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1 INTRODUCTION
Datacenter networks have become a critical backbone of our digital society. The traffic these
networks need to serve is growing explosively, and researchers are exploring novel optical datacenter
networks, including both static and dynamic topologies. Dynamic topologies provide additional
design freedom and can help overcome the limits on the application performance [1–19].
Diversity of datacenter traffic patterns. Datacenter traffic is not only growing quickly as an
aggregate, but the expanding variety of cloud applications also creates complex traffic patterns
that come in many different flavors and with different performance requirements [20–22]. For
instance, Hadoop-like applications exhibit an all-to-all traffic pattern [23], short query traffic has a
skewed pattern [24], while all-reduce in machine learning (ML) applications exhibit a ring or tree-
like traffic pattern [25–27]. Cutting-edge datacenter architecture proposals hence need to satisfy
several desired requirements simultaneously. They should support high capacity and throughput,
be throughput-proportional [28], minimize 99% tail latency for short flows, and maintain a low
hop-count. All of these requirements must be satisfied for a range of traffic loads and applications,
which may also change over time.
Diversity of datacenter topology designs. In parallel to the growing variety of traffic patterns,
the architectural design choices of operators are expanding. In particular, there exist several funda-
mentally different optical datacenter topologies, relying on different switching technologies [29].
We can classify these topologies along the two independent dimensions, static vs dynamic and
demand-oblivious vs demand-aware and we identify three main topology types: (i) Traditionally,
datacenter networks are based on static and demand-oblivious topologies, e.g., Clos and expander
graphs [30–37], (ii) More recent proposals also explore dynamic but demand-oblivious topologies,
e.g., relying on rotor switches that periodically reconfigure the topology [1, 4, 5]. (iii) Furthermore,
there are dynamic and demand-aware topologies that can be reconfigured according to the current
traffic pattern [2, 3, 7, 10, 11, 18, 19, 38, 39]. However, there is little consensus in the networking
community on how these different designs fare against each other [5, 30], in particular when it
comes to throughput [40]. What is more, we currently lack a unified model and analytical tools to
close this gap.
Matching traffic patterns to topology designs. This paper is motivated by the observation that
existing datacenter network designs in many cases provide a mismatch between some common
traffic patterns and the switching technology used in the network topology to serve them. In
particular, different optical topologies provide different tradeoffs and the used topology should
depend on the demand. For example, mice flows that are time-sensitive should be served on a static
topology; transmitting them on dynamic topologies that require reconfiguration times may violate
their latency constraints and result in high flow completion times. Elephant flows (e.g., in ML [41] or
Datamining [42]) on the other hand, may benefit from dynamic demand-aware topologies. Since the
reconfiguration time is relatively small compared to the transmission time of such large flows, the
reconfiguration can be amortized, and throughput improved by establishing direct links between
frequently communicating pairs. To give one more example, it has been shown that shuffling traffic
of map-reduce applications, due to its all-to-all nature, can profit from dynamic demand-oblivious
topologies providing periodic direct connectivity between all rack pairs [1, 4, 5].
A key concern: throughput. Our main metric of interest is the end-to-end throughput supported
by systems in a fluid-flow model. We follow the throughput definition by Jyothi et al. [40] and focus
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on the network topology (ignoring e.g., congestion control). The throughput of a system for a traffic
demand matrix 𝑇 is the highest scaling factor \ (𝑇 ) for which the traffic is feasible in the system.
That is, we seek the maximum scaling factor for which there exists a feasible multi-commodity
network flow assignment that routes the traffic in the matrix \ (𝑇 ) ·𝑇 through the network from each
source to each destination. A feasible flow means that the flow rates are subject to link capacities
and to flow conservation at each intermediate node. The throughput of a topology, denoted by \ ∗,
is defined as the worst-case throughput among all traffic matrices [40].
Potential inefficiencies: bandwidth and latency tax. To compare the throughput of different
topologies, we propose to quantify their inefficiencies in terms of taxes. Static topologies require
multi-hop forwarding. This can be problematic, especially for large flows: the more hops a flow
must traverse, the more network capacity is consumed. As noticed in prior work [4], inefficiency
arising from multi-hop routing can be seen as a “bandwidth tax” (BW-Tax). In contrast, in dynamic
networks, the topology may be reconfigured to provide direct connectivity to elephant flows [4, 14],
but at the cost of a reconfiguration time. For example, the reconfiguration time of rotor switches can
be in the order of 10`𝑠 per slot [4] while reconfiguring demand-aware optical switches may take
in the order of 15𝑚𝑠 [43, 44]. In general, we can regard the reconfiguration time as a “latency tax”
(LT-Tax). Regarding the design choice between static vs dynamic topology, we therefore observe
that whereas dynamic topologies introduce a latency tax, static topologies introduce a bandwidth tax.

In this paper, we present a systematic approach to study the throughput of both static and
dynamic topologies for different traffic types. Concretely, we make the following contributions.
Contribution 1: Throughput analysis including bandwidth and latency tax. We first extend
the throughput definition by Jyothi et al. [40] from a demand matrix 𝑇 to our general traffic
generation model T (in Section 5.1). We further extend the definition to apply also to dynamic

network topologies rather than only static topologies [40, 45]. In turn, we present a mathematical
framework that allows us to evaluate analytically the performance and trade-offs of arbitrary
demands using different optical switches, considering real traffic distributions like in Figure 1 (a)
[22, 42, 46]. In particular, based on our models, we formally show that all three topology types have
a unique raison d’etre. In contrast to previous work [40, 47, 48], we propose to study the throughput
via the demand completion time (DCT), which allows us to incorporate both bandwidth and latency
tax into our analysis. We further show that the efficiency of different topology types depends on the
skewness of the traffic distribution in a non-trivial manner. This enables us to provide novel insights
into an abstract version of existing architectures such as rotor-net for RotorNet [4] and expander-net

for Xpander and Jellyfish [30, 35], including their throughput1 and the throughput-proportionality
property [30] (see §2).
Contribution 2: A unified network model. We formalize the forte of three popular optical
topologies from prior work: a static expander-based [28, 30, 35], a rotor-based [1, 4, 5, 49], and
a demand-aware topology [6, 11, 12]. Based on these models, we propose a unified two-layer
leaf-spine network model that simultaneously contains both static and dynamic topologies, and in
particular, the three topology parts: static, rotor, and demand-aware. This generalizes the existing
architectures mentioned above since the spine switches can be of different types (see §4.1).
Contribution 3: Matching traffic to topologies with Cerberus. Motivated by the identified
inefficiencies resulting from a mismatch between traffic and topology, we describe a novel architec-
ture, Cerberus2, which facilitates to serve traffic on the topology part that best matches the traffic’s
characteristics. For example, latency-sensitive mice flows can be transmitted via static switches,
all-to-all traffic via dynamic rotor switches, and elephant flows via demand-aware switches (§4). We

1Very recently, and in parallel to our work, the throughput of expander-net was also shown in [45].
2In Greek mythology, Cerberus is a dog with three heads (corresponding to our three topology parts).
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Fig. 1. (a) CDF of the number of bytes transmitted according to various flow size distributions. The top x-axis
shows the ideal flow transmission time on a 40Gbps link. (b)The main topology designs we consider in this
paper and their related properties (including the theorems derived in this paper) and achieved throughput
(with our improvement in %).

show analytically (§5) and in simulations (§6) when Cerberus outperforms alternative architectures,
by achieving higher throughput [40]. Figure 1 (b) gives an overview of our corresponding contribu-
tions. For example, our simulations show that compared to static and dynamic demand-oblivious
topologies, Cerberus improves the throughput by 33% or more for a datamining workload, by 36%
or more for a synthetic case study imitating realistic flow-size distributions, and by 88% or more
for permutation matrices, i.e., sparse matrices which represent the worst-case input for oblivious
designs. We further prove that Cerberus is throughput-proportional [30], namely, that Cerberus
is able to utilize its full capacity proportionally, even when only a subset of the servers generates
traffic.

As a contribution to the research community and to ensure reproducibility, we will make
our artefacts (i.e., simulator and traces) publicly available3.
Scope and limitations. The understanding of what is the best optical datacenter network design is
a fundamental research question, and this paper focuses on a most essential aspect first, performance.
In particular, we aim at giving explicit formal bounds on the throughput and capacity of different
reconfigurable networks under general flow size distributions. At the same time, we leave additional
aspects for future research. In particular, we defer the complex modeling of cost-efficiency aspects,
which would require not only estimates of the purchase costs but also predictions about long-term
costs; such an analysis is only relevant if it can identify potential performance gains, which is
the scope of this paper. We also do not discuss the potential complexities involved in practically
operating multiple topology types; however, we point out that already today’s datacenters are fairly
heterogeneous, combining different switch types, routers, protocols, etc. While we assume that
the sizes of our three topology types are fixed, our framework supports also the study of dynamic
settings (if corresponding hardware is available); our sensitivity analysis further shows that our
results are fairly robust to changing traffic types. Finally, we will assume that flow sizes can be
estimated [6, 50], as it is common in some of the recent related work [5, 6, 50–52].

2 THE THROUGHPUT OF EXPANDER-NET AND ROTOR-NET
We begin our investigations of the throughput provided by different datacenter networks by
studying the throughput of two demand-oblivious fundamental network designs, a static one and a
3https://github.com/tum-lkn/cerberus
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dynamic one. In particular, we consider Xpander-like [30] networks (henceforth: expander-net) as a
representative of the former, and RotorNet-like [4] networks (henceforth: rotor-net) as an example
of the latter. We will later show under which circumstances and by how much the throughput can
be improved by our novel datacenter design whose topology matches the traffic distribution.

Our throughput analysis in this section relies on a simplified version of our more general
methodology presented in more detail later and, hence, also serves as an introduction. As we will
see in the following, this simplified version is already sufficient to derive a novel formal bound for
the capacity of expander-net and rotor-net.

Let 𝑇 = [𝑡𝑢𝑣] be an 𝑛 × 𝑛 demand matrix (entries in 𝑇 are traditionally given as rates [40], so we
consider them as bits per second, denoted as bps) for a datacenter network consisting of 𝑛 switches
which are used to interconnect a set of racks. Each switch has 𝑘 links of rate 𝑟 connected to other
switches, plus 𝑘 links connected to servers in its rack (also called uni-regular topologies [45]). In
the following, it suffices to focus on the rack-level network, i.e., we consider the demand matrix
between racks (resp. the top-of-rack switches) rather than individual servers. We consider the hose

model [40] and assume for now that 𝑇 is saturated, i.e., the sum of rates in each row and column of
the demand matrix is 𝑘𝑟 . Let𝑇 be the demand matrix in bits for one second, i.e., equivalent to𝑇 , but
in bits and not in bps. Let Total(𝑇 ) denote the total number of bits in 𝑇 . Furthermore, let DCT(𝑇 )
denote the demand completion time (in seconds) of 𝑇 , in a feasible multi-commodity network flow.
We then claim the following as an immediate result.

Theorem 1 (DCT and Throughput). Let 𝑇 be a demand matrix (in bps). i) If DCT(𝑇 ) ≥ 𝑥 for

every feasible demand completion time of 𝑇 , then: \ (𝑇 ) ≤ 1
𝑥
. ii) If there exist a feasible network flow

s.t. DCT(𝑇 ) ≤ 𝑦, then \ (𝑇 ) ≥ 1
𝑦
.

Proof. If the optimal demand completion time of 𝑇 is exactly 1, then for each entry 𝑇𝑢𝑣 in the
matrix 𝑇 , the rate is satisfied and 𝑇 is feasible also, so \ (𝑇 ) ≥ 1. Similarly, for i) assume for the
sake of contradiction that there is a network flow s.t. \ (𝑇 ) > 1/𝑥 . But then DCT(𝑇 ) < 𝑥 for that
network flow. Contradiction. For ii) assume for the sake of contradiction that for the given network
flow \ (𝑇 ) < 1/𝑦. But then DCT(𝑇 ) > 𝑦. Contradiction. □

We start by bounding the throughput of expander-net formally defined as 𝐺 (𝑘), a (random) 𝑘-
regular expander. expander-net is an abstract representation of expander-based topologies [30, 35].
Let epl(𝐺 (𝑘)) denote the expected path length of 𝐺 (𝑘).

Theorem 2 (expander-net Throughput). The throughput of expander-net with degree 𝑘 is

upper bounded by: \ ∗ ≤ 1
epl(𝐺 (𝑘)) , where epl is the expected (average) path length of𝐺 (𝑘), a 𝑘-regular

expander with 𝑛 nodes.

Proof sketch. We optimistically approximate the demand completion time of expander-net.
We assume that traffic is distributed across all shortest paths with no delay due to packet loss
or congestion. Hence, the only “cost” we consider is related to the path length, that is, each flow
consumes bandwidth capacity proportional to its route length (i.e., the bandwidth tax). The demand
completion time of 𝑇 can be easily bounded as follows: DCT(𝑇 ) ≥ Total(𝑇 ) · epl(𝐺 (𝑘𝑠 ))

𝑘 ·𝑛 ·𝑟 . Noticing
that𝑇 is saturated and that the total demand of𝑇 is 𝑘 · 𝑛 · 𝑟 bits, together with Theorem 1, provides
the result. □

The main takeaway from Theorem 2 is that the reduction in the throughput of expander-net is
due to the multi-hop routing (the bandwidth tax). Networks with shorter routes may benefit from
higher throughput.
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To compute the throughput of dynamic topologies, we must take into account the reconfiguration
time (the latency tax). The demand completion time provides us with a simple tool to address
this. Next, we study rotor-net, an abstract topology based on rotor switches like RotorNet [4] and
Sirius [1]4. In short, these designs rely on periodic matchings (𝑘 many) between nodes emulating
a full-mesh (complete graph) network by dynamically reconfiguring the circuit switches. The
reconfiguration time between successive matchings is denoted as 𝑅𝑟 , and the slot time 𝛿 is the
circuit-hold time after each reconfiguration. The cycle time is the time to emulate all the (directed)
links in the complete graph. To bound the performance of rotor-net, we define 𝜙 , the traffic skewness

of 𝑇 . In short, 𝜙 denotes the fraction of bytes in rotor-net which is sent through a single hop and
1 − 𝜙 is the fraction which is sent via two hops using Valiant routing [4]. We provide more details
of 𝜙 later. Now, we can formally state the following about rotor-net.

