/tensor
parallelism to train large DNN models [21, 33, 46, 66]. Fig-
ure 1(d) shows the communication pattern of a GPT-3 [11]
model (96 layers, 155 GB memory) distributed across eight
servers using hybrid data/pipeline/tensor parallelism. We use
pipeline parallelism to partition the model’s layers vertically
into two parts. Then, we divide the layers in each partition hor-
izontally to obtain a total of four partitions. Next, we assign
each of these four partitions to a server. Finally, we repli-
cate the same process across another group of four servers
and use data parallelism to distribute the data between these
two groups of four servers. The figure shows the communica-
tion demand of the forward, backpropagation, and AllReduce
phases where each phase has a different network demand.

Key takeaways. We repeat the above experiments us-
ing common DNN models, such as BERT [20], DLRM [6],
WideResNet101 [72], RoBERTa [39], and VGG [62] and ob-
serve similar traffic patterns. Our key takeaways are: (i) the
network demand repeats itself across all iterations, as long as
the training hyper-parameters remain the same; (ii) the net-
work demand of an iteration may consist of multiple Up and
Down phases. The exact magnitude of the network demand
during these Up and Down phases depends on the paralleliza-
tion strategy and hyper-parameters. For instance, Figure 1(d)
shows each training iteration has six Up-Down phases, la-
beled as 1 to 6 . Section 3 describes CASSINI’s approach to
capture the duration and bandwidth of Up-Down phases.

2.2 Interleaving the Up and Down Phases

CASSINI’s goal is to augment ML schedulers to consider the
traffic demand of training jobs when making scheduling deci-
sions. In particular, given the key takeaways in the previous
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Figure 2: Impact of interleaving the Up-Down phases of two VGG19 jobs sharing link l1.

section, we aim to interleave the bandwidth demand of Up
and Down phases of different jobs to leverage the periodic
network demand of distributed DNN training jobs.

To demonstrate the power of Up-Down network demand
interleaving, we consider two data parallel training jobs, j1
and j2, as shown in Figure 2(a). Each job has one Up and
one Down phase at every training iteration. We run each job
for 1,000 iterations under two scenarios. In the first scenario,
two VGG19 [62] jobs start simultaneously and share l1 fairly.
The communication uses the RDMA-based DCQCN conges-
tion control algorithm [77]. Figure 2(b) shows that both jobs
achieve roughly 22 Gbps bandwidth (i.e., half of l1’s capacity).
In the second scenario, shown in Figure 2(c), we interleave
the Down phase of j1 with the Up phase of j2 and vice versa,
by shifting the start time of j2 by 120 ms (Section 3 describes
how we obtained this value). In this scenario, the jobs do
not compete for bandwidth during their respective Up phases,
giving both jobs the entire available bandwidth. Figure 2(d)
plots the CDF of training iteration times for both scenarios
demonstrating that scenario2 accelerates the 90th percentile
tail iteration time of both jobs by 1.26×.

Perfectly interleaving the Up and Down phases of different
jobs is not always possible. For instance, when BERT [20] and
VGG19 [62] models share a link, no suitable time-shift can
achieve perfect interleaving. But when WideResNet101 [72]
and VGG16 [62] share a link, shifting VGG16 by 150 ms
enables perfect interleaving. Instead of relying on perfectly
matching Up and Down phases of jobs, we define a metric
called compatibility score that captures the potential degree
of interleaving across jobs sharing the network. Section 3
describes a novel technique to determine the compatibility
score and the amount of required time-shift to achieve it.

3 Geometric Abstraction

Consider a time-series representation of the network demand
for a job running in a dedicated cluster with no congestion. As
shown in Section 2, different training jobs have different Up
and Down patterns but the duration and bandwidth demand
of the same job remain more or less the same across training
iterations. The key idea of our abstraction is to roll time
around a circle whose perimeter is equal to the iteration time
of a job. Consequently, the Up-Down phases of all iterations
will appear on approximately the same angles of the circle.

Figure 3(a) illustrates the time-series network demand of
a data parallel VGG16 training job with a training iteration
time of 255 ms. Figure 3(b) shows a circle with perimeter
255 units where the time-series data is plotted around it. The
figure demonstrates that the Up and Down phases of different
iterations cover the same angles of the circle. Our geometric
abstraction captures this property, as shown in Figure 3(c).
The perimeter of the circle is the iteration time, set to 255
units. The Down phase spans 141 units, represented by the
uncolored arc with 200◦ angle, starting at 0◦, on the x-axis.
The Up phase represented by the colored arc occupies the
remainder of the circle.

Rotate the circle to interleave Down and Up phases
of different jobs. To determine the compatibility score of
two (or more) jobs on a link, we place each job on its corre-
sponding circle and overlay the circles on top of each other.
Congestion occurs when the total bandwidth demand of a par-
ticular angle is higher than the capacity of the link, as shown
in Figure 4(a). To find the best interleaving, we rotate the
circles to a position where the summation of the bandwidth
demands is less than the capacity of the link for all angles in
the circle, as shown in Figure 4(b). If such a rotation is found,
the jobs are fully compatible.
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Capturing jobs with different iteration times. The above
technique only works when the perimeters of the circles are
the same. To generalize to the case where jobs have different
iteration times, we place each job on a unified circle whose
perimeter is equal to the Least Common Multiple (LCM) of
the iteration time of all jobs competing on the link. For in-
stance, consider two jobs j1 and j2 competing on a bottleneck
link with iteration times 40 ms and 60 ms, respectively. To de-
termine the compatibility score of the two jobs, we place them
on a circle with a perimeter equal to LCM(40,60) = 120 units.
Figure 5(a) shows j1 on this unified circle. As the perimeter
of the circle is 3× j1’s iteration time, there are three periods
of Up and Down phases in the figure. Similarly, Figure 5(b)
shows j2 on the unified circle. We then overlay the unified
circles on top of each other (shown in Figure 5(c)) and rotate
the circles to determine the compatibility score. Figure 5(d)
shows that by rotating j1 by ∆ = 30◦ counter-clockwise, the
sum of bandwidth demands on all angles of the unified cir-
cles is lower than the link capacity, giving these two jobs a
compatibility score of 1 (i.e., fully compatible).

Capturing the bandwidth demand of model parallel
training jobs. For clarity of presentation, the examples in this
section contain data parallel training jobs with one Up and one
Down phase during each iteration. However, CASSINI’s geo-
metric abstraction is generic and can capture more complex
traffic patterns induced by various parallelization paradigms.
Consider the communication pattern of the GPT-3 model
with hybrid data/pipeline/tensor parallelism shown in Fig-
ure 1(d). Here, GPT-3’s communication pattern consists of
six Up-Down phases with different durations and bandwidth

demands. The geometric circle of this job contains six col-
ored arcs where the length and color intensity of each arc
corresponds to the duration and bandwidth demand of each
Up-Down phase of the model, as shown in Figure 6. Next, we
formalize our geometric representation and show an optimiza-
tion formulation that uses the geometric abstraction to find
rotation angles to interleave the Up-Down phases of multiple
jobs sharing a link, irrespective of the parallelization strategy.

