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ABSTRACT
Conventional buffer sizing techniques consider an output
port with multiple queues in isolation and provide guidelines
for the size of the queue. In practice, however, switches con-
sist of several ports that share a buffering chip. Hence, chip
manufacturers, such as Broadcom, are left to devise a set of
proprietary resource sharing algorithms to allocate buffers
across ports. This algorithm dynamically adjusts the buffer
size for output queues and directly impacts the packet loss
and latency of individual queues. We show that the problem
of allocating buffers across ports, although less known, is
indeed responsible for fundamental inefficiencies in today’s
devices. In particular, the per-port buffer allocation is an ad-
hoc decision that (at best) depends on the remaining buffer
cells on the chip instead of the type of traffic. In this work,
we advocate for a flow-aware and device-wide buffer sharing
scheme (FAB), which is practical today in programmable de-
vices. We tested FAB on two specific workloads and showed
that it can improve the tail flow completion time by an order
of magnitude compared to conventional buffer management
techniques.

1 INTRODUCTION
Few network engineers would expect network devices with
low buffer occupancies to ever drop packets [21, 24]. Sur-
prisingly though, this often happens in practice, begging the
obvious question: why?!
We investigated this behavior by experimenting with ac-

tual data center switches coming from two switch vendors
and equipped with totally different ASIC designs. Our exper-
iments confirmed this apparently counter-intuitive behav-
ior: both devices were indeed dropping traffic despite the
abundance of unoccupied buffer space. Our experiments also
revealed the culprit: the buffer allocation algorithm, which
decides how to split the available shared buffer across differ-
ent ports. Our devices, as manymodern network devices [16],
indeed rely on shared buffer memory across ports.
In both devices, the key issue was that the buffer alloca-

tion algorithm used by the manufacturer did not allow a
port/queue to occupy more than a fraction of the shared
buffer, even if there was no other active competing queue.

This behavior resembles a dynamic buffer management tech-
nique which limits the amount of buffer each queue can use
to a fraction of the unused buffer size [15, 26].

While configurable, setting this fraction is very challeng-
ing. On the one hand, if the fraction is too small, then in an
incast scenario, multiple packets of very short flows will be
dropped, while the buffer stays mostly empty. Drops on short
flows significantly affect their flow completion time [4, 30]
and, consequently, the application performance. On the other
hand, if the fraction is too large, then longer flows will grad-
ually occupy most of the buffer space, with no throughput
benefits [5, 7, 17, 20]. In practice, the two aforementioned
cases often tend to be entangled in the same device and even
in the same queue.

As one possible answer, we advocate that buffer allocation
decisions should be device-wide and flow-aware. We show
that doing so provides significant improvements over ex-
isting allocation schemes. In addition, we show that these
decisions can be made in existing programmable devices,
i.e., they are practically relevant.
Our algorithm, called Flow Aware Buffer (FAB), splits

buffer cells among ports of a device while taking into consid-
eration the utilization of all ports, and the expected benefit
of buffering for each flow. With FAB, a device can allocate
larger amounts of buffer space to bursty short flows while
limiting the buffer space allocated to long flows, and this,
independently of their respective destination ports.
Concretely, FAB extends a conventional dynamic buffer

management technique [15] that allocates a single fraction of
the remaining buffer to each port, by using multiple fractions
per port. While the exact number of such fractions is flexi-
ble, a handful corresponding to different priorities suffice in
practice. Next, FAB maps packets dynamically to a fraction,
based on flow information or priority, e.g., flow size. Thus,
two packets destined to the same destination port might be
treated differently (dropped or buffered) depending on the
flow they belong to. By doing so, FAB can absorb large bursts
of short flows, possibly as big as the entire buffer, on any
port, while preventing misbehaving or long-lived flows to
consume the buffer. Our preliminary results show that FAB
can decrease tail Flow Completion Time (FCT) by one order
of magnitude even in the presence of buffer-hungry long
flows and without the end-hosts’ support.
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Figure 1: Example in which a switch faces long-lived
(resp. transient) congestion on port 1 (resp. port 2).