Theorem 3 (rotor-net Throughput). The throughput of rotor-net with reconfiguration time

𝑅𝑟 and slot time 𝛿 is bounded by: \ ∗ ≤ 𝑛
2𝑛−1

𝛿
𝑅𝑟+𝛿 . For a given demand matrix 𝑇 , we have \ (𝑇 ) ≤

1
2−𝜙 (𝑇 )

𝛿
𝑅𝑟+𝛿 ,where

1
𝑛
≤ 𝜙 (𝑇 ) ≤ 1 is the traffic skewness of 𝑇 .

As we discuss later, 𝜙 (𝑇 ) can expressed in terms of the variation distance [53] and is equal 1 for
the all-to-all demand matrix (uniform demand), so the throughput (even for saturated matrices)
can significantly differ. We get as a corollary that for every demand𝑇 , \ ∗ ≤ \ (𝑇 ) ≤ 𝛿

𝑅𝑟+𝛿 where the
worst matrix is the permutation matrix and the best matrix is the uniform matrix.

Proof sketch. For now, we only prove the results for \ ∗. The proof for \ (𝑇 ) is presented later.
By design, rotor-net supports only one or two hop routing [4, 5]. In the worst case, all traffic from
a source is destined to a single destination (i.e., a permutation matrix), hence all routes except
for a 1

𝑛
fraction, which are sent over direct links, are of length 2. Hence, the traffic skewness for

this case is 𝜙 (𝑇 ) = 1
𝑛

. This leads to an average path length of 2 − 1
𝑛

. Assuming no reconfiguration
time, similarly to Theorem 2, this leads to DCT(𝑇 ) ≥ 2 − 1

𝑛
. But since the utilization of each rotor

switch is 𝛿
𝑅𝑟+𝛿 (the latency tax), it increases the demand completion time by the inverse ratio so

DCT(𝑇 ) ≥ (2 − 1
𝑛
) 𝑅𝑟+𝛿

𝛿
, and the result follows by Theorem 1. □

As a takeaway from Theorem 3, we notice that the throughput of rotor-net is determined by
both the bandwidth and latency taxes. Next, we consider the throughput of demand-aware-net, an
abstract version of a topology built only from 𝑘 demand-aware switches [11, 14] (allowing to create
any 𝑘-regular directed graph). Let 𝑅𝑑 be the reconfiguration time needed for any link adjustment.
We assume that individual links can be reconfigured independently, if both source and destination
have an available port. In the demand-aware-net, for the analytical result, we consider that the
demand matrix𝑇 is a union of𝑚 permutation matrices𝑇 𝑗 each of which can have a different weight
𝑤 𝑗 . Formally, 𝑇 =

∑
𝑇 𝑗 . In this case, we can state the following about the throughput.

Theorem 4 (demand-aware-net Throughput). The throughput of demand-aware-net for the
above demand matrix 𝑇 with reconfiguration time 𝑅𝑑 can be bounded as: \ (𝑇 ) ≥ 𝑘∑𝑚

𝑗=1 (𝑅𝑑+
𝑤𝑗

𝑟
) .

Proof. Again, this follows from the DCT calculation. Since 𝑇 is a collection of matchings, we
can optimally schedule every switch to send all the permutations matrices, 𝑘 at at time. Notice that
each permutation may remain active for a different time. The demand completion time of 𝑇 can be
then computed as DCT(𝑇 ) = 1

𝑘

∑𝑚
𝑗=1 (𝑅𝑑 + 𝑤𝑗

𝑟
) and the result follows by Theorem 1. □

4Our approach in principle also allows us to study the throughput of Opera [5], which is slightly more complex. We leave a
detailed discussion for future work.
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As we can see, the reconfiguration time (latency tax) plays a critical role for the throughput.
Overall, the throughput can change significantly as a function of𝑇 . The best case for demand-aware-

net is when 𝑇 is arbitrary (and unknown a priori), but a single permutation matrix. In this case, the
throughput is close to one since only one reconfiguration is needed, and the total DCT of the system
is 𝑅𝑑 + 1, and the throughput is 1

𝑅𝑑+1 . We further note that while a static network could potentially
deal with a single permutation matrix 𝑇 optimally if it is known a priori, demand-aware-net will
deal with any such 𝑇 in an optimal way, even when it is unknown a priori. The worst case for
demand-aware-net is when 𝑇 is the uniform matrix and built from a collection of 𝑛 permutations
matrices of low weight, i.e., each of weight 𝑘𝑟/𝑛. Plugging this value of𝑤 𝑗 into Theorem 4 will give
us a lower bound of 𝑘

𝑛𝑅𝑑+𝑘 , and the throughput can be close to zero. More formally, the maximal
and minimal throughput can be bounded by, 𝑘

𝑛𝑅𝑑+𝑘 ≤ \ (𝑇 ) ≤ 1
𝑅𝑑+1 .

3 MOTIVATION: DIVERSITY OF TRAFFIC PATTERNS AND TOPOLOGIES
Our main observation from the previous section is that different existing datacenter topologies
can have different advantages and disadvantages depending on the scenario. This motivates us to
introduce and analyze a novel datacenter network design that is tailored toward the specific setting
and traffic it serves. We are mainly motivated by the hypothesis that throughput in datacenter
networks can be significantly improved if the network topology matches the demand. In the following,
before introducing our proposed design, Cerberus, we elaborate on the potential inefficiencies
arising from a mismatch of traffic patterns and topologies. In particular, using an empirical example,
we provide more intuition on how “taxes” can be used to quantify inefficiencies.

For the upcoming discussion, we plot in Figure 1(a) the different flow size distributions for
Websearch [46], Datamining [42], and Hadoop [22] applications, as well as a synthetic Pareto
distribution [1]. The figure shows that flow size distributions can vary widely across and within
applications. In case of datamining traffic, about 75% of the traffic belongs to flows of sizes above
100MB. The flow size also determines the flow transmission time. The top x-axis in Figure 1 (a)
shows the ideal flow transmission time on a 40𝐺𝑏𝑝𝑠 link, which can range from microseconds for
small flows up to seconds for elephant flows.

The flow transmission time and, hence, the throughput does not only depend on the flow size and
the link speed, but also on the used optical switching technology. In particular, it depends on the
reconfiguration time which accrues in dynamic topologies (e.g., 10`𝑠 per slot for rotor switches [4]
vs 15𝑚𝑠 for demand-aware switches [43, 44]). While the exact reconfiguration times will depend
on the specific technology, the reconfiguration times of demand-aware topologies are likely to
be higher than those of demand-oblivious topologies where reconfigurations are periodic (like
in [4, 5, 54]).

A key observation is that whether a flow can profit from reconfigurations depends on its size.
For example, an elephant flow has a large transmission time compared to the reconfiguration time.
Hence, the reconfiguration, i.e., the latency tax can be amortized and may pay off in the long run.

As shown in Theorem 2, static topologies do not introduce any latency tax, however, they require
multi-hop forwarding and, hence, introduce a bandwidth tax [4]: the more hops a flow has to
traverse, the more network capacity is consumed.

Dynamic topologies can reduce the bandwidth tax by avoiding multi-hop forwarding, which
performs particularly well for uniform all-to-all traffic patterns [4, 5]. However, such demand-
oblivious dynamic architectures are not optimal for the elephant flows; as typically elephant flows
carry a majority of the bytes, optimizing for elephant flows is important (see, e.g., the Datamining
workload). While in principle, Valiant routing [55] can be used in combination with rotor switches
to carry large flows, this again results in bandwidth tax, as demonstrated in Theorem 3.
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In contrast, in a demand-aware topology, direct shortcuts can be set up specifically for elephant
flows (Theorem 4). As a takeaway regarding the design choice between demand-oblivious vs.
demand-aware topologies, we conclude that whereas demand-oblivious topologies perform well
under uniform demands, demand-aware topologies perform well under skewed demands with large
flows for which latency taxes can be amortized.

This paper provides a mathematical model that allows deciding on the optimal flow assignments
to each topology type based on the flow size distributions. Returning to Figure 1(a), the solid
vertical lines show the reconfiguration times of rotor switches (10`𝑠) and demand-aware switches
(15𝑚𝑠). The right most part (dark gray area) starts at 15𝑚𝑠 , which means that a flow with large size,
e.g., a 500𝑀𝐵 flow whose transmission time is 100𝑚𝑠 , can amortize 15% tax for reconfiguration.
Creating a direct link for such flows will reduce the bandwidth tax to the minimum. The middle
part of the figure belongs to medium-sized flows. This area starts at 10`𝑠 , but if we consider 100`𝑠 ,
which is a relatively short slot time with 91% utilization for rotor switches [4], a cycle through all
possible links is fast. Since medium-sized flows are the vast majority of flows in the probability
distribution, if sources and destinations are sampled uniformly, they result in all-to-all traffic, and
can hence greatly benefit from the rotor switch’s connectivity pattern. Finally, there are small flows,
shown in the left white area. For these flows, we cannot afford any reconfiguration, but since their
cumulative size is also small, only a minor chunk of the resources need to be allocated to them.
This, for example, can be achieved with a static expander topology with a short average path length,
therefore, enabling low-latency forwarding. The exact flow size thresholds for making forwarding
decisions are an output of our analysis.

4 CERBERUS: NETWORK DESIGNWITH CHOICE
Motivated by our observations above, we propose and analyze a unified datacenter architecture,
Cerberus, which combines all three switch and topology types. Depending on link rates and
reconfiguration times as well as the given traffic mix, Cerberus computes the optimal size and
composition of different topology types, to improve performance.

4.1 The ToR-Matching-ToR (TMT) Model
Cerberus relies on a two-layer leaf-spine network architecture with 𝑛 leaf switches that are ToR
switches and 𝑘 optical spine switches that can be of different types: Static, Rotor and Demand-
aware; we will denote the number of switches from each type by 𝑘𝑠 , 𝑘𝑟 and 𝑘𝑑 respectively where
𝑘 = 𝑘𝑠+𝑘𝑟 +𝑘𝑑 . We will discuss how to compute the value for each type later. Since each optical spine
switch connects its in-out port via a matching, we will refer to it as the ToR-Matching-ToR (TMT)
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network model. This network architecture generalizes existing architectures such as RotorNet [4]
and Opera [5], by supporting multiple switch types.

More specifically, the TMT network interconnects a set𝑁 of𝑛 ToRs, {1, 2, . . . , 𝑛} and its two-layer
leaf-spine architecture composed of leaf switches and spine switches. The 𝑛 ToR packet switches are
connected using 𝑘 spine switches, 𝑆𝑊 = {𝑠𝑤1, 𝑠𝑤2, . . . , 𝑠𝑤𝑘 } and each switch internally connects its
in-out ports via a matching. Figure 2 illustrates a schematic view of our design. We assume that each
ToR 𝑖 : 1 ≤ 𝑖 ≤ 𝑛 has 𝑘 uplinks, where uplink 𝑗 : 1 ≤ 𝑗 ≤ 𝑘 connects to port 𝑖 in 𝑠𝑤 𝑗 . The directed
outgoing (leaf) uplink is connected to the incoming port of the (spine) switch, and the directed
incoming (leaf) uplink is connected to the outgoing port of the (spine) switch. Each spine switch
has 𝑛 input ports and 𝑛 output ports and the connections are directed, from input to output ports.
As a running example, throughout this paper we assume that the rate of each link is 𝑟 = 40𝐺𝑏𝑝𝑠;
however, our model is general and can be used for any bandwidth as we discuss later: similar results
to what we report here hold also for lower rates (e.g., 10Gbps as in [4, 5, 30]) and higher rates,
e.g., 100Gbps. At any point in time, each switch 𝑠𝑤 ∈ 𝑆𝑊 provides a matching between its input
and output ports. Depending on the switch type, this matching may be reconfigured at runtime
to another matching. Each switch 𝑗 has a set of matchings M 𝑗 of size𝑚 𝑗 = |M 𝑗 | and𝑚 𝑗 may be
larger than one. Changing from a matching 𝑀 ′ ∈ M to a matching 𝑀 ′′ ∈ M takes time, which
we model with a parameter 𝑅 𝑗 : the reconfiguration time of switch 𝑗 . During reconfiguration, the
links in 𝑀 ′ ∩𝑀 ′′, i.e., the links which are not being reconfigured, can still be used for forwarding;
the remaining links are blocked during the reconfiguration [56]. Depending on the technology,
different switches in 𝑆𝑊 support different sets of matchings and reconfiguration times.

4.2 Cerberus’ Topology Components
Our network model can be instantiated with different switches, accounting for the different and
specific switch characteristics. Thereby different typology types or components can be created. In
this paper, we consider three fundamental topology components: a static part, a rotor-only part, and
a demand-aware part. These components may either be realized by different switch technologies,
or by a single switch technology that can support multiple modes of operation. The former may be
more cost effective (e.g., static topologies are cheaper), while the latter is more flexible.