Finding rotation angles. Once jobs are placed on their
unified circles, CASSINI uses an optimization formulation,
shown in Table 1, to find the best angle of rotation for jobs to
maximize their compatibility.

Optimization input. The input is a set of ML jobs Jl = { j}
competing on a link l. We profile each job j to construct its
unified circle, denoted by unified_circle j. The perimeter of
the unified circle is the LCM of the iteration times of all
jobs j ∈ Jl . The data structure of unified_circle j contains
a series of bandwidth demands bw_circle j(α), where α ∈
[0,2π] identifies an arc of the circle that corresponds to an
Up or Down phase in the communication pattern. The total
capacity of link l is denoted by Cl .

Optimization objective and output. The optimization
goal is to overlay the unified circles of each job and ro-
tate them such that the excess bandwidth demand across all
angles is minimized. We define the compatibility score as
score = 1−average(Excess(demandα)), where Excess is the
excess bandwidth demand of all jobs at a particular angle α

(Equation 1). To make the score a unitless metric, we divide
the average excess bandwidth by the link capacity Cl . Note



Input

Jl = { j} Set of ML jobs j ∈ Jl competing on link l.
{unified_circle j} Set of unified circles for ∀ j ∈ J. Each circle is a

data structure that contains the angles and band-
width demand of Up or Down phases.

bw_circle j(α) Bandwidth demand at angle α on unified_circle j
r j Number of iterations of j in its unified_circle j .
A = {α} Set of discrete angles α ∈ [0,2π]. |A| denotes the

number of discrete angles.
Cl Total link capacity of link l.

Output demandα Total bandwidth demand at angle α when consid-
ering the demand of all jobs j ∈ J.

∆l
j Rotation angle of j ∈ J on link l, in radians.

score Compatibility score of jobs sharing link l.

Auxiliary definitions:

Excess(demandα) =

{
demandα −Cl i f demandα >Cl

0 otherwise
(1)

Maximize: score = 1− ∑α Excess(demandα)

|A|C
(2)

Subject to:

∀α :∑
j

bw_circle j(α−∆
l
j)≤ demandα (3)

∀∆
l
j : 0 ≤ ∆

l
j ≤

2π

r j
(4)

Table 1: CASSINI’s optimization formulation.

that when the excess bandwidth demand is zero, the com-
patibility score is 1 (i.e., 100% compatible). However, when
there are many jobs with large excess bandwidth demands,
it is possible for the score to become negative, indicating a
highly incompatible combination. The optimization objective
is to maximize this compatibility score, and the output of the
optimization is a rotation angle ∆l

j for each job.
Optimization constraints. Equation 3 computes the sum

of the bandwidth demands across all the jobs sharing link l at
a particular angle α on their unified circles, rotated by angle
∆l

j. We bound this value by the output parameter demandα.
Equation 4 bounds the rotation angle ∆l

j between 0 and 2π

r j

because the unified_circle j contains r j iterations of job j.
Hence, setting an upper limit of 2π

r j
ensures that the rotation

angle is in the first iteration and eliminates duplicate solutions.

4 Augmenting ML Schedulers with CASSINI

This section describes how CASSINI extends its link-level
geometric abstraction to the entire cluster.

4.1 CASSINI Affinity Graph

Translating angular rotations to time-shifts. Consider a set
of jobs j ∈ Jl sharing link l. Using the formulation in Table 1,
CASSINI computes a rotation angle ∆l

j for ∀ j ∈ Jl such that
the compatibility score is maximized. Each ∆l

j corresponds
to a time-shift t l

j to delay the start time of j to maximize its
compatibility with all other jobs in Jl . Given that the perimeter
of the unified circle pl , is the LCM of the iteration times
of all jobs j ∈ Jl , CASSINI computes these time-shifts by
multiplying the normalized rotation angle with pl . Formally:

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

j1
j2
j3 l1 l2

S13 S14 S15 S16

Figure 7: Example illustrating a cluster-scale compatibility
challenge: CASSINI must ensure a unique time-shift for j2.
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∀ j ∈ Jl , t l
j = (

∆l
j

2π
× pl) mod iter_time j (5)

Challenge: ensuring a unique time-shift for each job. In
a large-scale cluster, jobs are likely to traverse multiple links,
and they may compete with different jobs on different links.
Consider the case depicted in Figure 7 where job j1 competes
with job j2 on link l1, and j2 competes with job j3 on link
l2. Theoretically, it is possible to migrate the jobs to pack
workers of the same job under the same rack to avoid sharing
the links altogether, but our experiments show that today’s
ML scheduling systems frequently end up with fragmented
placements because of the dynamic nature of their schedul-
ing decisions and job arrival patterns. In fact, no scheduler
guarantees it can maintain perfect placement throughout time
without continuously migrating jobs to defragment the cluster.
For the case depicted in Figure 7, computing the time-shifts
of j2 using Equation 5 would result in two time-shift values
t l1

j2 and t l2
j2 . Given the interdependence between all servers

participating in a training job, CASSINI must find a unique
time-shift value for each job across links without compromis-
ing the compatibility on any link.

Simple approach. A potential approach to address the
above challenge is to simply break the tie by choosing one
of the t l

j values at random. But this approach cancels out
the benefits of compatibility because it does not respect the
carefully computed time-shifts for different links.



Algorithm 1 Traversing the Affinity graph
1: procedure BFSAFFINITYGRAPH

▷ Input Graph G = (U,V,E): CASSINI’s Affinity graph
▷ Output time_shiftsG: Time-shifts of jobs in G

2: time_shiftsG = {}
3: for all connected subgraphs H ∈ G, H = (UH ,VH ,EH) do
4: time_shiftsH = {}

▷ BFS traversal
5: Mark all vertices u ∈UH as not-visited
6: u = randomly_select_vertex(UH )
7: tu = 0 and mark u as visited

▷ Only enqueue vertices from U (jobs)
8: Q.enqueue(u)
9: while Q is not empty do

10: j = Q.dequeue()
▷ Find the corresponding links and jobs

11: for all neighbors l of j do
12: for all neighbors k of l do
13: if k is not visited then
14: Q.enqueue(k) and mark k as visited

▷ Find the edge from U to V
15: e1 = EH( j, l)

▷ Find the edges from V to U
16: e2 = EH(l,k)

▷ Compute the final time-shift
17: tk = (t j −we1 +we2)% iter_timek
18: time_shiftsH [k] = tk
19: time_shiftsG = time_shiftsG ∪ time_shiftsH

20: return time_shiftsG

Complex approach. Another potential approach is to ex-
pand the footprint of our geometric abstraction from link-level
to cluster-level. This approach requires expanding the opti-
mization formulation in Table 1 to include all jobs that share
their paths with any other jobs in the cluster and to encode
a unique ∆ j in the constraints. This approach is not scalable
because it requires expanding the perimeter of the unified
circle to become the LCM of the iteration times of a large
number of jobs in the cluster. Thus, finding a unique rotation
angle for each job requires adding an exponential number of
constraints to the optimization formulation which increases
the complexity and overhead of the formulation dramatically.