2 OVERVIEW
We now illustrate the problems behind traditional buffer
management approaches and how FAB manages to solve
them. We use the scenario depicted in Fig. 1 in which a
switch forwards traffic from multiple senders (left) to two
receivers (right) via ports 1 and 2. We assume that the traffic
towards port 1 (resp. 2) is mainly composed of long (resp.
short) flows. Since we are interested in studying buffer allo-
cation, we assume that the incoming rate is higher than the
outgoing one resulting in a queue build-up at both output
ports. We consider that the switch buffer space is shared
across ports and can contain up to 180 packets. Upon con-
gestion, a buffer management technique decides how many
packets get buffered for each port.
In the following, we first describe the buffer allocation

computed by three conventional buffer management tech-
niques, namely: Complete partitioning, Complete sharing, and
Dynamic sharing. We then describe the allocation computed
by FAB and how it manages to overcome the limitations
of the previous methods. We depict the queue occupancies
obtained by each scheme in Fig. 2.

Complete partitioning. This technique simply allocates
a static amount of buffer space to each queue. Complete
partitioning is ideal for balanced traffic; namely, scenarios
in which all ports deal with similar load [8]. In all other
(and more practical) cases, though, Complete partitioning
tends to lead to unnecessary packet drops as the amount
of buffer space available to each port ends up being quite
small. Thus, packets belonging to a transient burst will be
inevitably dropped even if the buffer is almost empty. This is
the exact situation depicted in Fig.2a: we see that only a few
packets are buffered from each port, while the remaining
ones are dropped even though the buffer occupancy is low.

Complete sharing. This technique allows queues to grow
arbitrarily large in the shared buffer until it is full. Complete
sharing is ideal for imbalanced traffic among ports, namely
workloads in which very few ports need buffer. Similarly to

Complete partitioning, it is also very simple and, therefore,
easy to implement in hardware [8]. If multiple ports are
simultaneously competing for buffers though, the excess
traffic for these ports will be unrestrictedly and possibly
unnecessarily buffered. This is problematic if one of those
output ports carry long-lived and high-rate flows as they use
buffer space with little to no throughput benefits [7]. If at
the same time another output port carries short-lived flows,
those will be unable to gain space and will be dropped with
significant consequences to their completion time.

In our example, long flows destined to port 1 monopolize
the buffer, leaving almost no space left for the more-bursty
port 2 (Fig. 2b). Observe that, unlike Complete partitioning
which leaves the buffer mostly idle (Fig. 2a), Complete shar-
ing utilizes it as much as possible, yet not in a way that is
necessarily beneficial.

Dynamic sharing. This technique allows each queue to
grow up to a dynamically-assigned threshold. This threshold
is computed as the product of the remaining buffer with a
predefined parameter α [15]. Dynamic sharing is the current
state-of-the-art approach, used by multiple vendors, includ-
ing Broadcom [26]. Unlike the previous two techniques, dy-
namic sharing allocates buffer space proportionally to the
load on the device. Dynamic sharing is also fair as queues
that concurrently need buffer will get an equal amount of
cells (in the steady-state).

Still, Dynamic sharing has two crucial disadvantages. First,
it always leaves some part of the buffer unused, leading to
drops that could (and potentially should) have been avoided.
Second, Dynamic sharing allocates the same amount of buffer
space to ports that concurrently need buffer, regardless of
the type of traffic they see or the duration they occupy the
buffer. This essentially allows long flows to keep their share
continuously occupied while preventing microbursts from
using an excessive amount of buffer shortly.
These short-comings are also illustrated in our example

(Fig. 2c) in which we configure α = 0.5. First, observe that,
even when only one port is using the buffer, only a third
of the buffer (≈ 60 packets) can effectively be used. This is
because 60 ≈ .5×(180−60). Evenwhen the burst happens, the
overall buffer occupancy is only increased to ≈ 100 packets,
while the spare buffer is not used to absorb the burst. Second,
the fact that port 1 is allowed to continuously occupy 1/3 of
the buffer, further reduces the buffer space that is avaliable
for the burst, as the buffer consumed by port 1 reduces the
remaining buffer size upon the arrival of the burst. Indeed, if
the burst had arrived in an empty buffer, it could have used
≈ 60-packets, but in our example, it ended up using only
≈ 30 and dropping the rest.

Our solution: FAB. FAB is a generalization of Dynamic
sharing, with the addition that FAB allocates buffer space
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(a) Complete partitioning limits both ports too much. (b) Complete sharing uses all buffer but unfairly.

(c) Dynamic sharing gives same buffer to short & long flows. (d) FAB gives short flows as much buffer as they need.