Abstractly, the three topologies can be described in a unified form using a collection of spine
switches. Each spine switch type, in turn is defined by a 4-tuple, 𝑠𝑤 = (𝑚,M, 𝑆, 𝑅) where𝑚 is the
number of matchings the switch can support; M is the specific set or sequence of𝑚 matchings the
switch can realize; 𝑆 is the minimal circuit-hold time a switch needs to remain in a matching that
contains a specific link before switching to the next matching which does not contain this link; 𝑅 is
the reconfiguration time of changing between matchings. Using our notation, the three topologies
can be formalized as follows:

• Demand-aware topology (Demand-aware): We create a demand-aware topology using a
collection of 𝑘𝑑 Demand-aware reconfigurable switches. Each such switch is described by the
tuple 𝑠𝑤 = (𝑛!,M, 𝑆, 𝑅𝑑 ). Demand-aware switches have the freedom to flexibly reconfigure to
any of the𝑚 = 𝑛! possible directed (perfect) matchings; i.e., M = 𝑆𝑛 where 𝑆𝑛 is the symmetric
group of [1...𝑛] and each matching is represented as a permutation. The demand-aware switch
can be implemented using off-the-shelf 3D MEMS technology with reconfiguration time in the
order of tens of𝑚𝑠 . In this paper, we assume 𝑅𝑑 = 15𝑚𝑠 which is the typical reconfiguration
time of a 3D MEMS switch [44]. The circuit-hold time 𝑆 can change during the operation of the
Demand-aware switch. While in this case the minimal time is zero, as a rule of thumb 𝑆 ≫ 𝑅𝑑
for the reconfiguration to be worthwhile. Otherwise, the utilization of the link would be small as
most of the time is spent on reconfiguration.
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• Rotor-based topology (Rotor): A rotor-based topology consists of the union of 𝑘𝑟 Rotor
switches. Each switch is described by the tuple 𝑠𝑤 = (𝑛 − 1,M, 𝛿, 𝑅𝑟 ): a Rotor switch cycles
through 𝑛 − 1 matchings specified by M, emulating a fully-connected network (i.e., complete
graph) and, hence, providing high bandwidth to all-to-all traffic. Our Rotor switch is a slight
generalization of the original Rotor switches [4] used in RotorNet since our model uses 𝑛 − 1
matchings and not 𝑛/𝑘 matchings as proposed originally. (We explain why this generalization
improves the performance of RotorNet in Section B in the Appendix.) The reconfiguration time
for the Rotor switch is in the order of few `𝑠 . We assume 𝑅𝑟 = 10`𝑠 as in [4, 5]. The circuit-hold
time of a Rotor switch is called the slot time and is denoted as 𝛿 . The slot time is tunable and
depends on the reconfiguration time, where a reasonable setup is at least 𝛿 = 9𝑅𝑟 = 90`𝑠 to reach
90% amortization of the reconfiguration time. This setup was used in the original work [4, 5], but
our bounds hold for any settings.

• Static topology (Static): We describe the static topology as a union of 𝑘𝑠 matchings, where
each matching can be implemented, e.g., using an optical patch panel (our analysis also applies
to electrical static topologies). In the case of a static component, the 4-tuple switch specification
can be represented by: 𝑠𝑤 = (1,M,∞, 0) where M = {𝑀} has a single (i.e.,𝑚 = 1) predefined
matching that does not change over time (𝑆 = ∞, 𝑅 = 0). The static switches are cost-effective
components to create regular graphs, such as expander graphs, providing low latency for short
flows using multi-hop routing. Prior work has shown that good expanders can be obtained by
taking the union of a few matchings [57].

Let (𝑘𝑠 , 𝑘𝑟 , 𝑘𝑑 ) denote a TMT network consisting of 𝑘𝑠 Static switches, 𝑘𝑟 Rotor switches, and
𝑘𝑑 Demand-aware switches. We will refer to a network consisting only of 𝑘 Static switches, i.e.,
a network with (𝑘, 0, 0), as static-net; as we will see, the static topology component of Cerberus
specifically relies on expander graphs, and we will hence refer to this network as expander-net. We
will further refer to the network consisting of only Rotor switches, i.e., networks with (0, 𝑘, 0),
as rotor-net, and to topology components consisting only of Demand-aware switches, i.e., a
network with (0, 0, 𝑘), as demand-aware-net. On the contrary, Cerberus uses a mix of switch types,
(𝑘𝑠 , 𝑘𝑟 , 𝑘𝑑 ), where 𝑘 = 𝑘𝑠 + 𝑘𝑟 + 𝑘𝑑 .

We also note that the TMT network can be used to model many existing systems. For example,
RotorNet [4], Opera [5] and Sirius [1] rely on periodic matchings and can be modelled as a rotor-net.
Networks like ProjecToR [11], Eclipse [14], or Helios [6] rely on demand-aware matching. To be
more specific, while for example the demand-aware links of ProjecToR are based on free space
optics, conceptually it can still be modelled as a demand-aware-net; ProjecToR additionally uses a
static electric network, which in our conceptual model can also be described using an expander-net.
Our model and analysis also apply to Xpander [30], which can be modelled as an expander-net as
well (even though it is based on electrical switches).

4.3 Cerberus’ Flow Assignment Algorithm
Given a (𝑘𝑠 , 𝑘𝑟 , 𝑘𝑑 ) network, we next describe the high-level flow assignment algorithm. The
analysis of the exact parameters will appear in the next section. Cerberus operates by dividing
flows into three categories, based on three sizes: small (𝑠), medium (𝑚) and large (ℓ) flows. The size
thresholds to assign flows to these categories are denoted by 𝑡𝑚 and 𝑡ℓ . Namely, small flows are of
size less than 𝑡𝑚 , medium flows are of size more than 𝑡𝑚 and less than 𝑡ℓ , and large flows are of
size larger than 𝑡ℓ . We first determine the size threshold for medium flows, 𝑡𝑚 , as the number of bit
transmitted in a slot time in Rotor switches, i.e., 𝑡𝑚 = 𝛿𝑟 . The goal is to ensure a low delay for small
flows and a high link utilization for medium flows. We then set the large flow size threshold, 𝑡ℓ , as
the minimum flow size that will have shorter completion time on Demand-aware switches, see
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Algorithm 1 Cerberus flow assignment
1: Switch depending on flow size
2: Case small flow: ⊲ latency-sensitive flow
3: send to static expander ⊲ multi hop
4: Case medium flow:
5: send to rotor-based topology ⊲ using 1 or 2 hops
6: Case large flow:
7: If a direct link is available to reconfigure:
8: send to demand-aware topology ⊲ single hop
9: Else ⊲ Under-provisioned demand-aware

10: send to rotor-based topology ⊲ using 1 or 2 hops

Eq. (7) in the next section. In summary, the threshold for large flows depends on the reconfiguration
times of the Rotor and Demand-aware switches and can be computed based on Theorem 5, Eq. (7),
which we present later.

Algorithm 1 describes how Cerberus distributes the traffic classes among the three switch types:
small, latency-sensitive flows are forwarded via a static expander built from 𝑘𝑠 Static switches;
large flows are transmitted via the 𝑘𝑑 many Demand-aware switches in the system; and the
remaining (medium) flows describing e.g., all-to-all traffic which is not latency-sensitive, are routed
via the 𝑘𝑟 Rotor switches. Cerberus manages the large flows using an approach which can be
seen as a distributed link cache: when a new demand-aware connection needs to be established,
an existing link must be replaced or “evicted”. While this introduces interesting optimization
opportunities, in the following, we will focus on a simple strategy: when a large flow should
be sent to the Demand-aware switches, but there are no available ports to serve it (the related
source/destination ports are already serving other flows), we greedily transmit the large flow via
the Rotor switches. When this happens continuously, we say that the demand-aware switches
are under provisioned. In the next section, we derive 𝑘∗

𝑑
, the optimal number of Demand-aware

switches (under a given traffic assumption) to maximize the throughput.

5 CERBERUS: THROUGHPUT ANALYSIS
This section describes how Cerberus’ logic calculates (𝑖) the topology parameters for each type
of topology; (𝑖𝑖) the flow assignment strategy for each topology; and (𝑖𝑖𝑖) the throughput and
demand completion times for the system as a whole. To do this, we first describe the general traffic
generation model that our analytical results hold for.

5.1 Traffic Generation Model and Metrics
Inspired by prior work [1, 5, 30], we consider the following fundamental traffic generation model:
flows (commodities) arrive over time, according to a sequence 𝜎 = (𝑓1, 𝑓2, . . .) where the 𝑓𝑖s are
individual flows. Each flow (commodity) 𝑓𝑖 = (𝑡𝑖 , 𝑠𝑖 , 𝑑𝑖 ,Δ𝑖 ) has an arrival time 𝑡𝑖 , a source rack
𝑠𝑖 ∈ 𝑁 , a destination rack 𝑑𝑖 ∈ 𝑁 , and a size 𝑓𝑖 (in bytes)5.

More formally, for our analysis, let T (𝑥, 𝐿,D) be a traffic generation model where 𝑥 ∈ [0, 1] is
the fraction of active ToRs, 𝐿 ∈ [0, 1] is the load of each active ToR, and D is a flow size distribution.
T generates traffic as follows: First, we select uniformly at random 𝑥 fraction of the ToRs as active.
Next, each active ToR generates traffic at an average rate of 𝐿 · 𝑘 · 𝑟 , where 𝑟 is the line rate (in
bps) and 𝑘 is the number of uplinks (and spine switches). Flow arrival times follow a Poisson
5Flows are originally generated by servers, but our focus here is on the flows from a rack-level perspective.
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process6 (where inter arrival times follow an exponential distributions) and flow sizes are sampled
independently from the flow size distribution D. Only active ToRs are sources and for each source
the destination ToR is chosen uniformly at random from the set of active ToRs. The expected total
amount of traffic (in bits) generated per second is (active-ToRs)×(traffic-per-ToR) = (𝑥𝑛) (𝐿 · 𝑘 · 𝑟 ),
where 𝑛 is the number of ToRs.

Our main metric of interest is the end-to-end throughput supported by systems in a fluid-flow
model. As before, we follow [40] in defining network throughput, and focus on the network topology
(and ignoring e.g., congestion control). We extend the definition of [40] from a demand matrix to our
general traffic generation model, T (𝑥, 𝐿,D). Furthermore, we study dynamic network topologies
rather than static topologies.

The throughput of a system for a traffic generation model T (𝑥, 𝐿,D) and a given 𝑥 (fraction of
active nodes) is the maximum value 𝐿 for which the traffic is feasible in the system. That is, we
seek the maximum 𝐿 for which there exists a feasible multi-commodity network flow assignment
that routes the flows generated by T through the network from each source 𝑣 to each destination
𝑤 , subject to link capacities and flow conservation. Following Theorem 1, our approach is to study
the throughput by computing analytically the demand completion time (DCT): the expected time it
takes to serve the accumulated demand matrix𝑇 , built from the flows generated by T in one second.
For a given 𝑥 and 𝐿, if the completion time is DCT(𝑇 ) ≤ 1, then the network has throughput at
least 𝐿 for this 𝑥 .

We consider two basic cases for the throughput: i) 𝑥 = 1 where all ToRs are active, and ii)
𝑥 ≪ 1 and the traffic is skewed. For the latter case, we are interested whether the network is
throughput-proportional. Following the definitions and observation in [30] (see also Figure 2 in [30]),
a network is throughput-proportional when it is “able to distribute its capacity evenly across the set
of servers with actual traffic demands” [30]. Namely, the non-active ToRs can share their capacity
and help the 𝑥 fraction of active ToRs. Hence, 𝐿 will be proportional to total network capacity, and
not only to capacity of the active ToRs.

5.2 Main Result: Analysis of Cerberus’ Throughput
In this section, we present our theoretical results on the throughput of expander-net, rotor-net
and Cerberus, for the T (𝑥, 𝐿,D) traffic model. Due to space constrains, the detailed analysis will
appear in the Appendix A. Simulations and numerical evaluations will follow in Section 6.

We start by considering the case 𝑥 = 1 when all ToRs are active with the same load 𝐿. We show
that for all considered systems, expander-net, rotor-net, and Cerberus, the demand completion time
grows (almost) linearly with load. Moreover, for a wide range of parameters (as we will show later),
Cerberus consistently achieves the highest throughput and has the lowest demand completion
times.

Informally, an example of the main theoretical result for this case is demonstrated in Figure 3,
which compares the demand completion times for 𝑥 = 1 of Cerberus vs. expander-net and rotor-net,
both for the Datamining [42] and the Case Study flow distributions (workloads), for 𝑘 = 32 and
𝑛 = 256. The Case Study distribution is a simple flow distribution for illustrative proposes, which
we discuss in Section 6.1.

The figure presents the expected demand completion times, DCT(𝑇 (1, 𝐿,Datamining)) and
DCT(𝑇 (1, 𝐿,CaseStudy)), as the load 𝐿 increases. We can see that all systems follow an almost
linear trend while Cerberus is able to be closer to the optimal completion time, which is 𝐿 seconds
for a load 𝐿, and sustain lower completion times throughout. The throughput of each system and flow
size distribution is the maximum load for which DCT(𝑇 ) ≤ 1𝑠 . Recall that the maximum throughput

6The exact rate of the Poisson process is a function of 𝐿, 𝑟 and D.
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(a) Datamining [42] workload (b) Case Study workload

Fig. 3. The expected demand completion time as the load 𝐿 increases, for the Datamining and Case Study
workloads.

is one. For the Datamining workload, Cerberus has a throughput of 0.8, while expander-net and
rotor-net have throughout of at most 0.53 and 0.6, respectively. For our Case Study, Cerberus has a
throughput of 0.9, while expander-net and rotor-net can have throughout of at most 0.53 and 0.66,
respectively. These values are shown also in Figure 1(b).