CASSINI’s approach. CASSINI introduces a bipartite
Affinity graph G = (U,V,E), where U and V are two sets
of vertices, and E denotes the edge set between U and V ,
shown in Figure 8(a). Each vertex u ∈U represents a job that
is sharing its path with other jobs somewhere in the network.
Each vertex v ∈V represents a link that carries more than one
job. An undirected edge e = ( j, l) ∈ E exists between a job
j ∈ U and a link l ∈ V if j traverses l. The weight of edge
e = ( j, l) ∈ E is the time-shift of job j on link l; i.e., we = t l

j.
Traversing the Affinity graph. CASSINI uses a graph

traversal algorithm to find unique time-shifts t j for all jobs
j ∈ J while maintaining compatibility on all links. To consol-
idate t l

j values for each job j and link l into a unique t j value,
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Figure 9: Using CASSINI to augment Themis [40].

CASSINI first randomly selects one of the jobs in the Affinity
graph as the reference point with t j = 0 and then traverses
the graph to compute unique time-shifts for all others. Algo-
rithm 1 describes the pseudocode of our graph traversal. In
the general case, the Affinity graph is not necessarily a con-
nected graph, hence, the algorithm traverses each connected
subgraph separately (line 3). The traversal algorithm extends
the Breadth First Search (BFS) algorithm in two ways. First,
only vertices in U are added to the BFS queue (Q) because the
time-shifts correspond to jobs, not links (lines 6- 14). Second,
traversing from jobs ( j ∈U) to links (l ∈V ) incurs a negative
sign on the t l

j weight on edge e = ( j, l), whereas traversing
the reverse direction incurs a positive sign (lines 15-18). As
soon as the vertex corresponding to job j is visited, its unique
time-shift is determined by the algorithm (line 18).

Theorem 1 (Correctness and Uniqueness Guarantee). Given
a cluster with J jobs and a loop-free Affinity graph, G =
(U,V,E), Algorithm 1 guarantees both correct and unique
time-shifts t j for all jobs j ∈ J.

Proof. The key insight behind this theorem is that our graph
traversal maintains the same relative time-shift for all job pairs
in the Affinity graph. The full proof uses induction and is pro-
vided in Appendix A, along with an example corresponding
to the Affinity graph in Figure 8(b).

4.2 Putting It All Together

This section uses Themis [40] as a running example of a
scheduler augmented by CASSINI.



Overview of Themis. Themis uses a fairness metric, called
finish-time fairness, to achieve long-term fairness across the
entire cluster by periodically updating the placement of jobs.
To achieve fairness, workers in Themis lease resources and
go through periodic auction epochs to help jobs that are far-
thest in terms of their fairness metric bid for more resources.
Themis’s central arbiter determines the global winning bids
to maximize the aggregate improvement in the finish-time
fair metrics across all bidding jobs. To capture network over-
heads, Themis uses a slowdown penalty based on whether the
workers are under the same rack or across racks.

Augmenting Themis with CASSINI. Figure 9 shows
how CASSINI augments Themis. First, CASSINI modifies
Themis’s arbiter to return a set of potential placement candi-
dates instead of a single placement. Then, CASSINI selects
the top placement candidate based on its compatibility met-
ric and computes unique time-shifts for jobs that share the
network. CASSINI transfers the time-shifts to Themis’s agent
running on servers. Finally, Themis’s agent applies the time-
shifts at the start of the epoch. Note that CASSINI respects the
hyper-parameters, such as batch size or the number of work-
ers, decided by Themis (or other schedulers that CASSINI is
augmenting). Next, we describe each step in detail.

Step 1. Discover placement candidates. In this step,
CASSINI decouples the process of finding the number of
workers for each job to improve finish-time fairness from the
exact worker placement in the cluster. To do so, instead of
returning the precise job placements at the end of the auc-
tion phase, we configure Themis to return up to N candidate
placements. These candidate placements all achieve the same
finish-time fairness, but their worker placements are differ-
ent. For instance, consider a case where jobs j1 and j2 each
place a bid on two additional workers, and they both win,
while job k1 is losing one worker, and job k2 is losing three.
In this case, there are two ways to distribute workers: (i)
k1 and k2 each give up one worker to j1, and k2 gives two
workers to j2; or (ii) k1 and k2 each give up one worker to
j2, and k2 gives two workers to j1. Both options are candi-
date placements. Moreover, selecting which workers in k1
and k2 should be reassigned creates another set of candidate
placements. CASSINI collects these candidate placements and
feeds them as input to the next step. This process requires
changing only ≈300 lines of code in Themis.

Step 2. Find unique time-shifts. This step is listed in Algo-
rithm 2 and includes CASSINI’s key contributions. CASSINI
first constructs an Affinity graph Gc for each placement can-
didate c ∈ Candidates (lines 3-12). Following Theorem 1,
to ensure correctness, we discard placement candidates with
loop(s) in any of their Affinity subgraphs (line 15). Then,
CASSINI constructs the unified circles for each job and
solves the optimization formulation in Table 1 for all links
in Gc to obtain the compatibility metric for each link in
Vc (lines 17-22). Given that the placement candidates are
independent of each other, our implementation uses multi-

Algorithm 2 CASSINI Module’s Pluggable Algorithm
1: procedure CASSINIMODULE

▷ Input Jobs: Array of active training jobs in the cluster
▷ Input Links: Array of all links in the cluster
▷ Input Candidates: Array of candidate placements for jobs
▷ Output top_placement, {t j}: Top placement and time-shifts

2: for c ∈Candidates do ▷ (Loop is executed with threads)
▷ Construct CASSINI’s Affinity graph corresponding
to this placement (§4.1)

3: Gc = (Uc,Vc,Ec)
4: for all j ∈ Jobs, l ∈ Links do
5: if j shares links with other jobs then
6: Uc =Uc ∪ j
7: if l carries more than one job then
8: Vc =Vc ∪ l
9: if j is traversing l then

10: e = new Edge between {( j, l)}
11: E = E ∪ e
12: we = 0

▷ Discard this candidate if Affinity graph has a loop
13: if there is a loop in Gc then
14: Candidates.remove(c)
15: continue
16: scorec = {}
17: for l ∈Vc do ▷ (Executed with threads)

▷ List of jobs traversing link l
18: Jl = {}
19: for all neighbors j of l do
20: Jl = Jl ∪ j

▷ Solve CASSINI optimization (Table 1)
21: scorel = CASSINIOPTIMIZATION(Jl)
22: scorec = scorec ∪ scorel

▷ Set the compatibility score of candidate c
23: c.score = scorec

▷ Sort placements based on compatibility metric
24: SORTCANDIDATES(Candidates, “Decreasing")
25: top_placement =Candidate[0]

▷ Find unique time-shifts (Algorithm 1)
26: {t j} = BFSAFFINITYGRAPH(Gtop_placement )
27: return {t j}, top_placement

ple threads to parallelize this computation. Once the com-
patibility score of all candidate placements is determined,
CASSINI sorts each placement candidate based on the aver-
age compatibility score of its member links to find the top
placement candidate top_placement ∈Candidates (lines 24-
25).1 Then, it executes Algorithm 1 on top_placement’s
Affinity graph Gtop_placement to obtain unique time-shifts
{t j},∀ j ∈ Vtop_placement for jobs that share links with other
jobs in this placement (line 26). Finally, top_placement and
its corresponding time-shifts are transferred to Themis’s agent
running on the servers (line 27).