Figure 2: Resulting queue occupancies, under different buffer management schemes

to ports in a flow-aware manner, proportionately to the ex-
pected benefit of buffering. Similarly to Dynamic sharing,
FAB buffer allocation is dynamic and depends on the re-
maining buffer space. Unlike Dynamic sharing, though, FAB
decisions also depend on the actual traffic seen by each port.
As an intuition, FAB gives relatively less buffer space to long
flows as these flows benefit less from buffering than short
flows.
FAB uses multiple parameters α per port: α1,α2, . . . ,αn ,

( s.t. α1 > α2 > · · · > αn) instead of the single one used by
Dynamic sharing. Each incoming packets p is mapped to
such a parameter αx and is buffered if the queue length of
its egress queue is shorter than αx times the instantaneous
remaining buffer upon p’s reception. FAB maps packets to
parameters based on some notion of priority, which depends
on the number of packets that the corresponding flow has
already transmitted. Thus, packets of short flows will be
mapped to larger α parameters and see higher queue limits
than long flows even if destined to the same output port and
while the buffer is equally utilized. Choosing the number

of different parameters as well as their value is challenging.
As we will show in §3, FAB starts being useful even with
two α parameters: (i) one relatively small for long flows; and
(ii) one arbitrary large for short ones. Indeed, FAB can be
augmented by using different queues per port or by using
ECN instead of dropping. Likewise, the decisive factor for
which flows to prioritize can be different from flow size and
dynamically decided by the switch, or set by the end-hosts.
Coming back to our example, let us assume FAB is used

to allocate buffer space with α1 = 10 and α2 = .1. Packets
belonging to long flows (after the first few ones) will be
mapped to α2 due to the number of packets those flows have
transmitted. As such, theywould be allowed to buffer up to 18
packets, as shown in Fig. 2d. On the contrary, short flows will
manage to finish transmission before they get degraded to α2.
Thus they will assume their limit is 10 times the remaining
buffer. Essentially, short flows are allowed to take as much of
the buffer is not taken. Of course, as they grow in the buffer
their limit will also decrease, as the remaining buffer will
decrease due to their own consumption.
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3 PRELIMINARY EVALUATION
In this section, we summarize our preliminary results. FAB
improves tail FCT by one order of magnitude compared to
Dynamic Sharing for an equally-sized buffer and for the
tested workloads.
Methodology. We implement all Buffer Management tech-
niques mentioned in §2 in ns3 [3]. Our simulated environ-
ment is composed of a star topology in which 200 leaf nodes
are connected to a hub node via 100Mbps links. Leaf nodes
establish TCP connections to each other via the hub node.
We create fan-in scenarios by sending long or short flows
from multiple leaf nodes to one receiver. Short flows carry
2.5KB of data, and long flows carry 25MB.
We measure FCT for short flows at the receivers, while

changing the buffer management technique at the hub node.
Complete sharing is implemented using Dynamic sharing
with a high α , in particular, α = 1000. In Dynamic sharing
we set α = 0.5. Finally, in FAB, we use two alpha parameters,
namely α1 = 10 for the first 15 packets and α2 = 0.5 for the
next ones. New limits are calculated and enforced periodi-
cally every 100ns of simulation time for each technique.

We simulate two scenarios that each lasted 2 seconds and
compare FCT and the distribution of packet drops across
the different buffer management techniques. In particular,
for FCT, we report the 50th, 70th, 90th, and 99th percentile
across short flows (shown in blue, orange, green, and red
bars, respectively). For packet drops, we report the sum of
dropped packets (blue bar), the number of those that belong
to short flows (green bar), and the number of those that
correspond to the handshake of a connection (orange bar).
Flows that had not finished by the end of the simulation are
assumed to have a FCT equal to the time difference between
their SYN and the end of the simulation.We omit the results
for Complete partitioning as most of the flows did not finish
due to the restricted buffer space.
FAB is as good as Complete sharing in the absence of
long flows. We first run a scenario in which one port re-
ceives a burst of flows while no long flow exists. As such,
all other ports are idle. We plot the FCT and packet drops in
Figs 3a and 3b, respectively. We see that Complete sharing
and FAB have similar performance. Neither of them drops
any of the packets that belong to the burst. On the other hand,
Dynamic sharing allows the bursty port only to occupy a
small portion (33%) of the buffer, and thus drops packets that
belong to the burst, as shown in Fig. 3b. This has a signifi-
cant impact on the tail FCT. In particular, Dynamic sharing
causes the 90th and 99th percentile of FCT to be an order
of magnitude higher, while the buffer is only 33% occupied.
On the other hand, by keeping the queue smaller, Dynamic