Formally, let 𝑇 (𝐿) be an accumulated demand matrix built from the flows generated by
T (1, 𝐿,D) in one second for 𝑛 ToRs each with 𝑘 uplinks (and D is clear from the con-
text). We denote by DCT(𝑠𝑦𝑠,𝑇 (𝐿), 𝑘) the demand completion time of a system 𝑠𝑦𝑠 ∈
{expander-net, rotor-net,𝐶𝑒𝑟𝑏𝑒𝑟𝑢𝑠}. Recall that expander-net = (𝑘, 0, 0), rotor-net = (0, 𝑘, 0) and
𝐶𝑒𝑟𝑏𝑒𝑟𝑢𝑠 = (𝑘𝑠 , 𝑘𝑟 , 𝑘𝑑 ). Recall that we categorize flows to three sizes and let 𝜏 denote the size
type of a flow where 𝜏 ∈ {𝑠,𝑚, ℓ} and let 𝑇 (𝐿, 𝜏) denote the expected number of bytes in flows
of type 𝜏 in 𝑇 (𝐿). Note that 𝑇 (1, 𝑠) + 𝑇 (1,𝑚) + 𝑇 (1, ℓ) = 𝑛𝑘𝑟 . Let 𝜙 = 𝜙 (𝑇 ) denote the expected
traffic skewness of 𝑇 resulting from the flow size distribution D. Formally, 𝜙 denotes the fraction of
packets (or bytes) sent in rotor-net via a single hop, and 1 − 𝜙 is the fraction of packets that are
sent using Valiant routing [4], using two hops, when serving 𝑇 . We approximate 𝜙 for a given
distribution and the load (or empirical distribution) as one minus the variation distance [53] from
the uniform distribution. This means that links (or source-destination pairs) that are active above
the average load can send packets via links that are below the average load (using two hops). We
discuss 𝜙 in more detail in Section 6.4. We can now state the following formal results about the
throughput of Cerberus:

Theorem 5 (Cerberus Throughput). Let 𝑇 (𝐿) be the accumulated demand matrix of flows that

were generated by T (1, 𝐿,D) in one second for 𝑛 ToRs each with 𝑘 uplinks of rate 𝑟 . The expected

throughput, i.e., the maximum 𝐿 for which 𝑇 is feasible, of Cerberus is:

\ (𝑇 ) = 𝑇 (1, ℓ)
𝑛𝑘∗

𝑑

(
𝑅𝑑E

[
1
|𝑓 |

]
+ 1
𝑟

)
(1)

where |𝑓 | is the size of flow 𝑓 .The expected size of the reciprocal flow sizes, is taken only over large

flows in D, 𝑘∗
𝑑
is the optimal number of Demand-aware switches and 𝑅𝑑 is their reconfiguration time.

To find the throughput of Cerberus using Eq. (1), we first need to compute two important
parameters: i) the threshold of large flows, and ii) the optimal division of Demand-aware switches
and Rotor switches. The threshold for large flows, 𝑡ℓ can be computed by:

𝑡ℓ ≥ 𝑅𝑑 · 𝑡𝑚 · 𝑟
(2 − 𝜙) · 𝑟 · (𝑅𝑟 + 𝛿) − 𝑡𝑚 (2)
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The ratio between the optimal number of Demand-aware switches, 𝑘∗
𝑑

, to the optimal number of
Rotor switches, 𝑘∗𝑟 is given by:

𝑘∗
𝑑

𝑘∗𝑟
=

𝑇 (1, ℓ)
𝑇 (1,𝑚)/𝑡𝑚

·
𝑅𝑑E

[
1
|𝑓 |

]
+ 1

𝑟

(2 − 𝜙𝑚) (𝑅𝑟 + 𝛿) (3)

where 𝜙𝑚 is the traffic skewness of the medium size flows. If we assume 𝑘𝑠 is set to some constant
value, as we do later, 𝑘∗

𝑑
+ 𝑘∗𝑟 will be known, and we can compute 𝑘∗

𝑑
from Eq. (3).

Analysis overview: The result is obtained using Theorems 3 and 4. First, we compute the com-
pletion times when sending flows over a pure demand-aware topology. This setting comes with a
(large) latency tax, based on the reconfiguration time 𝑅𝑑 . Then, the key observation in computing
the throughput of Cerberus, is that the optimal throughput is achieved when the completion time
of Cerberus’s different subsystems is balanced. Formally,

DCT(𝐶𝑒𝑟𝑏𝑒𝑟𝑢𝑠,𝑇 (𝐿), 𝑘) = max


DCTS (𝑇 (𝐿, 𝑠), 𝑘𝑠 )
DCTR (𝑇 (𝐿,𝑚), 𝑘𝑟 )
DCTC (𝑇 (𝐿, ℓ), 𝑘𝑑 )

(4)

Where DCT𝜔 (𝑇, 𝑘 ′) denotes the demand completion time to serve the demand 𝑇 using these 𝑘 ′
switches of type𝜔 and S,R, C denote the Static, Rotor and Demand-aware switches respectively.
Using the previous calculation for rotor-net and demand-aware-net we can find the optimal partition
of switch types 𝑘∗

𝑑
and 𝑘∗𝑟 . As mentioned the full details appear in Appendix A.

As we show in the next section, Theorem 2, Theorem 3, and Theorem 5 enable us to numerically
estimate the throughput of the different systems given the input parameters (i.e., reconfiguration
times, rates, etc.). Regarding the skewed traffic (where 𝑥 < 1), a generalized result, but with a slightly
more complex analysis, can be obtained. See Appendix A.2 for details. Following the extension
of Theorem 5, for the case 𝑥 ≪ 1, we can derive another important result which was previously
known only for expanders:

Corollary 1. All three systems: expander-net, rotor-net and Cerberus are throughput-

proportional.

6 SIMULATIONS & NUMERICAL RESULTS
In order to complement our analytical results, we conduct simulations and perform a numerical
evaluation of our system at scale.

6.1 Methodology
We use a custom event-based flow-level simulator written in Python. In contrast to a packet-based
simulator, a flow-level simulator assigns rates to flows in an end-to-end fashion. No packet buffering
or switch processing latency occurs.

The considered network setup consists of 𝑛 = 64 ToRs, 𝑘 = 16 spine switches, 𝑅𝑟 = 10`𝑠, 𝑅𝑑 =

15𝑚𝑠, 𝛿 = 100`𝑠 and a rate 𝑟 = 40𝐺𝑏𝑝𝑠 . We generate traffic corresponding to 16 hosts per ToR (1024
hosts in total) with 40𝐺𝑏𝑝𝑠 uplinks. The total host uplink capacity of the topology is 40.96𝑇𝑏𝑝𝑠 ,
which is at a comparable scale as other studies, e.g., Sirius [54] (51.2𝑇𝑏𝑝𝑠), Opera [5] (51.84𝑇𝑏𝑝𝑠),
or MegaSwitch [8] (63.36𝑇𝑏𝑝𝑠). MegaSwitch’s and Sirius’ simulations operate in a similar range as
we target; however, their implementations are not publicly available. In addition, the number of
flows per simulation (200K with a mean flow size of 100KB) indicates that only very short periods,
< 1 𝑠 , were evaluated for Sirius. The main evaluation of Opera focuses on a scenario with much
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(a) Case Study distribution (b) Parameters for different distributions
Flow size 5KB 0.5MB 1GB

Type small (𝑠) medium (𝑚) large (ℓ)
PDF (flow) 4.95% 95% 0.05%
PDF (byte) ≈ 1% ≈ 49% ≈ 51%

Trans.
Time 1`𝑠 100`𝑠 200𝑚𝑠

Served by static rotor demand
aware

Demand
(flow

distribution)

Average
flow
size

Threshold
|𝑙 |𝑜𝑝𝑡

Bytes in
large
flows

Skew
𝜙

Rotor
𝑘∗
𝑟

Demand
-aware
𝑘∗
𝑑

WebSearch 1.87𝑀𝐵 407𝑀𝐵 ≈ 0 % 0.92 32 0
Case Study 0.97𝑀𝐵 131𝑀𝐵 0.51 % 0.57 16 16
Hadoop 4.86𝑀𝐵 169𝑀𝐵 0.74% 0.69 10 22
Datamining 7.86𝑀𝐵 107𝑀𝐵 0.79% 0.45 9 23
Pareto 11.16𝑀𝐵 73𝑀𝐵 0.97% 0.17 1 31

Table 1. (a) The PDF of flows and bytes for our Case Study. (b) Empirical values for parameters of different
flow size distributions (for 𝑥 = 1 and 𝐿 = 0.5 as an example).

smaller topologies (only 6.48𝑇𝑏𝑝𝑠) and lower load levels than ours. For larger scales [5, Figure 12],
the details regarding flow generation are missing so that it cannot be judged.

The complexity of the centralized rotor-net implementation prohibits scaling to larger networks.
The allocation of indirect traffic (2-hop routing) requires to evaluate each source-destination rack
pair. The scale of this operation is quadratic in the number of ToRs and executed for every slot. An
optimized, centralized rotor-net algorithm is left for future work. For brevity, only the algorithms
used in the simulation are described in the following.

6.1.1 Flow Assignment Algorithms. Three systems are compared: expander-net, rotor-net and Cer-
berus:
expander-net. We use greedy single path routing on the expander graph built from the union of 𝑘
matchings. First, all flows in the system are grouped by their ToR source-destination pair. For each
pair of ToRs, the flows are sorted by their size in increasing order. The algorithm then iterates over
the pairs and tries to greedily allocate as many flows as possible.
rotor-net. In contrast to the original, distributed rotor-net algorithm implementation, the flow-
based algorithm implementation uses a centralized control plane. It performs flow allocations on a
ToR-by-ToR basis with a fixed, deterministic order. More advanced approaches are left for future
work.
Cerberus. Generally, Cerberus makes use of the algorithms rotor-net and expander-net for each
dedicated topology part. Following Algorithm 1, the algorithm first greedily searches for available
circuits on the demand-aware topology for the large flows. In case, no path can be found, the
algorithm tries to allocate large flows on the rotor-net part. Otherwise, the flows have to wait until
capacity becomes available, in which case the algorithm tries again to (1) allocate flows on the
demand-aware or (2) on the rotor-net part.

We acknowledge that these algorithms do not obtain optimal solutions, e.g., in contrast to solving
a multi-commodity flow problem [45] or our derived upper bounds. Rather they trade-off tractability
of simulations at the desired scale and performance.

6.1.2 Traffic and Flow Size Distributions. We consider traffic generated with the traffic model
described in Section 5.1 using six flow size distributions. The first set of distributions are the ones
shown in Figure 1(a) and include three empirical distributions, from Websearch [46], Datamin-
ing [42], and Hadoop [22] applications, as well as a synthetic Pareto distribution [1]. Another
distribution we consider is what we denote as the Case Study distribution and it is used to provide
more intuition and highlight the benefit of Cerberus. The Case Study flow distribution has flow
sizes of three categories: small (𝑠), medium (𝑚), and large (ℓ). Recalling the CDF of flow sizes from
real-world traffic shown in Figure 1(a), we observe that more than 50% of the bytes are transmitted
by elephant flows. Therefore, the probability distribution function (PDF) of flows sizes of the Case
Study are as follows (see Table 1(a)). Small flows (defined to be of size 5𝐾𝐵) constitute 4.95% of
the total number of flows. These flows are considered to be latency-sensitive, but capture a tiny
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(a) Accumulated traffic processed at the load 𝐿 = 0.7 (b) Poisson arrivals - throughput

Fig. 4. Throughput from flow-level simulations for Datamining [42].

fraction of bytes. About 50% of the bytes are transmitted in large (elephant) flows of size 1𝐺𝐵. Large
flows, despite constituting a large share of the traffic in terms of number of bytes, represent just a
tiny fraction of 0.05% of all flows. Medium flows are of size 0.5𝑀𝐵; they form the majority of the
flows, namely 95%, and represent all-to-all traffic (among active ToRs) since the source and the
destination are chosen uniformly.

6.2 Simulation Results
The simulation is used to compare the different systems for an online traffic scenario that is based
on the Datamining [42] flow distribution. In this scenario, the inter-arrival times of the flows follow
an exponential distribution with mean values depending on the loads. The smaller the inter arrival
times the higher the load. Note that the algorithms do not know when flows will arrive, but have
perfect knowledge of the flow sizes.

Given the parameters setup of the simulation, the (maximum) throughput of each system as
computed from Theorem 5 is: for Cerberus it is 0.79, for rotor-net 0.64, and for expander-net 0.57,
respectively.

To validate this result, Figure 4(a) presents the accumulated traffic (in bits) that was served
by each system as a function of the simulation time for traffic generated for load 𝐿 = 0.7. From
Theorem 5, Cerberus should be able to support this rate while rotor-net and expander-net do
not. We can observe that initially the systems are unstable as flows start arriving, but around 0.3
seconds, they become more stable and are able to process the incoming traffic at a constant rate.
This processing rate, or the slope of the accumulated served traffic, shows the throughput of the
system for the given traffic load. We additionally plot the total incoming (or generated) traffic which
is at rate 0.7 as expected (purple line). We can see that Cerberus is able to support this load and
maintain the same rate (slope), which means that the unserved traffic volume stays constant and
the throughput of Cerberus is above 0.7 as we analytically calculated. In contrast, both rotor-net

and expander-net rates (slopes) are lower than 0.7 which means that the unserved traffic volume
grows infinitely with time and their throughput must be lower than 0.7, as we analytically showed.