Step 3. Apply time-shifts. When a time-shift t j is received
by the Themis agent running job j, it delays the start of the

1Instead of averaging, tail or other metrics may also be used.



Figure 10: Logical topology of our testbed.

next immediate training iteration by t j. However, even though
the workers of the same job apply a unique time-shift, the
time-shift values can drift due to noise, stragglers, and other
unpredictable events. CASSINI updates the agent on each
server to measure the drift and adjust the time-shifts. Our
evaluations show that time-shift adjustments are rare (§5.7).

5 Evaluations
We evaluate CASSINI on a 24-server cluster and compare
its performance to that of other state-of-the-art ML sched-
ulers. First, we describe our evaluation methodology and
setup (§5.1). Then, we compare CASSINI’s performance gains
with respect to the state-of-art ML schedulers for a mix of
data and model parallel DNN training jobs (§5.2). Next, we
evaluate the impact of data parallelism (§5.3), model paral-
lelism (§5.4), partial compatibility (§5.5), and having multi-
ple GPUs per server on CASSINI’s performance (§5.6). Fi-
nally, we evaluate the frequency of time-shift adjustments
and CASSINI’s overhead (§5.7). CASSINI’s source code is
available at http://cassini.csail.mit.edu.

5.1 Methodology and Setup

Setup. We build a prototype to demonstrate the gains of
CASSINI in real-world settings. Our prototype includes 24
ASUS ESC4000A-E10 servers, each with one A100 Nvidia
GPU [8] (40 GB of HBM2 memory) and one 50 Gbps Mel-
lanox ConnectX5 NIC. We use RoCEv2 for communication
and enable DCB [5] and PFC on these interfaces to support a
lossless fabric for RDMA. The servers run Ubuntu 18.04 LTS.
We use PyTorch [36] version 1.8.0, CUDA version 11.1, and
NCCL version 2.11.4 in our training framework.

Topology. We use a Tofino switch to construct the logical
topology illustrated in Figure 10 with 13 logical switches.
The Mellanox ConnectX5 NICs on each of the servers are
connected to the Tofino switch. The Tofino switch emulates
13 logical switches and 48 bi-directional links for a 2:1 over-
subscribed topology. We use flow table rules that match on
<input port, destination MAC> to forward packets to the
correct output port and physical loopback cables for switch-
to-switch links. We use the default RDMA-based DCQCN
congestion control algorithm [77]. ECN is enabled through
WRED with min and max thresholds set to 1000 and 2000
cells. The PFC skid buffer threshold of each virtual switch is
4000 cells.

DNN workloads. We experiment with 13 popular
DNN models: VGG11 [26], VGG16 [18], VGG19 [32],

ResNet50 [27], WideResNet101 [72], BERT [20],
RoBERTa [39], XLM [17], CamemBERT [43], GPT-
1 [51], GPT-2 [52], GPT-3 [11], and DLRM [6]. All models
have an equal probability of occurrence and the training
duration time is randomly selected between 200 - 1,000
iterations. Table 3 (Appendix B) provides details about model
configurations and batch sizes used in this paper.

Parallelization strategy. We use data parallelism to train
the VGG, ResNet, and BERT family of models using Py-
torch’s DistributedDataParallel framework [38]. This frame-
work distributes the dataset across GPUs and uses RingAllre-
duce to update the gradients during each training iteration.
We train the DLRM and GPT family of models using a hybrid
of data/model parallelism. Following prior work [66], we use
Meta’s opensource codebase for training DLRM [6] where
the embedding tables are partitioned across GPUs, while the
rest of the model is replicated on all GPUs. Finally, we use
Microsoft’s DeepSpeed tool [7] to partition the GPT models
across GPUs using hybrid data/model parallelism.

Traces. Following prior work [40, 44, 50, 75], we use three
sets of traces in our evaluations: (i) Poisson trace: we use a
Poisson distribution for job arrivals where the job arrival time
is determined by the load parameter defined as the average
fraction of GPUs that are serving active jobs in the cluster.
We vary the load between 80% and 100%; (ii) dynamic trace:
where a set of DNN training jobs are present in the cluster,
and a new set of jobs arrive; (iii) snapshot trace: we take
several snapshots of the cluster where all jobs are present at
the start of the experiment.

We implement the following schemes in our testbed.

• Themis. We use the default Themis [40] scheduler as one
of our baselines. The bidding period (epoch) is set to 10 mins.
Jobs participate in an auction where they send bid values for
different GPU allocations. An assignment of GPU servers
is valid until the period of lease time. When the lease time
expires, the job gives up the server, and a new auction is
conducted for all the released servers. When a job arrives,
its initial number of requested workers is randomly selected
between 1 to 12 GPUs. As the experiment progresses, the
number of workers is automatically tuned based on Themis’s
finish-time-fairness metric.

• Th+CASSINI. Themis augmented with CASSINI as de-
scribed in Section 4.2. In particular, this scheduler takes up
to 10 placement candidates from Themis, constructs geomet-
ric circles and Affinity graphs for each placement to capture
the cluster-level compatibility, solves our optimization for-
mulation to find time-shifts for jobs that are competing on
bandwidth, selects the top placement candidate based on com-
patibility ranks, and finally computes a unique time-shift for
jobs. The unique time-shifts and final placement are given to
the Themis agent running on GPUs. Unless otherwise stated,
we use 5◦ as the angle discretization precision (Table 1) to
compute the time-shifts.

http://cassini.csail.mit.edu
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Figure 11: [Poisson trace] (a) Time series of DNN training jobs and their iteration times. (b) CDF of the iteration times.
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Figure 12: [Poisson trace] (a) Time series of model parallel
jobs and their iteration times. (b) CDF of the iteration times.

• Pollux. We use Pollux as a second baseline [50]. Pollux
considers the system throughput and statistical efficiency to
maximize cluster-wide training performance. It periodically
queries jobs and reassigns GPUs to maximize the overall
goodput of the cluster. Pollux also models migration costs
and avoids frequent job migrations.

• Po+CASSINI. We augment Pollux with CASSINI using an
approach similar to that described in Section 4.2 except that
Pollux uses overall goodput instead of finish-time-fairness
to adjust hyper-parameters during scheduling epochs. Hence,
the number of workers assigned to each job does not always
agree with Themis. To make an apples-to-apples compar-
ison, all CASSINI-related parameters in Po+CASSINI and
Th+CASSINI are the same.