sharing results in lower FCT to more than half of the short
flows.
FAB outperforms all approaches when there are both
long and short flows. We run the scenario described in
Fig.1. Namely, two sets of 100 senders disseminate traffic to
two ports. One of the two sets only sends short flows while
the other one only long ones. The port with the long flows
runs at full capacity with all buffer management techniques.
In Figs. 3c and 3d, we see the FCT and the dropped packets’
distribution, respectively. In this scenario, Complete shar-
ing is clearly suboptimal. Long flows will quickly consume
all buffer, causing starvation (high FCT and drops) to the
incoming burst. Dynamic sharing and FAB have similar per-
formance in the 50th and 70th FCT percentiles, with FAB
being slightly worse as it allows longer queues to form, and
thus causes higher queueing delay. Even so, FAB has lower
tail FCT as it manages to avoid drops of short flows. Interest-
ingly, FAB also seems to be fairer among short flows, offering
a more predictable FCT.

4 PRACTICALITY
Until recently, implementing a new buffer management tech-
nique would have required the vendor’s support and, there-
fore, time. Luckily though, that restriction does not apply
for (existing) reprogrammable network devices, such as P4-
enabled hardware [12].
One needs to solve three main challenges to implement

FAB in programmable data planes, namely, how to: (i) know
the queue occupancies in the ingress pipeline; (ii) ensure
packets are dropped exclusively in the ingress pipeline; and
(iii) handle per-flow state across the device. In the following,
we describe how to address each of these challenges.
Approximating queue occupancies. A device-wide, flow-
aware buffer management requires queue occupancy infor-
mation to be available at the ingress pipeline (i.e., before
the packets hit the traffic manager). However, existing pro-
grammable devices usually know the current queue length
only in the egress pipeline, that is, after buffering has been
made [13]. We propose to approximately calculate the queue
occupancy in the ingress by keeping counters per port. Coun-
ters are increased as packets arrive, and decreased periodi-
cally depending on the known dequeue rate. In practice, this
is challenging as the same memory block cannot be accessed
twice [11] once for increasing and once for decreasing the
counter. To overcome this limitation, we can split queue
counters into two memory blocks and, thus, two stages. In
this way, upon arrival of a packet, the switch will increase the
counter that corresponds to its output port by the packet’s
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(a) FAB is equivalent to Complete sharing if there are no
long flows.
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(b) Dynamic sharing drops packet of small flows although
there is space in the buffer.

Complete Sharing Dynamic Sharing FAB50 50 5070 70 7090 90 9099 99 99

108

109

Fl
ow

 C
om

pl
et

io
n 

tim
e 

(n
s)

(c) FAB gives lower FCT in higher percentiles and higher for
median.
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(d) FAB drops roughly the same number of packets but ex-
clusively from long flows.

Figure 3: Simulation results for short-only flows (3a,3b ) and mixed short & long flows (3c,3d )

length and decrease the counter of another queue by an es-
timated number of bytes that should have been dequeued
since the counter was last decreased.
Maintaining per-flow state at scale. To distinguish flows
based on their size, the switch would need to store per-flow
counters, i.e., per-flow state. Doing so could quickly exhaust
the limited memory resources of a programmable device. To
address this challenge, we propose two approximations. First,
we can approximate flow sizes with flow duration. Indeed,
short flows in size will most likely be short in duration. Thus,
instead of prioritizing short flows, we prioritize those that
have more recently started. Second, to avoid keeping the
starting timestamp for each flow, we propose to split time
into time windows and store an identifier of the time window
at which a flow started. Flows that start in the same window
can be easily stored in a Bloom filter corresponding to this
window. As such, bloom filters corresponding to older flows
can be reset to make up space for new ones, while the flows
that are no longer contained in a BF are treated as old.