Figure 4(b) extends 4(a) and shows the normalized throughput of each system (i.e., the processing
rate of incoming traffic) for different traffic loads (solids lines) . Cerberus achieves higher throughput
for higher loads. Interestingly, for loads from 0.1 to 0.4, there is no significant difference between
Cerberus and rotor-net since both systems can support the incoming load. Only for loads higher
than 0.5, a Cerberus achieves higher throughput than rotor-net: for instance, for the 0.6 load
case Cerberus throughput is higher by 0.1, which translates to 4 𝑇𝑏𝑝𝑠 higher throughput (i.e.,
0.1 · 16 · 40𝐺𝑏𝑝𝑠 · 64). Additionally, we plot the analytical bounds for the (maximum) throughput of
each system as computed from Theorem 5 (dashed lines). Cerberus, rotor-net and expander-net
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Fig. 5. (a) Datamining [42] - throughput-proportionality. (b) Throughput - different distributions and scale.

have throughput of 0.79, 0.64 and 0.57, respectively. It is important to note that these bounds are
computed for the accumulated demand matrix, so they present an upper bound for the on-line
traffic generation process. Nevertheless, all systems approach the theoretical bound, preserving the
rank between them and the relative improvements.

The simulation results also confirm the benefit of having demand-aware components. This
benefit becomes visible especially at higher loads, which are also an interesting operational region
for datacenter operators aiming to efficiently utilize their infrastructure resources.

6.3 Large-Scale Numerical Evaluation
In this section, we consider a more realistic scenario where 𝑛 = 256 ToRs and 𝑘 = 32 spine switches
and the other parameters default values are 𝑅𝑟 = 10`𝑠, 𝑅𝑑 = 15𝑚𝑠, 𝛿 = 100`𝑆 and 𝑟 = 40𝐺𝑏𝑠 .
Using Theorem 2,3 and 5, we can calculate all the necessary parameters for any given flow size
distributions. For example, the results for the distributions of Figure 1(a) are presented in Table 1(b)
for 𝑥 = 1 and load 𝐿 = 0.5.

Our numerical results based on Theorems 2,3 and 5 are also shown in Figure 3 which compares the
demand completion times for 𝑥 = 1, of Cerberus vs expander-net and rotor-net, for the Datamining
and Case Study flow distributions. Figure 5(a) is based on Theorem 7 (see the Appendix for details)
and compares the throughput for the skewed traffic (𝑥 < 1) of Cerberus vs expander-net and
rotor-net for the Datamining flow distribution. The figure presents a throughput-proportional [30]
experiment when the traffic is generated using the skewed traffic generation scheme 𝑥 ≤ 1, as
the fraction 𝑥 of active ToRs increases on the x-axis. Interestingly, our results show that both
rotor-net and Cerberus are (theoretically) throughput-proportional similar to expander-net. Both
Demand-aware and Rotor switches play a role in this; while Demand-aware switches distribute
as much traffic as possible directly, Rotor switches are used to spread flows to non-active ToRs to
use their help. This is shown formally in Theorem 7.

The benefits of Cerberus are evident from both Figures 3 and 5(a): Cerberus is both more
efficient than the other systems for 𝑥 = 1, achieves lower demand completion times, and has the
same or higher throughput as the other systems for skewed traffic when 𝑥 ≤ 1. Figure 5(b) presents
the throughput of Cerberus, rotor-net and expander-net for larger networks size with 𝑛 = 4𝑘 ToRs
and different flow size distributions. The higher throughput of Cerberus compared to rotor-net

and expander-net is kept at larger scale. Similar results (not shown) hold for 𝑛 = 8𝑘 and 𝑛 = 16𝑘 .

6.4 Evaluation of the Skewness Parameter 𝜙
An important parameter in our analysis is the traffic skewness value 0 ≤ 𝜙 ≤ 1 which approximates
the fraction of bytes that are transmitted using one hop in rotor topology. When traffic is close to
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Fig. 6. (a) The behavior of 𝜙 on several different distributions. (b) The behavior of 𝜙 and 𝜙𝑚 for both
Datamining [42] and the Case Study distributions.

uniform among destinations for a ToR, then 𝜙 will be close to 1: there are no available other ToRs
to help the current ToR. When the destinations for a ToR are skewed, e.g., one large flow toward
a single destination, 𝜙 will be close to 0 and most of the traffic will be transmitted via two hops
(using Valiant routing [4]); this takes advantage of destinations that are free to help, but comes at
the cost that flows (or packets) that use two hops take additional capacity from the network (i.e.,
“bandwidth tax").

In the following, we hence examine this parameter in more details. To approximate 𝜙 for a given
distribution (or an empirical distribution), we define it as one minus the variation distance [53]
from the uniform distribution. For a finite state PDF 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, the variation distance
from the uniform distribution is defined as: Δ(𝑃) = 1

2
∑𝑛

𝑖=1 |𝑝𝑖 − 1
𝑛
|. Δ(𝑃) measures the probability

mass above the average. If 𝑃 represents the distribution of traffic toward destinations for a ToR,
then Δ(𝑃) will capture the fraction of bytes that can benefit from sending by two hops (using
the help of destinations that have load below the average); and 𝜙 = 1 − Δ(𝑃) is the fraction of
packets that will use a single hop. Therefore, the average number of hops that a packet takes is:
1 · 𝜙 + 2(1 − 𝜙) = 2 − 𝜙 . Since ToRs are symmetric in our traffic model, a ToR that sends (1 − 𝜙) of
its traffic via two hops, asking the help of other ToRs, is expected to receive similar requests to
help other ToRs. This means that the expected total traffic to be transmitted by all ToRs will be
𝑇 (𝐿) (2 − 𝜙). We can optimistically assume it will now be divided uniformly among destinations
(otherwise the DCT of rotor topology will only be larger).

Figure 6(a) presents how 𝜙 behaves for several different distributions on varying degrees of load
between 0.1 and 1. As a general rule, we see that the value of 𝜙 increases monotonically for all
distributions. However, the rate at which it increases slows down as we approach higher loads.
This is expected since the higher the load, the less skewed the empirical distribution is going to be.
When the load approaches ∞ (above the line rate), 𝜙 will tend towards 1 as all source-destination
pairs are sampled uniformly (regardless of the flow size). But the value of 𝜙 and its behavior for
different loads can still vary significantly. For example, we can see that for Web Search, 𝜙 starts
very high at around 0.8, and increases up to almost 1, while looking at the Pareto distribution, 𝜙
starts low, at around 0.1, and increases up to more than 0.2. This can be explained when looking at
the two distributions, Web Search has few large flows, and as a result it is more uniform, while
Pareto has some very large flows. There is also variance in the a degree of change for 𝜙 , for example,
Hadoop increases from 0.25 to 0.8 while our Case Study changes by only approximately 0.1.

In Figure 6(b), we see how the sub-division of the traffic into large and medium flows affects
the values of 𝜙 . In both the Datamining and our Case Study distributions, we observe that 𝜙 is
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Fig. 7. The ratio between the demand completion time of Cerberus and RotorNet for non optimal switch
divisions on the Datamining [42] distribution.

always lower than 𝜙𝑚 (which is the skewness of the traffic that is transmitted to the rotor topology

of Cerberus). This is a natural outcome of our system’s flow assignment algorithm: since there are
much more medium flows than large flows, their resulting distribution is more uniform than for
the relatively few large flows. This result is desirable, because, as discussed earlier, rotor topology is
more efficient when 𝜙 is higher. We can also observe that among these two traffic distributions
our Case Study shows higher values of 𝜙𝑚 , approaching 1; this means that all bytes are sent across
to their destination in a single hop. Datamining has a more skewed flow size distribution (not
only a single medium flow size), and as a result its medium flows yield a less uniform destinations
distribution, giving a lower 𝜙𝑚 .

7 SENSITIVITY ANALYSIS
7.1 Sensitivity to Optimal Switch Division
We so far assumed that flows are always assigned “optimally” to their appropriate subsystem,
according to Eq. (3). We will refer to this assignment of flows to switches as a “naive implementation”
of Cerberus, which is optimal as long as the flow distribution remains unchanged. We will now
explore how robust Cerberus is to non-optimal switch divisions, due to e.g., changes in the flow
size distribution. While our vision is that future switches will be able to adapt their mode of
operation and adjust to the demand, we will show that Cerberus is fairly robust even without
such adjustments. To this end, we analyze two scenarios. First, we consider the case that the
Demand-aware switches are under-provisioned: there are too many large flows for the demand-
aware topology to handle and complete at the same time as the Rotor switches. In the second
scenario, the Rotor topology is under-provisioned and there are too many medium flows for
Rotor switches to handle and finish at same time as the Demand-aware topology. In Figure 7,
(a) & (b) we see the expected ratio between the DCT of rotor-net and Cerberus for the naive
implementation, and for Cerberus implemented according to Algorithm 1. The figure shows the
behaviors of these two algorithms for the Datamining and Case Study distributions. The results
are shown for both implementations for a load of 𝐿 = 0.5. For Cerberus, we also show the results
for the loads 𝐿 = 0.4 and 𝐿 = 0.6. We can see that in all cases the best ratio is attained when the
system is given an optimal switch division (marked with the red dashed line); this represents an
improvement of about 30% for the Case Study, and about 20% improvement for Datamining. When
the switch division strays from the optimum, the ratio decreases. On the left (under-provisioned
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demand-aware topology), when more and more large flows are sent to Rotor switches, we see that
on all load levels Cerberus tends towards having the same DCT as rotor-net. However, lower loads
tend to have a slower decrease in performance. This could be due to large flows being more sparse
at lower loads, allowing the Rotor switches to spread the extra load more evenly. Overall, a similar
phenomenon can be seen on the right of the optimal division (under-provisioned rotor topology).
We see that Cerberus performs less favorably, as more and more medium size flows are sent to
Demand-aware switches. Demand-aware switches have a high reconfiguration time, making them
ill-advised to use the in the same manner for medium flows, as we have used them for large flows.
This motivates the following improvement to Algorithm 1: we can use the “extra” Demand-aware
switches (the residual switches past the optimal) to create a static expander topology, avoiding the
high latency tax for medium flows.

7.2 Sensitivity to Parameters Setup
How will our conclusions change in the future, when, e.g., Cerberus has to serve rates of 100Gbps
instead of 40Gbps, reconfiguration times will become faster, or flow sizes further increase? And
what about the sensitivity of our results to our parameters setup? We can show that as long as
certain proportions remain the same, similar benefits for Cerberus will arise. For example, assume
that the rate of network cards increases by a factor _, i.e., 𝑟 ′ = _𝑟 , and let us consider two scenarios.
In a first scenario, assume that the probability distribution of the demand, D, is scaled by a factor of
_ as well. In this case the thresholds, 𝑡𝑚 and 𝑡ℓ are also increased by _, and the proportion between
medium and large flows remains the same, hence the overall throughput and DCT will also remain
unchanged: see Theorem 6 and Eqs. (5), (8) and (9). Let us now consider a second scenario where
the reconfiguration times 𝑅𝑑 , 𝑅𝑟 and the slot time 𝛿 are all reduced by a factor of _. Also in this
case the equations show that all demand completion times remain the same. These are just two
examples: in fact, for any _ there are infinitely many combinations that will keep the demand
completion times unchanged.

Generally, we can indeed expect that rates will increase further in the future, while the reconfig-
uration times will decrease. For example, newly proposed fully integrated, high port-count silicon
photonic switches are capable to support sub-microsecond reconfiguration time across hundreds of
ports [58]. As flow sizes are likely to further increase as well [41, 42], we believe that the observed
benefits will stay in the future.

8 RELATEDWORK
Our paper builds upon several innovative approaches that were recently developed to improve
datacenter network performance. We will organize our review of related works according to the
classification considered in this paper: static and dynamic, where the latter is further subdivided
into demand-oblivious and demand-aware.

The Clos topologies and multi-rooted fat-trees are the most widely deployed static datacenter
networks, and come in different flavors [31, 36, 37]. Recently, also modular hypercubic network
designs [33, 34] as well as expander-based topologies [30, 35] have been proposed and analyzed.

Dynamic demand-oblivious topologies were introduced by Mellette et al. In their first work on
RotorNet [4], a scalable optical datacenter network design (circuit-based), the authors show that
very high bandwidth can be provided by actually emulating a full-mesh network, dynamically
reconfiguring the circuit switches constituting the datacenter. RotorNet is a hybrid design and serves
low-latency traffic over a static network. In a follow up work, Opera [5], the authors improved upon
RotorNet by presenting a deterministic reconfiguration scheme which ensures that at any moment
in time, the network implements an expander graph, while over time, bandwidth-efficient single-
hop paths are provided between all racks. However, in contrast to a network combining a static
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expander with an independent demand-oblivious rotor-based switch (as used also in Cerberus),
such dynamic expander graphs introduce challenging routing and synchronization constraints.
Recently, Ballani et al. [1] showed that nanosecond-granularity reconfiguration is possible in an
optically-switched network connecting thousands of nodes.

The networks discussed above have in common that their topology does not depend on the
current demand. In contrast, the goal of demand-aware networks is to exploit specific spatial and
temporal structure in the workload [20]: several measurement studies show that traffic matrices
are known to be sparse and skewed [20–22, 59, 60], and that traffic can be bursty over time [61, 62].