• Ideal. An ideal scheduler that runs each training job on a
dedicated cluster. This scheduler incurs no congestion, as the
entire cluster is dedicated to one job, and there is no need to
take job compatibility into account.

• Random. A random placement scheduler that places work-
ers for each job randomly. This scheduler has the highest
network overhead, because it does not take locality or com-
patibility into account.

Profiling DNN models. Similar to Themis and Pollux, we
profile each DNN using Pytorch and Infiniband port counters.
Our profiling script executes a few iterations of each job to
measure iteration times and collect link utilization patterns for

various batch sizes and numbers of workers. Fine-grained link
utilization data from the port counters enables CASSINI to
build the geometric circles and the corresponding bandwidth
demands for our optimization (bw_circle j(α) in Table 1).

5.2 Performance Gains

We evaluate CASSINI’s performance gains using job ar-
rivals and departures from our Poisson trace. Figure 11(a)
plots the time series of events in the cluster for Themis and
Th+CASSINI. In this experiment, we train a combination of
DNN models. We use model parallelism for the DLRM [6]
model because of its large model size, and we use data paral-
lelism for all the other DNN models. Placement changes are
triggered by job arrivals, job departures, and when the lease
time of any of the servers expires. Given the dynamic nature
of the trace, the servers are occupied gradually, and their lease
times are not synchronized. For instance, at time t = 72 mins,
a data parallel training job for the XLM [17] model arrives
at the cluster, and Themis places it such that one of the links
is shared with WideResNet101 [72] without the knowledge
that XLM and WideResNet101 are not compatible jobs. In
contrast, Th+CASSINI improves the iteration time of XLM by
placing it with compatible jobs. Figure 11(b) plots the CDF of
iteration times of all the data points in Figure 11(a) and shows
that compared to Themis, Th+CASSINI improves the average
and 99th percentile tail iteration times by 1.6× and 1.8× re-
spectively. We observe similar gains between Po+CASSINI
and Pollux. The figure also shows that Th+CASSINI achieves
similar performance as our Ideal benchmark.

To evaluate CASSINI’s performance with model paral-
lelism, we measure iteration times of various jobs trained
using model parallelism, as shown in Figure 12(a). We use
our Poisson trace for the job arrivals and departures. Note
that this trace contains different training instances of the same
DNN models where they differ in their hyper-parameters and
number of workers (details in Appendix B). We use suffixes
on their names to distinguish between the instances, for ex-
ample, GPT2-A and GPT2-B are two different training jobs,
as shown in the legend of Figure 12(a). GPT2-A has a batch



0
20
40
60
80

100
120
140

0 10 20 30 40 50

N
um

be
r o

f E
CN

 m
ar

ks
 

(1
00

0p
kt

s/
ite

ra
tio

n)

Time (sec)

(b) ECN marks for VGG16 (c) ECN marks for RoBERTa

Themis Th+Cassini Pollux Po+Cassini IdealRandom

0
20
40
60
80

100
120
140

0 10 20 30 40 50

N
um

be
r o

f E
CN

 m
ar

ks
(1

00
0 

pk
ts

/it
er

at
io

n)

Time (sec)

(a) CDF of iteration times

3.6x Gain
1.8x Gain

0

0.2

0.4

0.6

0.8

1

50 100 200 400 800

CD
F

Iteration time (ms)

2.5x Gain

0
50

100
150
200
250
300

0 10 20 30 40 50

N
um

be
r o

f E
CN

 m
ar

ks
 

(1
00

0p
kt

s/
ite

ra
tio

n)

Time (sec)

(d) ECN marks for DLRM

33x Gain

Figure 13: [Dynamic trace] CDF of training iteration times and the number of ECN marked packets per iteration.
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Figure 14: [Dynamic trace, model parallelism] CDF of training iteration times and the number of ECN marked packets.

size of 24 with a model hidden size of 1536 (as defined by
Deepspeed’s codebase [7]), while GPT2-B has a batch size
of 70 with a model hidden size of 1184. For instance, at time
t = 8 min, a model parallel GPT-2 [52] training job (labeled
as GPT-2-A) arrives at the cluster and without considering
the communication demands, Themis places this job such
that it shares a link with another large GPT-3 [11] model
in the cluster. GPT-2-A and GPT-3 models are not compat-
ible, causing both training jobs to slow down. In contrast,
Th+CASSINI improves GPT-2-A’s iteration time by placing it
with a compatible GPT-1 model. Figure 12(b) plots the CDF
of iteration times of all the data points in Figure 12(a) and
shows that compared to Themis, Th+CASSINI improves the
average and 99th percentile tail iteration times by 1.2× and
1.6× respectively.

5.3 CASSINI Reduces Congestion

We next demonstrate the effectiveness of CASSINI in reduc-
ing the congestion in the network. We use our dynamic trace
to trigger the arrival of DLRM and ResNet50 to the cluster
while the cluster is busy running other jobs. Given the con-
trast between the network demand between these two models,
this experiment serves as a stress test to highlight the impor-
tance of compatible job placement on network congestion. In
this case, both Pollux and Themis end up placing DLRM on
servers that share network links with other non-compatible
jobs which hurts the iteration times. In contrast, Th+CASSINI
and Po+CASSINI flip the placements of DLM and ResNet50
to achieve compatibility, thereby improving the training itera-
tion times, as depicted in Figure 13(a). Compared to Themis,
Th+CASSINI improves the average and 99th percentile tail
iteration times by 1.5× and 2.2×, respectively. Similarly, com-

pared to Pollux, Po+CASSINI improves the average and 99th

percentile tail iteration times by 1.6× and 2.5×, respectively.
The gains in iteration times are a direct consequence of

CASSINI’s ability to reduce network congestion. Figures 13(b)
to (d) show the number of ECN marked packets per itera-
tion for different models. The figure shows that Th+CASSINI
and Po+CASSINI consistently maintain a lower number of
ECN marks per iteration across the models. In particular, Fig-
ure 13(d) shows that, on average, DLRM is experiencing 27×
and 33× more ECN marks in Themis and Pollux, compared
to their CASSINI-augmented counterparts.

5.4 Impact of Model Parallelism

To ensure CASSINI’s gains are not limited to data parallel
jobs, we run a series of experiments in which all jobs in
the trace use model parallelism. As shown in Section 2.1,
model parallel jobs have several Up and Down phases in
each iteration where the duration and bandwidth demand
of each phase depends on the parallelization strategy and
hyper-parameters. Similar to the data parallel case, we use
CASSINI’s geometric abstraction to capture the duration and
bandwidth demand of Up and Down phases of a series of
model parallel jobs. We then use CASSINI’s optimization
formulation and Affinity graph to compute the time-shifts for
the jobs sharing the same network links. We use our dynamic
trace to trigger the arrival of multiple GPT and DLRM models
while the cluster is training other model parallel jobs.