5 RELATEDWORK
Buffer occupancy is affected by algorithms at the port-level
(e.g., queuemanagement, scheduling), device-level (e.g., buffer
sharing), or host-level (e.g., TCP). These algorithms are often
complementary. In this section, we provide an overview of
these approaches.
Port-level Buffer Management. Active Queue Manage-
ment techniques avoid bufferbloat and flow synchronization
by controlling the buffer allocation per port, but are obliv-
ious to the overall buffer utilization and practically unable
to increase the buffer allocated to a port according to the
device-level utilization. Initial proposals of AQM systems
were oblivious to the queue content and only considered the
queue length or the queue delay. For instance, RED [19] uses
the queue length to decide a dropping rate, while Codel [23]
distinguishes bad queues using the minimum queue delay
per predefined period. Similarly, PIE [27] uses a proportional-
integral controller to limit the queuing delay by updating
the drop probability per queue but without parametrization.
Randomness in dropping packets as well as lack of visibility
of the queue content make such approaches prone to pun-
ishing “innocent” flows and benefiting unresponsive ones.
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More recent AQM systems and patents apply fair queuing
and per-flow buffer limits to protect the buffer from aggres-
sive flows. For instance, FQ_codel [22] allocates a queue per
flow, which is serviced in a round-robin fashion to prevent
head of line blocking. Similarly, the Dynamic Buffer Limit-
ing [10, 18] algorithm protects the buffer allocated to each
port using the per-flow buffer occupancy to distinguish non-
responsive flows. Finally, [25] moves long flows to a different
queue with different limits. While extremely useful, all these
techniques cannot change the buffer that is allocated to a
port or queue at the device-level, even if the queue is indeed
well-behaving and can benefit from extra free space in the
device.
Device-level Buffer Management. The classical dynamic
thresholds described in [26] and [15] suggest the use of
the remaining buffer to set the limits per port. The main
issue with this approach is that it applies the same limits to
same-length queues of different natures, e.g., a queue con-
taining an aggressive flow and a queue containing a bursty
one. Indeed, one could use different parameters per prior-
ity, but that could only work if one fully controls end hosts
which should tag their flows correctly and respond to con-
gestion notifications. Both requirements are hard to be met
in cloud environments. Instead of the remaining buffer, au-
thors in [29] suggest the use of the overall cell arrival rate
to gauge queue limits, if the buffer occupancy is above a
predefined threshold and adapts it to fit the actual queue size.
Finally, [28] leverages packet size to decide whether to drop
a packet. None of these approaches change the buffer per
port using flow information.
Scheduling. Similar to scheduling techniques such as pF-
bric [6] and PIAS [9], FAB’s objective is to achieve low flow
completion times by prioritizing certain (e.g., short) flows.
However, scheduling approaches are orthogonal to device-
level buffering as they focus on resolving conflicts among
flows in the same port, not the same device. Scheduling
cannot help when a burst of high priority flows arrive and
is larger than the pre-allocated buffer space. Still, special
scheduling can and should augment buffer management tech-
niques like FAB to control the queuing delay per port.
Cisco Intelligent Buffering. Cisco Intelligent Buffering [1,
2] is a combination of a flow classifier, an active queue man-
agement scheme, and a scheduling technique. Yet, the buffer
allocation per port is static. In particular, the flow classifier
(Elephant Trap) distinguishes long flows, based on the num-
ber of packets a flow sends and a user-defined threshold. An
AQM scheme, namely Approximate Fair Drop (AFD), calcu-
lates and actuates a dropping rate per flow for all the elephant
flows such that each takes its fair share of the bandwidth.
In essence, AFD is a flow-aware replacement for WRED. Fi-
nally, to avoid increased delay by mixing elephant with mice

flows, a scheduling scheme called Dynamic Packet Prioriti-
zation (DPP) is used. DPP offers a fast lane to the mice flows.
Intelligent Buffering does not change the buffer allocation
itself but only better manages the already allocated space per
port. Additionally, this solution requires to keep state per
flow as the classification is done based on the byte counts
of incoming flows for all flows, which translates to a large
amount of memory.
ProgrammableDevices. Snapy [13] can detect bursts using
programmable data-planes. Conquests [14] is a practical data-
plane technique that for each dequeued packet provides the
number of packets of the same flow that were enqueued after
it. This information, though, is only available at the egress,
namely after the decision to accept it has been taken.
DIBS [31] is a just-in-time congestion mitigation for data
centers with a similar goal to FAB, namely avoiding packet
drops of short flows. Instead of using the shared buffer,
though, DIBS detours excessive packets to neighbor devices.
TCP versions, such as DCTCP [5] require end-host support
and are not useful for short flows as they have no time to
react to ECN marking. Yet, ECN schemes can augment FAB,
allowing to achieve better throughput with smaller buffers
for long flows.

6 CONCLUSION
FAB is a new device-wide and flow-aware buffer manage-
ment scheme that aspires to ripe the benefits of the shared
buffers in switches. By applying well-known techniques for
prioritizing flows, from port-level to the device-level, FAB
solves the short-comings of conventional buffer management
techniques. Preliminary results on FAB’s performance show
an order of magnitude shorter tail flow completion times
for short flows in specific workloads. Implementing FAB in
programmable hardware would also facilitate new buffer
management schemes that are tailored to specific workloads.
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