Existing demand-aware networks can be classified according to the granularity of reconfigura-
tions. Solutions such as Proteus [16], OSA [17] or DANs [38], among other, are more coarse-granular
and e.g., rely on a (predicted) traffic matrix. Solutions such as ProjecToR [11, 63], MegaSwitch [8],
Eclipse [14], Helios [6], Mordia [64], C-Through [12], ReNet [65] or SplayNets [13] are more fine-
granular and support per-flow reconfiguration and decentralized reconfigurations. Reconfigurable
demand-aware networks may rely on expander graphs, e.g., Flexspander [39], and are currently
also considered as a promising solution to speed up data transfers in supercomputers [18, 19].
Demand-aware networks raise novel optimization problems related to switch scheduling [66],
and recently interesting first insights have been obtained both for offline [14] and for online
scheduling [15, 63, 67, 68].

Due to the increased reconfiguration time experienced in demand-aware networks, many of these
solutions additionally rely on a fixed network. For example, ProjecToR always maintains a “base
mesh” of connected links that can handle low-latency traffic while it opportunistically reconfigures
free-space links in response to changes in traffic patterns. To give another example, OSA allows
to reserve some circuit-switch ports specifically to ensure connectivity for low-latency traffic;
MegaSwitch could similarly support low-latency traffic. However, we are not aware of any work
analyzing the capacity of different reconfigurable networks under general flow size distributions in
a formal and explicit way as we do. Our paper is also the first to provide a unified methodology
which enables us to study the consequences of mismatching traffic to specific network types.

9 CONCLUSION AND DISCUSSION OF FUTUREWORK
This paper uncovered a potential of serving datacenter traffic with the switch technology that
best matches its structure. By tapping into this potential, we developed a solution, Cerberus,
which we showed to significantly improve throughput. To this end, we also presented an analytical
framework which allowed us deriving explicit formal performance bounds for general flow size
distributions, and also reported on empirical results for the most widely studied traffic patterns. Our
results reveal a non-trivial dependency of the performance on the reconfiguration times provided
by the specific technology and the skewness of the traffic pattern. This sheds an interesting new
light on the performance tradeoffs in existing architectures, to which our analysis applies.

We believe that our work opens several interesting avenues for future research. For example,
we find it intriguing that the simple algorithms we presented already provide good results, which
motivates us to study more complex algorithms in the future. In general, we understand our work
on the performance aspects of reconfigurable networks as a first step, and it remains to explore
several additional aspects, such as cost-efficiency or robustness.

In particular, when implementing Cerberus based on the, mainly theoretical, model presented
here, we expect some challenges. One important issue is the classification of the flows into small,
medium, or large. In the paper, we assume that this is known before the flow is sent on either
system, and we also assume that it is easy to route flows individually, according to their size. Any
implementation of Cerberus will have to find a practical solution for these issues, which we hope
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to explore in future work. For example, promoting a flow from smaller size to larger size might be
possible if it stays longer in the system.

Our analysis also assumes that every large flow triggers a reconfiguration of the Demand-aware
switches. A more practical version might optimize this by sending two large flows (with the same
source and destination address) on the link which only had to be reconfigured once. This will
allow Cerberus to better utilize the available bandwidth. Cerberus can tolerate some deviation
from the expected switch division as we have seen in Section 7.1. In order to reach optimal results,
however, Cerberus requires either the flow distribution to be static or switches to change roles
from time to time (from Static switches to Rotor switches, etc.). This might be realized by a flexible
switch which can turn into either switch type. Finally, we note that implementing expander-net via
demand-aware switches is relatively easy, but does not utilize the full flexibility of such switches.
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APPENDICES
A THROUGHPUT AND DCT ANALYSIS
In this section we present analytical results for the performance of Cerberus. We analyze the
throughput and the demand completion time: the total time it takes to serve a demand matrix from
the traffic generation model that arrives in one second. Theorem 6 and 7 in turn enable us to derive
our main result, in Theorem 5, about the throughput.

A.1 Analysis of the Case 𝑥 = 1 (All Active)
We first prove the following result.

Theorem 6. Let𝑇 (𝐿) be the accumulated demandmatrix of flows that were generated byT (1, 𝐿,D)
in one second for 𝑛 ToRs with 𝑘 uplinks of rate 𝑟 . Let 𝜙 be the skewness of 𝑇 (𝐿). The expected demand

completion times of the systems Cerberus, expander-net and rotor-net are as follows.
For Cerberus (upper bound):

DCT(𝐶𝑒𝑟𝑏𝑒𝑟𝑢𝑠,𝑇 (𝐿), 𝑘) = 𝐿 · 𝛼 (5)

where 𝛼 =
𝑇 (1,ℓ)
𝑘∗
𝑑

(
E

[
𝑅𝑑
|𝑓 |

]
+ 1

𝑟

)
. The expected size (of the reciprocal flow sizes) is taken only over large

flows. 𝑘∗
𝑑
is the optimal number of Demand-aware switches, computed from the ratio between the

optimal number of Demand-aware switches to Rotor switches denoted by 𝑘∗𝑟 :

𝑘∗
𝑑

𝑘∗𝑟
=

𝑇 (1, ℓ)
𝑇 (1,𝑚)/𝑡𝑚

·
E

[
𝑅𝑑
|𝑓 |

]
+ 1

𝑟

(2 − 𝜙𝑚) (𝑅𝑟 + 𝛿) (6)

where 𝜙𝑚 is the traffic skewness of the medium size flows.

The threshold for large flows, 𝑡ℓ can be computed by:

𝑡ℓ ≥ 𝑅𝑑 · 𝑡𝑚 · 𝑟
(2 − 𝜙) · 𝑟 · (𝑅𝑟 + 𝛿) − 𝑡𝑚 (7)

For rotor-net:
DCT(rotor-net,𝑇 (𝐿), 𝑘) = 𝐿 · 𝛽 (8)

where 𝛽 = (2 − 𝜙) 𝑅𝑟+𝛿
𝛿

.

For expander-net (lower bound):

DCT(expander-net,𝑇 (𝐿), 𝑘) ≥ 𝐿 · 𝛾 (9)
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where 𝛾 = epl(𝐺 (𝑘)) is the expected path length of the 𝑘-regular expander with 𝑛 nodes.

Recall that 𝜏 denotes the type of a flow where 𝜏 ∈ {𝑠,𝑚, ℓ} is the flow type and let 𝑡𝑚 and 𝑡ℓ
denote the thresholds sizes to decide the flows type. Namely, small flows are of size less than 𝑡𝑚 ,
medium flows are of size more than 𝑡𝑚 and less than 𝑡ℓ and, large flows are of size larger than 𝑡ℓ .

We set the size of the medium threshold to be exactly 𝑡𝑚 = 𝛿𝑟 the flow size that can be transmitted
in one slot.

Consider 𝑘 switches all of them of the same type 𝜔 ∈ {S,R, C}. We denote by DCT𝜔 (𝑇, 𝑘) the
demand completion time to serve the demand 𝑇 using these 𝑘 switches. Further, let DCT(𝑠𝑦𝑠,𝑇 , 𝑘)
denote the demand completion time of system 𝑠𝑦𝑠 ∈ {expander-net, rotor-net,𝐶𝑒𝑟𝑏𝑒𝑟𝑢𝑠} for demand
𝑇 using 𝑘 switches. Note that for expander-net and rotor-net we have DCT(expander-net,𝑇 , 𝑘) =
DCTS (𝑇, 𝑘) and DCT(rotor-net,𝑇 , 𝑘) = DCTR (𝑇, 𝑘) respectively, since these systems are built from
a single switch type. But this is not the case for Cerberus which is built form a combination of all
three switches types. We present the analysis from the easy to the hard case, first expander-net,
then rotor-net and finally Cerberus.

A.1.1 Analysis of expander-net. We start by (optimistically) approximating the demand completion
time of expander-net. We assume that traffic is distributed along all shortest paths with no delay due
to packet loss or congestion. Hence, the only “cost” we consider is related to the path length, that is,
each flow consumes bandwidth capacity proportional to the route length (i.e. “bandwidth tax"). For
example, if the route length of all flows is two and all ToRs are working uniformly, the maximum
achievable load is 50%; otherwise the total traffic would exceed the network capacity: the number
of ToRs times the number of switches times the rate, i.e., 𝑛 · 𝑘 · 𝑟 . Now let 𝐺 (𝑘𝑠 ) denote a (random)
𝑘𝑠 -regular expander built from 𝑘𝑠 (random) matchings and let epl(𝐺 (𝑘𝑠 )) denote the expected path

length of 𝐺 (𝑘𝑠 ). The demand completion time of traffic 𝑇 (𝐿) can be bounded as follows:

DCTS (𝑇 (𝐿), 𝑘𝑠 ) ≥ 𝑇 (𝐿) ·
epl(𝐺 (𝑘𝑠 ))
𝑘𝑠 · 𝑟 · 𝑛 (10)

From this we can compute the bound for an expander made from 𝑘 switches and for our traffic
model with load 𝐿:

DCT(expander-net,𝑇 (𝐿), 𝑘) = DCTS (𝑇 (𝐿), 𝑘) =
𝐿 · 𝑛𝑘𝑟 · epl(𝐺 (𝑘))

𝑛𝑘𝑟
= 𝐿 · epl(𝐺 (𝑘)) (11)

Therefore the completion time is linear in 𝐿. Using our test parameters we have found that a
(random) 32-regular expander with 256 nodes has an expected path length that is about 1.85.

A.1.2 Analysis of rotor-net. Next we consider rotor-net. First we consider a completely uniform
demand between all possible pairs denoted as 𝑈 (arriving at time zero). In this all-to-all case, rotor-
net will be almost optimal by serving requests in each slot according to the current matching of each
switch; all ports will be continuously operating at 100% throughput, sending flows directly (in a
single hop) from source to destination. The only inefficiency will be due to the reconfiguration time
(the “latency tax”), to reconfigure between slots. In our setting this overhead is equal to 𝑅𝑟/(𝑅𝑟 + 𝛿),
about 9% if we use our parameters. So the demand completion time of 𝑘 Rotor switches and such
uniform demand 𝑈 is for a single ToR (and for the system): (number of slots in 𝑈 ) / (number
switches) × (time for a slot). Formally,

DCTR (𝑈 , 𝑘) = 𝑈

𝑘 · 𝑟 · 𝑅𝑟 + 𝛿
𝛿

=
𝑈

𝛿 · 𝑟 · 𝑅𝑟 + 𝛿
𝑘

=
𝑈

𝑡𝑚
· 𝑅𝑟 + 𝛿

𝑘

Next we consider the case of traffic 𝑇 (𝐿). In this case all ToRs sample flow sizes from the same
flow distribution D, but flows can have different sizes so we cannot assume the traffic is uniform
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among all pairs or all-to-all. Dealing with non-uniform flows is more complex, since the number of
larger flows could be relativity small, potentially leaving many links in each slot inactive.

A rotor-net overcomes this problem by using Valiant routing (load balancing) [4] where flows
and packets can be sent via two hops and not directly. Flows (or packets) that use two hops may
take additional capacity from the network (i.e. “bandwidth tax"). We model this situation with
a traffic skewness parameter 0 ≤ 𝜙 ≤ 1 which approximates the fraction of bytes that a ToR in
rotor-net sends using one hop. When traffic is close to uniform across destinations for a ToR, then
𝜙 will be close to 1 since there are no available other ToRs to help the current ToR. When the
destinations for a ToR are skewed. e.g., one large flow toward a single destination, 𝜙 will be close to
0 and most of the traffic will be sent via two hops, taking advantage of destinations that are free to
help. To approximate 𝜙 for a give distribution (or empirical distribution) we define it as one minus
the variation distance [53] from the uniform distribution. For a finite state PDF 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}
the variation distance from the uniform distribution is defined as:

Δ(𝑃) = 1
2

𝑛∑
𝑖=1

|𝑝𝑖 − 1
𝑛
| (12)

Δ(𝑃) measures the probability mass above the average. If, for a ToR, 𝑃 represents the distribution
of the destinations’ load, Δ(𝑃) will capture the fraction of packets that can benefit from being sent
along two hops (using the help of destinations that have load below the average); 𝜙 = 1 − Δ(𝑃)
is the fraction of packets that will use a single hop. Therefore the average number of hops that a
packet takes is: 1 · 𝜙 + 2(1 − 𝜙) = 2 − 𝜙 . Since ToRs are symmetric in this traffic model (i.e., 𝑇 (𝐿)) a
ToR that sends (1 − 𝜙) of its traffic via two hops, asking for the help of other ToRs, would expect
similar requests to help other ToRs. This means that the expected total traffic which needs to be
sent will be𝑇 (𝐿) (2−𝜙). We can optimistically assume that it will now be divided uniformly among
destinations (otherwise the DCT will only be larger) and we can formally generalize the DCT lower
bound to:

DCTR (𝑇 (𝐿), 𝑘) = 𝑇 (𝐿)
𝑡𝑚

(2 − 𝜙)𝑅𝑟 + 𝛿
𝑛𝑘

=
𝑇 (𝐿)
𝑛𝑘𝑟

(2 − 𝜙)𝑅𝑟 + 𝛿
𝛿

(13)

Since rotor-net is composed of 𝑘 Rotor switches we can now bound the demand completion
time of load 𝑥 for rotor-net by:

DCT(rotor-net,𝑇 (𝐿), 𝑘) = DCTR (𝑇 (𝐿), 𝑘) = 𝐿𝑟𝑘

𝑡𝑚
(2 − 𝜙)𝑅𝑟 + 𝛿

𝑘
= 𝐿(2 − 𝜙)𝑅𝑟 + 𝛿

𝛿
(14)

If 𝜙 is a constant then this is a linear function. In practice 𝜙 can vary, but nevertheless the
function can still be approximated well by a linear function. This is demonstrated in Figure 3. The
slope of this linear function for rotor-net, in our setting and the flow distribution of our case study
is about 1.53, while for the Datamining distribution, is 1.88.