Figure 14(a) shows the CDF of training iteration times.
We find that similar to the data parallel case, Themis ends up
placing non-compatible jobs, such as <GPT-3 and GPT-2>
or <GPT-1 and DLRM>, on the same network link, whereas
Th+CASSINI places compatible jobs, such as <GPT-1 and
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Figure 15: [Snapshot trace] Link utilization of compatible and partially compatible snapshots.

Snap-
shot
ID

Competing jobs
(batch size)

Th+CASSINI Themis Comp-
atibility
score

time-
shift
(ms)

1 WideResNet101 (800) 138 ms 205 ms 1.0 0 ms
VGG16 (1400) 148 ms 199 ms 150 ms

2 VGG19 (1400) 168 ms 220 ms 1.0 0 ms
VGG16 (1700) 163 ms 220 ms 158 ms
RESNET50 (1600) 59 ms 55 ms 46 ms

3 VGG19 (1024) 166 ms 176 ms 0.9 0 ms
VGG16 (1200) 168 ms 177 ms 100 ms

4 RoBERTa (12) 164 ms 210 ms 0.8 0 ms
RoBERTa (12) 180 ms 208 ms 60 ms

5 BERT (8) 209 ms 213 ms 0.6 0 ms
VGG19 (1400) 294 ms 292 ms 42 ms
WideResNet101 (800) 265 ms 266 ms 191 ms

Table 2: [Snapshot trace] Compatibility score of DNN jobs.

GPT-2> or <GPT-3 and DLRM>, on the same network links.
Consequently, Th+CASSINI improves the average and 99th

percentile tail iteration times by 1.2× and 1.6×, respectively.
We observe similar gains between Pollux and Po+CASSINI.

Figures 14(b) to (e) depict the number of ECN marked
packets per iteration for the models in this experiment. De-
pending on the status of congestion, different models experi-
ence different numbers of ECN marked packets. For instance,
Figure 14(d) shows that compared to Themis, Th+CASSINI
reduces the average number of ECN marked packets by 29×.

5.5 Impact of Partial Compatibility

An important consideration for practical deployment of
CASSINI is to evaluate the impact of placing partially com-
patible jobs on the same link(s). Intuitively, the higher the
compatibility score, the better interleaving is achieved. As
the compatibility score reduces, the gains also diminish. To
evaluate the impact of partial compatibility, we take five snap-
shots of the cluster, as shown in Table 2, and compute the
compatibility scores and time-shift values from our optimiza-
tion formulation (§3) for each snapshot. We then measure the
average communication time of each model under Themis
and Th+CASSINI. The table shows that when the compatibil-
ity score is 0.6, CASSINI’s gain compared to Themis starts
to diminish. Note that CASSINI avoids placing jobs with low
compatibility score (e.g., snapshot 5) on the same link.

We demonstrate the reason behind diminishing returns by
plotting the link utilization of each snapshot in Figure 15.
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Figure 16: [Dynamic trace] Multi-GPU experiment.

When the compatibility score is high, the opportunity for in-
terleaving is large, and jobs end up interleaving their network
usage most of the time, as shown in Figures 15(a)–(d). How-
ever, as the compatibility score is reduced, jobs are forced
to share the link most of the time, as shown in Figure 15(e).
Additionally, Figure 15(b) demonstrates a desirable feature
of our optimization formulation where compatibility does
not require strict interleaving. In this snapshot, only VGG19
and VGG16 are interleaved, and ResNet’s communications
overlap with both jobs because its network demand is not
significant and can co-exist with the other jobs.

5.6 Impact of Multiple GPUs per Server

Although having multiple GPUs per server enables allocating
more GPUs within the same server to a job, today’s large-scale
training jobs require hundreds of workers [45, 66], making it
impossible to avoid network congestion entirely by relying
on multi-GPU servers. In such cases, CASSINI’s gains are
more pronounced for models that are distributed outside the
boundary of a server.

We evaluate CASSINI’s gains with multi-GPU servers by
removing GPUs from some of our single-GPU servers and
adding them to other servers to compose servers with two
GPUs. We create a topology with six servers, each with two
GPUs, as shown in Figure 16(a). We then use a mix of data
parallel and model parallel jobs and generate a series of job
arrivals using our dynamic trace.

Figure 16(b) demonstrates that compared to Themis,
Th+CASSINI improves the average and 99th percentile tail it-
eration times by 1.4× and 1.9×, respectively. These gains are
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discretization on execution
time and time-shift accuracy.

achieved because some jobs require more than two GPUs to
train. For instance, at a particular instant in our dynamic trace,
the XLM and ResNet50 models each require three GPUs to
train. With the arrival of a network-intensive model DLRM
requesting three more GPUs, Themis decides to place DLRM
such that it shares a server with a non-compatible model
(XLM), making both jobs experience congestion. In contrast,
Th+CASSINI selects a placement where DLRM shares a link
with a compatible model (ResNet50), thereby improving the
training iteration times of both models.

5.7 Adjusting Time-Shifts and Overhead

To maintain CASSINI’s interleaving, workers must respect
the time-shift values given to them through the scheduler.
Given that our servers are not running perfectly in sync, we
evaluate the frequency of automatic time-shift adjustments by
the Themis (or Pollux) agents running on the servers. Note
that respecting the time-shift is only required for compatible
jobs. All other jobs in the cluster can send packets at any
time. A worker triggers an adjustment when the start of the
communication phase deviates by more than five percent of
the ideal iteration time. Figure 17 shows the average frequency
of time-shift adjustments for snapshots 1,2, and 3. In all cases,
the frequency is less than two adjustments per minute.

Finally, we evaluate the impact of angle discretization pre-
cision on CASSINI’s optimization formulation (Table 1). In-
tuitively, the execution time of a coarse-grained discretiza-
tion is fast but such formulation misses interleaving oppor-
tunities, thereby finding imprecise rotation angles. Given
that CASSINI’s time-shifts are driven from rotation angles, a
coarse-grained formulation leads to inaccurate time-shifts. On
the other hand, having fine-grained precision leads to more
accurate time-shifts at the expense of a longer execution time.
Figure 18 demonstrates this trend and shows that using a pre-
cision of 5◦ is the sweet spot for achieving 100% accuracy
for time-shifts while maintaining a low execution overhead.

6 Discussion and Limitations
Sharing with legacy datacenter workloads. We assume the
ML training traffic is not sharing the network with non-ML
legacy datacenter workloads, such as websearch, indexing,
cloud, and storage. We believe this is reasonable because

modern training clusters consist of custom-designed servers,
each with dedicated NICs for training traffic (GPU NICs) and
additional NICs for storage and other traffic (CPU NICs) [4,
45]. The CPU NICs are often connected through a separate
fabric to carry storage and other control plane traffic. Our
abstraction and time-shift values only affect the GPU NICs.