A.1.3 Analysis of Cerberus. We now turn to discuss Cerberus whose analysis is a bit more
complex. Let’s start with large flows which, according to Algorithm 1, are transmitted via the
Demand-aware switches. The Demand-aware component operates by reconfiguring a direct
link from the source of a flow to its destination. The flow is then transmitted along a single hop.
Assuming the reconfiguration time of a single Demand-aware switch is 𝑅𝑑 and the transmission
time of a single large flow 𝑓 of size |𝑓 | is |𝑓 |/𝑟 , the flow completion time for a single flow on a
single switch is 𝑅𝑑 + |𝑓 |

𝑟
.

Finding the threshold for large flows. To determine the threshold we would like to find a value
for a flow size |𝑓 | for which sending the flow 𝑓 on a 𝑘-Rotor-switch network is slower than
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transmitting the same flow on a 𝑘-Demand-aware-switch network. Following Eq. (13) we note
that the transmission time is a function of the global traffic skewness 𝜙 :

𝑅𝑑 + |𝑓 |
𝑟

𝑘
≤ |𝑓 |
𝑡𝑚

· (2 − 𝜙) · 𝑅𝑑 + 𝛿
𝑘

𝑅𝑑 ≤ |𝑓 |
𝑡𝑚

· (2 − 𝜙) · (𝑅𝑟 + 𝛿) − |𝑓 |
𝑟

𝑅𝑑 · 𝑡𝑚 · 𝑟
(2 − 𝜙) · 𝑟 · (𝑅𝑟 + 𝛿) − 𝑡𝑚 ≤ |𝑓 | (15)

When we use our parameters we have that for 𝜙 = 0 (all packets of the flow are sent via two hops
in rotor-net), |𝑓 | = 15𝑀𝐵, and for 𝜙 = 1 (all packets of the flow are sent via one hops in rotor-net),
|𝑓 | = 187.5𝑀𝐵. The threshold we use in our evaluation is 125𝑀𝐵.
The demand completion time. For a given partition of the 𝑘 switches to the three types of
switches: 𝑘𝑠 Static switches, 𝑘𝑟 Rotor switches and 𝑘𝑑 demand-aware switches, and a uniform
traffic model,𝑇 (𝐿) with load 𝑥 , the demand completion time of Cerberus is the maximal completion
time among the three sub-components. Formally:

DCT(𝐶𝑒𝑟𝑏𝑒𝑟𝑢𝑠,𝑇 (𝐿), 𝑘) = max


DCTS (𝑇 (𝐿, 𝑠), 𝑘𝑠 )
DCTR (𝑇 (𝐿,𝑚), 𝑘𝑟 )
DCTC (𝑇 (𝐿, ℓ), 𝑘𝑑 )

(16)

Assuming the sources and destinations are distributed uniformly and there are 𝑘𝑑 demand-
aware switches, then the demand completion time of a single ToR (and by symmetry all ToRs) is
approximated by

DCTC (𝑇 (𝐿, ℓ), 𝑘𝑑 ) =
1
𝑘𝑑

∑
𝑓 ∈𝑇 (𝐿,ℓ)

(𝑅𝑑 + |𝑓 |
𝑟
) (17)

In the worst case we have 𝑇 (𝐿, ℓ)/𝑡ℓ large flows, each of size 𝑡ℓ : as the flows get larger, the
reconfiguration time 𝑅𝑑 is better amortized by the transmission time of the flow. The upper bound
of the demand completion time is then

DCTC (𝑇 (𝐿, ℓ), 𝑘𝑑 ) ≤
𝑇 (𝐿, ℓ)
𝑡ℓ

· 𝑅𝑑 + 𝑡ℓ
𝑟

𝑛𝑘𝑑
=
𝑇 (𝐿, ℓ)
𝑛𝑘𝑑

(
𝑅𝑑

𝑡ℓ
+ 1
𝑟

)
(18)

When the threshold 𝑡ℓ is far from the average large flow it is better to take the expected completion
time.

DCTC (𝑇 (𝐿, ℓ), 𝑘𝑑 ) =
∑

𝑓 ∈𝑇 (𝐿,ℓ)

(
Pr(𝑓 )𝑇 (𝐿, ℓ)

|𝑓 |
𝑅𝑑 + |𝑓 |

𝑟

𝑛𝑘𝑑

)
=

∑
𝑓 ∈𝑇 (𝐿,ℓ)

(
Pr(𝑓 )𝑇 (𝐿, ℓ)

𝑛𝑘𝑑

(
𝑅𝑑

|𝑓 | +
1
𝑟

))
=
𝑇 (𝐿, ℓ)
𝑛𝑘𝑑

(
E

[
𝑅𝑑

|𝑓 |

]
+ 1
𝑟

)
= 𝐿

𝑇 (1, ℓ)
𝑛𝑘𝑑

(
E

[
𝑅𝑑

|𝑓 |

]
+ 1
𝑟

)
(19)

Next we discuss how to find an optimal partition of the switches. For example, assuming 𝑘𝑠 = 5
and that the completion time for the expander component is negligible (due to low traffic volume),
the optimal division of the switches, denoted as 𝑘∗𝑟 and 𝑘∗

𝑑
, is such that the completion time of the

corresponding components will be identical. This follows from the fact that the completion time
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of each sub-component, as shown above, is monotonically decreasing in the number of switches.
Equalizing the two components allows us to compute the optimal number of switches, as follows
(where 𝜙𝑚 denotes the skewness of the medium size traffic):

DCTC (𝑇 (𝐿, ℓ), 𝑘∗𝑑 ) = DCTR (𝑇 (𝐿,𝑚), 𝑘∗𝑟 ) ⇒ (20)
𝑇 (𝐿, ℓ)
𝑛𝑘∗

𝑑

(
E

[
𝑅𝑑

|𝑓 |

]
+ 1
𝑟

)
=
𝑇 (𝐿,𝑚)
𝑡𝑚

· (2 − 𝜙𝑚) · 𝑅𝑟 + 𝛿
𝑛𝑘∗𝑟

⇒

𝑘∗
𝑑

𝑘∗𝑟
=

𝑇 (𝐿, ℓ)
𝑇 (𝐿,𝑚)/𝑡𝑚

·
E

[
𝑅𝑑
|𝑓 |

]
+ 1

𝑟

(2 − 𝜙𝑚) (𝑅𝑟 + 𝛿)
For example, for the Case Study distribution and traffic load 𝐿 = 0.5 we calculated 𝜙𝑚 and by
plugging in our defult values, we get that 𝑘∗

𝑑
= 16 and 𝑘∗𝑟 = 16 (using rounding and recalling that

𝑘∗𝑟 + 𝑘∗𝑑 = 32).
Following Eq. (19) we can now approximate the demand completion time of Cerberus as the

completion time of the 𝑘∗
𝑑

Demand-aware switches (recall that it is equal to the completion time
of the 𝑘∗𝑟 Rotor switches).

DCT(𝐶𝑒𝑟𝑏𝑒𝑟𝑢𝑠,𝑇 (𝐿), 𝑘) ≤ 𝐿 · 𝑇 (1, ℓ)
𝑛𝑘∗

𝑑

(
E

[
𝑅𝑑

|𝑓 |

]
+ 1
𝑟

)
(21)

Interestingly, this is again a linear function (for the same switch partition and threshold), and
considering our default parameters and the distribution of our case study, we obtain a slope of 1.09,
while for the data mining distribution the slope is 1.25. In both cases the slope is smaller than those
of expander-net and rotor-net.

Figure 3 presents the demand completion times for expander-net, rotor-net and Cerberus for
𝑇 (𝐿), both for the Case Study and for Datamining, with optimal switches partitioned according to
Table 1. We can clearly see that Cerberus outperforms the other systems for every load. For the
Datamining use case, Cerberus can operate without saturating the network with load up to of
80%, while rotor-net and expander-net can work up to 60% and 53% respectively.

A.2 Analysis of the Case 𝑥 < 1 (Skewed)
Next we analyze the skewed traffic model T (𝑥, 𝐿,D), where only a fraction 𝑥 of the ToRs are active
and operating at load 𝐿. Let 𝑇𝑥 (𝐿) be the accumulated demand matrix of flows that were generated
by T (𝑥, 𝐿,D) in one second for the 𝑛 ToRs with 𝑘 uplinks of rate 𝑟 .

Our goal in this scenario is to design a network which allows for a maximal possible throughput
𝐿. Let 𝐿∗ (𝑥) = arg max𝐿 DCT(𝑇𝑥 (𝐿)) ≤ 1 and 𝐿∗ ≤ 1 is highest throughput that the network can
support (given 𝑥 ).

The assumption of skewed traffic is more realistic than uniform traffic, but it is also harder to
analyze. The main challenge arises from the fact that under the skewed traffic model, only a fraction
𝑥 of the ToRs are active, but in principle, it may be possible to utilize the 1−𝑥 fraction of non-active
ToRs to help the active ones. The question is if this can be done, and what is the maximum achievable
throughput 𝐿∗ (𝑥). We formally analyze this scenario by computing the demand completion time for
𝑇𝑥 (1) (with ports working at full throughput 𝑟 ). If the completion time is less than one second, we
say that the throughput is one; otherwise we adjust the throughput, 𝐿 to find the largest throughput
for which the completion time is less than one second. Let 𝑇𝑥 (𝐿, 𝜏), as before, denote the expected
number of bytes per second in flows of type 𝜏 generated by 𝑇𝑥 (𝐿).
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We start again with the expander-net. We optimistically assume the expander-net has all the good
properties expanders should have [69], i.e., large expansion, multiple disjoint paths, small mixing
times, etc. Basically these properties guarantee that even for a small set of communicating ToRs,
the traffic will efficiently spread across the entire network, utilizing the non-active ToRs as much
as possible. Therefore, as before, we assume only the capacity restriction and consider the demand
completion time as:

DCT(expander-net,𝑇𝑥 (𝐿), 𝑘) = 𝐿𝑥 · epl(𝐺 (𝑘)) (22)

We can find the throughput by solving for 𝐿.

𝐿𝑥 · epl(𝐺 (𝑘)) = 1 (23)

From this we can find 𝐿∗ (𝑥) as:

𝐿∗ (𝑥) = min
(

1
𝑥 · epl(𝐺 (𝑘) , 1

)
(24)

Following the definitions and observations in [30] and in particular Figure 2 within, the above
Eq. (24) shows that a static expander will be a throughput-proportional network, namely it will be
“able to distribute its capacity evenly across only the set of servers with traffic demands” [30].

What about a rotor-based network or a network based on Cerberus? Achieving throughput-
proportionality seems to be non-trivial. For example if the load is 50%, how can the network exploit
the capacity of the 50% non-active ToRs to help the active ones work at 100% throughput? In [30],
it was shown that the fat-tree is not throughput-proportional.

Interestingly, we can show that Rotor switches actually work very well in this scenario and that
rotor-net is also a throughput-proportional network. This is a novel result and was not discussed in
previous work [4, 5, 30]. The result is due to the Valiant routing property of rotor-net: if every flow
is transmitted using this mechanism, flows will be forwarded using the non-active ToR, keeping all

switch ports sending at full rate. Moreover, if a fraction 𝑥 of the network is active and generates a
uniform traffic (within the active fraction), this means that a fraction 𝑥 of the time, switch ports can
directly communicate to their destinations, and only a 1 − 𝑥 fraction of the time flows will need to
use two hops. If the traffic within the 𝑥 fraction of active ToRs is non-uniform we can again use the
skewness parameter 𝜙 to approximate the fraction of traffic that needs one hop and the fraction that
needs two hops. The average number of hops will then be 𝑥 (𝜙 + 2(1 − 𝜙)) + 2(1 − 𝑥) = 2 − 𝜙𝑥 . The
total amount of traffic to be sent in the whole network will now be 𝑇𝑥 (1) (2 − 𝜙𝑥) = 𝑥𝑛𝑘𝑟 (2 − 𝜙𝑥),
but since we are using two hops, it will be uniformly divided among ToRs and destinations, and we
can approximate the demand completion time of a single ToR as:

DCT(rotor-net,𝑇𝑥 (1), 𝑘) = DCTR (𝑇𝑥 (1), 𝑘) = 𝑇𝑥 (1)
𝑡𝑚

(2 − 𝜙𝑥) · 𝑅𝑟 + 𝛿
𝑛𝑘

= 𝑥 (2 − 𝜙𝑥) · 𝑅𝑟 + 𝛿
𝛿

(25)

And find the throughput by solving for 𝐿.

DCT(rotor-net,𝑇𝑥 (𝐿), 𝑘) = DCTR (𝑇𝑥 (𝐿), 𝑘) = 1 ⇒

1 = 𝐿𝑥 (2 − 𝜙𝑥) · 𝑅𝑟 + 𝛿
𝛿

(26)

and

𝐿∗ (𝑥) = min
(

1
𝑥 (2 − 𝜙𝑥) · 𝑅𝑟+𝛿

𝛿

, 1
)

(27)
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The above equation implies that rotor-net is throughput-proportional. For the setting of our
default parameters and our case study distribution with 𝜙 = 0.49 it supports up to 50% of the ToRs
working at full rate, the same as for the expander.

Observation 1. rotor-net is throughput-proportional.

We next discuss Cerberus. We already know that the Rotor switches are throughput-
proportional, so what about the demand-aware switches? Due to reconfiguration time, the demand-
aware switches may not be able to serve all large flows generated by the active ToRs. Furthermore,
our current design of demand-aware switches does not support 2-hops routing. The “latency tax”
due to reconfigurations in our numerical example is at most 15%, 𝑅𝑑

𝑡ℓ /𝑟 , so when an active ToR is
working at a full rate, it cannot send all of its large flows to the demand-aware switches.