GPU multi-tenancy. For simplicity, we assume GPUs are
dedicated resources for each job, and different jobs are not
sharing the same GPU – this is not far from how many pro-
duction clusters run today to ensure predictable and high-
throughput training performance. Thus, our geometric ab-
straction only considers the network links as shared resources
and allows the Down (Just Compute) phases of different jobs
to overlap. Recent proposals have demonstrated the feasibility
of multi-tenancy on GPUs [9, 67, 69, 70]. We note that captur-
ing GPU multi-tenancy is possible by adding more constraints
in our optimization formulation, but we omit the details for
brevity.

Scaling. Scaling the number of GPUs on each server en-
ables service providers to pack jobs within fewer servers,
thereby reducing the chances of network congestion. In recent
years, the compute requirements of DNN models are growing
exponentially [3]. Training models across multiple servers is
inevitable with growing model and dataset sizes. For exam-
ple, large models like AlphaGo [61] and AlphaZero [60] are
trained using hundreds to thousands of GPUs and TPUs. We
expect CASSINI’s gains to remain consistent for clusters with
multiple GPUs per server, but we leave further investigation
to future work.

CASSINI advocates placing jobs such that jobs with higher
compatibility scores share network links. However, as the
number of jobs sharing a network link increases, it becomes
harder to interleave the communication demands, and the
compatibility score reduces. CASSINI tries to avoid scenarios
where jobs with low compatibility scores share a network link.
We leave the study of the effect of the number of jobs sharing
a network link on the compatibility scores for future work.

7 Related Work
Our work builds on several lines of related research.

Compute scheduling approaches. A large number of sys-
tems and techniques have focused on improving the perfor-
mance of large-scale distributed ML workloads [13, 16, 19,
23,24,36,42,54,63,68,71,73]. Relevant to this paper, several
papers aim to reduce communication overhead using smart
scheduling techniques; e.g., Gandiva [69], Themis [40], Pol-
lux [50], Tiresias [25], Shockwave [76], and Optimus [48].
These schedulers try to minimize network sharing by plac-
ing workers of the same job as close as possible to each
other. However, these approaches do not consider interleaving
the communication patterns of different training jobs when
placing them on servers. CASSINI’s contribution is comple-
mentary to these approaches by considering both the compute
resources and the communication demands of different jobs



during scheduling. Moreover, CASSINI is designed as a plug-
gable module to augment these schedulers.

Multi-resource sharing. Recently, Muri [75] proposed
a scheduling technique to interleave critical resources (e.g.,
GPU, CPU, network, storage) of DNN training jobs. Muri
packs jobs that are being executed on the same set of resources
into a group and interleaves their resource requirements us-
ing a Blossom-based scheduler. However, Muri’s approach to
resource interleaving only applies to jobs that share the same
set of GPUs, CPUs, memory, and network resources.2 Hence,
Muri can interleave compute and communication phases of a
set of jobs only if the jobs are sharing the same set of GPUs.
In contrast, CASSINI is able to interleave compute and com-
munication phases of different jobs, irrespective of which
GPUs they occupy. For instance, Muri’s algorithm is not ap-
plicable to interleave the resources of j1 and j2 in Figure 2(a),
because j1 is distributed between server1 and server2 while j2
is distributed between server3 and server4; i.e., these two jobs
do not belong to the same resource group in Muri’s algorithm.
Muri would have been able to interleave the resources if both
j1 and j2 were distributed between all four servers. However,
for many of the large models we use in our experiments, GPU-
sharing is not possible because of the memory requirements of
the model. Moreover, even with GPU sharing, in a large-scale
cluster, cross-group network congestion is common. CASSINI
is able to interleave the Up and Down phases of different jobs,
without requiring them to share the same set of resources.
Similarly, Synergy [44] has proposed a multi-resource in-
terleaving scheduling approach by inferring the sensitivity
of DNN jobs to GPU, CPU, and memory resources using
optimistic profiling. Synergy improves the overall cluster effi-
ciency by performing resource-sensitive allocations instead of
a GPU-proportional allocation. However, Synergy’s approach
does not consider the network bandwidth as a resource and
is unable to interleave the communication phases with other
resources. In contrast, CASSINI’s focus is on interleaving the
network demand with the GPU resources. CASSINI is de-
signed to augment both Muri and Synergy schedulers. Some
previous studies have concentrated on the theoretical analysis
of periodic tasks [22, 34]. However, these approaches exploit
characteristics distinct from those inherent to distributed DNN
training jobs.

Communication-aware scheduling. A variety of ap-
proaches have been developed to accelerate communication
among ML training workers of the same job to reduce net-
work overhead [2,14,23,33,45,55,65,74] and to enable more
efficient pipelining strategies [28,47]. ByteScheduler [49] and
Syndicate [41] accelerate ML training by scheduling and opti-
mizing the order of communication operations between differ-
ent GPU servers used by a training job. ByteScheduler over-
laps compute and communication operations within a train-
ing job, while Syndicate provides a solution for planning and

2Muri [75] states this limitation: “The algorithm avoids cross-group
packing to minimize the packing overhead.”

scheduling communication operations for large DNN train-
ing. Similarly, TACCL [56], BytePS [30], and CLOPT [74]
improve the communication collective algorithms of large
DNN models. BytePS seeks to find a balance between the
Parameter Server [37] and Ring-AllReduce algorithms for
synchronizing the gradients. TACCL proposes a communica-
tion collective algorithm for training large models with data
and model parallelism. CLOPT co-optimizes network topol-
ogy and communication schedules for ML training. These
approaches optimize communication within a training job,
however, they do not consider congestion and network shar-
ing across training jobs. In contrast, CASSINI’s approach is
orthogonal to these techniques because CASSINI focuses on
sharing the network resources across different training jobs.

Difference with prior workshop paper. A prior workshop
paper [53] introduced the idea of using a geometric abstrac-
tion to achieve job compatibility at a single-link level. We
extend this workshop paper in a few important ways. First, the
workshop paper considers compute/communication interleav-
ing at a high level and does not provide a concrete scheduling
technique to achieve it. Specifically, it relies on an unfair con-
gestion control protocol to achieve interleaving, but CASSINI
does not require any changes to or assumptions about the con-
gestion control protocol. Second, the workshop paper ignores
the impact of cluster-level interleaving. Third, the workshop
paper only considers the data parallelism paradigm, and its
geometric abstraction does not generalize to model paral-
lelism techniques. Finally, our optimization formulation, the
Affinity graph abstraction, the design and implementation
of the CASSINI module, and our formal arguments around
correctness (Theorem 1) are all new contributions.