Let 𝑧 denote the expected fraction of large flows that 𝑘𝑑 demand-aware switches can send in a
second for a given ToR. We can find it using Eq. (19)

DCTC (𝑇 (𝑧, ℓ), 𝑘𝑑 ) =
𝑇 (𝑧, ℓ)
𝑛𝑘𝑑

(
E

[
𝑅𝑑

|𝑓 |

]
+ 1
𝑟

)
= 1 ⇒

1 = 𝑧
𝑇 (1, ℓ)
𝑛𝑘𝑑

(
E

[
𝑅𝑑

|𝑓 |

]
+ 1
𝑟

)
⇒

𝑧 =
𝑛𝑘𝑑

𝑇 (1, ℓ)
(
E

[
𝑅𝑑
|𝑓 |

]
+ 1

𝑟

) (28)

Using 𝑧 and following Algorithm 1, we can approximate the expected fraction of large flows,
denoted as 𝑥∗ per active ToR which cannot fit the Demand-aware switches and which will be sent
to the Rotor switches when working at rate 𝐿 (in 𝑇𝑥 (𝐿)), by:

𝑥∗ = max(𝐿 − 𝑧
𝐿

, 0) (29)

The expected amount of such traffic per active ToR will be 𝑥∗𝐿𝑇 (1, ℓ)/𝑛 = 𝑥∗𝑇 (𝐿, ℓ)/𝑛.
Assuming that small flows are transmitted via static switches in Cerberus with negligible

completion time, we can compute the demand completion time of Cerberus as the demand
completion time of the 𝑘∗𝑟 Rotor switches (since the Demand-aware switches are set up to have
demand such that they finish at 1𝑠). Following Eq. (25), we have:

DCT(𝐶𝑒𝑟𝑏𝑒𝑟𝑢𝑠,𝑇𝑥 (1), 𝑘) = DCTR (𝑇𝑥 (1,𝑚) ∪ 𝑥𝑛𝑥∗𝑇 (1, ℓ), 𝑘∗𝑟 )

=
𝑇𝑥 (1,𝑚) + 𝑥𝑛𝑥∗𝑇 (1, ℓ)

𝑡𝑚
(2 − 𝜙𝑥)𝑅𝑟 + 𝛿

𝑛𝑘∗𝑟

= 𝑥
𝑇 (1,𝑚) + 𝑥∗𝑇 (1, ℓ)

𝑡𝑚
(2 − 𝜙𝑥)𝑅𝑟 + 𝛿

𝑘∗𝑟
(30)

where 𝜙 is the skewness parameter that fit the traffic generated by 𝑇𝑥 (1,𝑚) ∪ 𝑥∗𝑇 (1, ℓ).
To find 𝐿∗ (𝑥) we again need to solve for 𝐿 s.t.
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1 = DCT(𝐶𝑒𝑟𝑏𝑒𝑟𝑢𝑠,𝑇𝑥 (𝐿), 𝑘) ⇒

1 = 𝑥
𝑇 (𝐿,𝑚) + 𝑥∗𝑇 (𝐿, ℓ)

𝑡𝑚
(2 − 𝜙𝑥)𝑅𝑟 + 𝛿

𝑘∗𝑟
⇒

1 = 𝑥𝐿
𝑇 (1,𝑚) + 𝑥∗𝑇 (1, ℓ)

𝑡𝑚
(2 − 𝜙𝑥)𝑅𝑟 + 𝛿

𝑘∗𝑟
(31)

and 𝐿∗ (𝑥) can be found numerically.
Figure 5(a) shows the throughput of expander-net, rotor-net and Cerberus following Eq. (24), (25)

and (30), for the Datamining. All systems are throughput-proportional with Cerberus preforming
better at higher loads (> 70%). We note that Cerberus is not optimized in the sense that, for example
at 50% load, 50% of the links of the demand-aware switches are not used: this corresponds to about
25% of network capacity which is unused. We believe performance could hence be improved further
by making these links static and random, and support the expander links.

We note that Figures 3(a) and 5(a) are related: for each system, the maximum supported through-
put 𝐿∗ under 𝑥 = 1, i.e., DCT(𝑇1 (𝐿)) = 1 in Figure 5 (b) exactly corresponds to the point on Figure 3
where the load is 𝐿 and the demand completion time is 1𝑠 , i.e., DCT(𝑇 (1, 𝐿)) = 1.

Thus we have derived the following theorem.

Theorem 7 (Skewed Traffic). Let 𝑇𝑥 (𝐿) be the accumulated demand matrix of flows that were

generated by T (𝑥, 𝐿,D) in one second for 𝑛 ToRs with 𝑘 uplinks of rate 𝑟 . Let 𝜙 be the skewness of

𝑇𝑥 (𝐿). The expected throughput 𝐿 of the active ToR for the systems Cerberus, expander-net and
rotor-net can be computed by solving the following equations for L:

For Cerberus:
DCT(𝐶𝑒𝑟𝑏𝑒𝑟𝑢𝑠,𝑇𝑥 (𝐿), 𝑘) = 1 ⇒

𝑥𝐿
𝑇 (1,𝑚) + 𝑥∗𝑇 (1, ℓ)

𝑡𝑚
(2 − 𝜙𝑥)𝑅𝑟 + 𝛿

𝑘∗𝑟
= 1 (32)

For rotor-net:

DCT(rotor-net,𝑇𝑥 (𝐿), 𝑘) = 1 ⇒

min
(

1
𝑥 (2 − 𝜙𝑥) · 𝑅𝑟+𝛿

𝛿

, 1
)
= 𝐿∗ (𝑥) (33)

For expander-net:

DCT(expander-net,𝑇𝑥 (𝐿), 𝑘) = 1 ⇒

min
(

1
𝑥 · epl(𝐺 (𝑘) , 1

)
= 𝐿∗ (𝑥) (34)

where epl(𝐺 (𝑘)) is the expected path length of a random 𝑘-regular expander with 𝑛 nodes.

B THE GENERALIZED ROTOR SWITCH
In the original RotorNet [4] paper it is proposed to distribute the 𝑛 − 1 (𝑁𝑅 − 1 in their terminology)
matchings of the complete graph among the 𝑘 (𝑁𝑠𝑤 there) switches, such that each switch is
assigned ⌈𝑛−1

𝑘
⌉ or ⌊𝑛−1

𝑘
⌋ matchings and the cycle time is ⌈𝑛−1

𝑘
⌉ times the slice time, where the slice

time is the slot time plus the reconfiguration time. See Figure 8.
There are two problem with this approach:
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t1 t2 t3 t4 t5 t6 

. . . 

Time 

Figure 3: Rotor switches move through a static, round-
robin set of con�gurations, or matchings, spending an equal
amount of time in each matching.

switch state from the tra�c in the network, it requires no demand
collection, no switch scheduling algorithm, and no network-wide
synchronization. The switches simply run “open loop.”

As a �rst cut, each NR -port Rotor switch could repeatedly cycle
through all NR ! possible matchings, corresponding to the full set of
potential matchings o�ered by a crossbar switch. However, it would
take an infeasibly long time to complete this cycle for large NR , and
we could not guarantee that a given connection is implemented
within any reasonable amount of time. Further, only (NR�1) match-
ings are necessary to ensure connectivity between all NR ToRs. An
example set of these matchings is shown in Figure 4(a) for NR = 8.
Using these (NR � 1) matchings, we can guarantee that each ToR
is connected to every other ToR within one matching cycle. This
functionality is similar to a rotor device [2].

Still, for networks with many ToRs, cycling through even (NR�1)
matchings may still take too long. Instead, as shown in Figure 4(b),
we distribute the (NR � 1) matchings among Nsw parallel Rotor
switches, speeding up the matching cycle time by a factor of Nsw .
We show in Section 4.2 that for a network of 10s of thousands of
servers, we can cycle through as few as 16 matchings per switch
with Nsw = 128. In this con�guration, each Rotor switch only
provides partial connectivity between the ToRs. Taken together,
however, the complete set of switches restores full connectivity in
the network. We discuss the implications of our design in Section 4,
and explain how our design maintains connectivity even in the
presence of switch failure in Section 5.3.

3.2 One-hop direct forwarding
Given the baseline round-robin connectivity provided by Rotor
switches, each ToR must decide how to route tra�c over the net-
work. The simplest approach is for ToRs to send data only along
one-hop, direct paths to each destination, resulting in equal band-
width between each source-destination pair. For uniform tra�c,
this behavior results in throughput saturating the network’s bisec-
tion bandwidth (minus the switch duty cycle), and is inherently
starvation free. However, for skewed tra�c patterns, this approach
does not take advantage of slack network capacity when some ToRs
are idle, wasting potentially signi�cant amounts of bandwidth.

3.3 Two-hop indirect forwarding
To improve throughput in skewed tra�c conditions, we rely on
the classic and well-studied technique of indirection. Like Valiant’s
routing method [30], we allow tra�c to pass through intermediate

Nsw Rotor switches, 

… 

M1 

t1 

(a) 

M1 M2 M3 M4 M5 M6 M7 

t2 t3 

M2 M3 M4 M5 - M6 M7 - 

t1 t2 t3 t1 t2 t3 NP packet 
switches 

ToR 1 ToR 2 ToR 3 ToR 4 

Rack 1 Rack 2 Rack 3 Rack 4 … 

ToR NR 

Rack NR 

… 

Nup = 
Nsw + NP 
uplinks 

t1 t2 t3 t4 t5 t6 t7 

Nm = NR – 1 
matchings 

 
... of (NR)! possible 

Rotor switch 

(b) 
� �1 /m R swN N N ª � º« »

Figure 4: (a) A Rotor switch cycles through (NR � 1) match-
ings to provide full connectivity between racks. (b) Phys-
ically, these matchings are distributed among Nsw Rotor
switches which, taken together, provide full connectivity.

endpoints, which subsequently forward tra�c to the �nal destina-
tion. Chang et al. showed that Valiant’s method, when coupled with
two stages of round-robin switches, yields 100% throughput for
arbitrary input tra�c1 [5]. Shrivastav et al. are investigating an ap-
proach similar to Chang’s applied to rack-scale interconnects [28].
RotorNet is a datacenter-wide fabric, and we leverage the large
number of ToR switch uplinks to extend Chang’s approach, paral-
lelizing it across a number of Rotor switches. For large networks,
such as the example network in Section 4.2, this modi�cation re-
duces the matching cycle time, and thus the delivery time of tra�c,
by more than 100⇥ compared to sequentially cycling through all
matching patterns. RotorNet routes tra�c through the same single-
stage fabric twice, and a straightforward implementation would
reduce throughput by at most a factor of two (as half the network
bandwidth would now be consumed by indirect tra�c), yielding
half bisection bandwidth for arbitrary input tra�c. We argue that
this trade-o� is justi�ed by the fact that raw network bandwidth
is plentiful in optical networks. Moreover, through careful exten-
sions to the basic Valiant load balancing approach (described in
Section 5 and evaluated in Section 7), we are able to recapture a
signi�cant amount of the theoretical throughput loss in practice,
meaning the factor-of-two reduction in throughput is a worst-case,
not common-case, trade o�. Indirection requires bu�ering tra�c
within the network, but outside of the optical Rotor switches them-
selves, since they cannot bu�er light. Indirect tra�c is bu�ered on
a per-rack basis, either at the ToR switch or in end-host memory

1Subject to the minor technical condition that input tra�c can be modeled as a sta-
tionary and weakly mixing stochastic process.

Fig. 8. The original figure showing the RotorNet matching distribution between switches [4]

(1) When a new switch is added to the system a new distribution of the matching between the
switches is needed. Similarly when switch is temporarily failing, some matching are not
available.

(2) Synchronization issues can arise and raise questions such as: when some switches have ⌈𝑛−1
𝑘
⌉

matchings and some ⌊𝑛−1
𝑘
⌋ matchings, what should be the cycle time? And what is the slot

time on the switch with less matchings? What can we say about the average time that a
particular link will appear next in a matching?

We propose a slightly different approach (which should not require a significant technological
change) which solves the above problems. Our proposal is that every switch will rotate among
the 𝑛 − 1 matchings, keeping the same slot time for each matching as before. The only difference
between the switches is a time shift in rotation between matching. Consider the example of Figure 8.
There are seven matchings: 𝑀1, 𝑀2, . . . 𝑀7 where 𝑠𝑤1 rotates between {𝑀1, 𝑀2, 𝑀3}, 𝑠𝑤2 rotates
between {𝑀4, 𝑀5} and 𝑠𝑤3 rotates between {𝑀6, 𝑀7}. We propose that all switches rotate between
the seven matchings, but at time 0, 𝑠𝑤1 will start with 𝑀1, 𝑠𝑤2 will start with 𝑀4 and 𝑠𝑤3 will
start with 𝑀6. At time 4, for example, the configuration will be 𝑠𝑤1 with 𝑀4, 𝑠𝑤2 with 𝑀7 and
𝑠𝑤3 with 𝑀2. And so on. Each switch cycles via all matchings in a round robin manner. We then
define the cycle time as the average time until all links of the complete graph appeared. This will
be exactly 𝑛−1

𝑘
× (slice time). Moreover when a new switch is added to the system (e.g., to improve

performance), then we do not need to redistribute the matchings between the switches; all we need
to do it to update the shift between them. The new cycle time will become 𝑛−1

𝑘+1× (slice time). Also
when a switch fails, all needed matchings are still cycling with the active switches.
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