8 Conclusion
CASSINI is a simple but effective approach that can integrate
with existing cluster schedulers to allow them to accommo-
date multiple ML jobs’ network needs. We introduce a novel
metric, called compatibility score, to rank different GPU place-
ments when jobs compete on network links. Our evaluations
show that CASSINI improves the average and tail completion
time of jobs by up to 1.6× and 2.5×, respectively. Moreover,
we show that CASSINI reduces the number of ECN marked
packets by up to 33×.
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A Proof of Theorem 1
This section provides the proof of Theorem 1 (Correctness
and Uniqueness Guarantee) in Section 4. To prove uniqueness
we need to show that Algorithm 1 assigns a time shift value
exactly once to every job j ∈ J in the cluster with Affinity
graph G = (U,V,E). To prove the correctness, we need to
show that:

∀l,∀( jn, jm) ∈ {( ji, jk)|( ji, l) ∈ E and ( jk, l) ∈ E} :

(t jn − t jm)%pl =(t l
jn − t l

jm)%pl (6)

where pl is the perimeter of the geometric abstraction for link
l. In other words, to guarantee correctness, we prove that for
every pair of jobs sharing a link, the difference in the time-
shift values assigned by the algorithm is equal to the relative
time-shift given by CASSINI’s optimization formulation for
that link.

We first use induction to prove that both the above
statements are true for any connected and loop-free Affinity
graph G = (U1,V1,E1), and later we extend this to a general
Affinity graph with many connected sub-graphs.

Base case: First, we show that both statements hold for a
graph G with only one link l. Algorithm 1 first selects one of
the jobs j1 connected to the link l and sets t j1 = 0. Using its
BFS traversal algorithm for all the other jobs ji connected to
l, Algorithm 1 sets the time shift as:

t ji =−t l
j1 + t l

ji

As the algorithm uses BFS and visits each job exactly once,
the time-shift value is computed and assigned exactly once for
each job. This ensures that for a given job, there is a unique
time-shift value computed by the algorithm.

To show correctness, we need to prove equation 6 for all
job pairs connected to the link l. Say jn and jm are two jobs
connected to the link l, then:

(t jm − t jn)%pl = (−t l
j1 + t l

jm − (−t l
j1 + t l

jn))%pl

= (t l
jm − t l

jn)%pl

This shows that the time shift assignments are correct for the
base case.

Assumption Step: Let us assume that the two statements
hold for every connected and loop-free Affinity graph having
n links.

Induction step: We use the above assumption to prove
that the two statements hold for a connected and loop-free
Affinity graph having n + 1 links. Let G = (Us,Vs,Es) be
the connected sub-graph with n links. Now, we create an
affinity graph with n+1 links, by adding a new link ln which
is already connected to some set of jobs J = { j}. In order to
get a connected and loop-free Affinity graph with n+1 links,

ln has to be connected to exactly one job ji ∈ Us. It has to
be exactly one because having an edge with more than one
job from the sub-graph G will form a loop, and not being
connected with any of the jobs from the sub-graph G will
make the Affinity graph disconnected. Let ji be the job from
subgraph G that is connected to ln. Since ji is the only path
to reach the link ln and the jobs J connected to the link, our
algorithm 1 will reach link ln through job ji. Then, from the
algorithm, the time assignments for the jobs in J are given by:

∀ jk ∈ J, t jk = t ji − t ln
ji + t ln

jk

The uniqueness is guaranteed since BFS visits each job only
once. From the assumption step, the correctness constraints
for all the links in the subgraph G are assumed to be valid, so
we have to only prove equation 6 for the jobs connected to ln.

∀( jm, jn)∈ J,(t jm −t jn)%pl =(t ji −t l
ji +t l

jm −(t ji −t l
ji +t l

jn))%pl

= (t l
jm − t l

jn)%pl

This shows that both statements hold true for any Affinity
graph with n+ 1 links. This concludes the induction proof.
Hence, Algorithm 1 holds true for all connected and loop-free
Affinity graphs.

Now, we extend to an Affinity graph of a cluster with mul-
tiple connected sub-graphs. Since our algorithm solves each
connected sub-graph one by one and assigns a single time-
shift value for each job in the sub-graph, uniqueness is guar-
anteed. For correctness, since there is no edge connecting
jobs and links from different disjoint sub-graphs there are no
constraints across disjoint graphs that need to be checked for
correctness. Hence, this concludes the overall proof.

Example. As an example, traversing the affinity graph in
Figure 8(b) results in the following unique time-shifts for j1,
j2, and j3:

t j1 =0 (reference point) (7)

t j2 =(−t l1
j1 + t l1

j2) mod iter_time j2 (8)

Affinity graph path: j1 →l1 → j2

t j3 =(−t l1
j1 + t l1

j2 − t l2
j2 + t l2

j3) mod iter_time j3 (9)

Affinity graph path: j1 → l1→ j2 → l2 → j3

For the correctness of the algorithm, the graph should be
loop-free. In CASSINI’s design, we eliminate placement con-
figurations that have loops. Themis allocates servers using
an auction procedure, which involves multiple jobs in the
cluster participating in the auction. This allows multiple pos-
sible placement configurations for the jobs participating in the
auction. Hence, it is easy to find many loop-free placement
configurations among them. Similarly, Pollux reallocates re-
sources periodically, involving multiple jobs and creating
many possible placement configurations.



DNN Memory
requirement
(MB)

Batch
size/GPU

Parallelization
strategy

Type

VGG11 [26] 507 512-1800 Data Parallel Vision
VGG16 [18] 528 512-1800 Data Parallel Vision
VGG19 [32] 549 512-1800 Data Parallel Vision
WideResNet101 [72] 243 256-1200 Data Parallel Vision
ResNet50 [27] 98 256-1800 Data Parallel Vision
BERT [20] 450 8-32 Data Parallel Language
RoBERTa [39] 800 8-32 Data Parallel Language
CamemBERT [43] 266 8-32 Data Parallel Language
XLM [17] 1116 4-32 Data Parallel Language
GPT1 [51] 650 - 9000 32-80 Model Parallel Language
GPT2 [52] 1623- 27000 32-80 Model Parallel Language
GPT3 [11] 1952-

155000
16-48 Model Parallel Language

DLRM [6] 890 - 1962 16-1024 Model Parallel Recomm.

Table 3: DNN models used in our experiments.

Themis Th+Cassini Pollux Po+Cassini IdealRandom
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Figure 19: Number of ECN marked packets per iteration

B DNN Models
As mentioned in Section 5.1, we run our experiment with
13 popular DNN models: VGG11 [26], VGG16 [18],
VGG19 [32], ResNet50 [27], WideResNet101 [72],
BERT [20], RoBERTa [39], XLM [17], CamemBERT [43],
GPT1 [51], GPT2 [52], GPT3 [11], and DLRM [6]. Table 3
summarizes the parameters of each model and batch sizes.
Note that the batch sizes are provided as a range because
the number of workers and hyper-parameters change during
scheduling epochs. In particular, in different experiments, we
select the batch size according to the hyper-parameters used
in prior work [1, 40, 50, 54, 57]. The memory requirement
of each model reflects the amount of memory each model
occupies in the GPU memory. We adjust the model sizes for
different models depending on the parallelization strategy.

C Number of ECN Marked Packets
Figure 19 plots the number of ECN marked packets per itera-
tion for the models ResNet and CamemBERT. These measure-
ments are from the experiment of Section 5.3. The ResNet
model has relatively lower ECN marks in general than other
models because ResNet has a smaller model size and requires
less network bandwidth for its AllReduce phase.
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