FORESIGHT: Joint Time and Space Scheduling
for Efficient Distributed ML Training

Farid Zandi®

Manya Ghobadi*

Yashar Ganjali'

TUniversity of Toronto, *Massachusetts Institute of Technology
{faridzandi,yganjali}@cs.toronto.edu, ghobadi@csail.mit.edu

Abstract—The rapid growth of Machine Learning (ML)
workloads has led to increased reliance on large-scale ac-
celerator clusters, where distributed training jobs demand
high-performance network communication. However, the
independent execution of ML jobs on shared cluster
resources results in network contention, degrading training
performance. Existing solutions either focus on optimizing
communication operations for isolated jobs or address
network scheduling in the time and space dimensions
separately, leading to suboptimal outcomes.

In this paper, we introduce FORESIGHT, a system that
jointly optimizes communication scheduling across both
time (when to communicate) and space (where to route
traffic) dimensions. By taking advantage of the predictable
and repetitive nature of ML training workloads, we can
forecast future network demands and better coordinate
communication to reduce congestion. OQur approach it-
eratively refines scheduling decisions based on routing
feedback, making the optimization problem tractable,
while achieving a contention-free schedule.

Our extensive evaluations demonstrate that FORESIGHT
improves network efficiency, causing up to 46% im-
provement in ML job iteration times, without requiring
modifications to existing network hardware or application
frameworks. Our findings emphasize the importance of
network-aware scheduling and provide a scalable solution
for optimizing distributed ML training in shared cluster
environments.

I. INTRODUCTION

Setting the Context. Machine Learning (ML) work-
loads are rapidly evolving, with their size and complex-
ity significantly increasing. As these workloads scale,
distributed training jobs increasingly rely on large clus-
ters of machines, demanding intensive communication
with strict performance requirements. To efficiently sup-
port this growing volume of concurrent ML workloads,
accelerator clusters have become commonplace, aiming
to simplify resource management and reduce costs.
However, variability in job requirements can result in
fragmented resource allocations over time. As users
frequently compete for the most readily available and
cost-effective options, contention increases, leading to
overlapping communication events that slow down the
involved jobs. Despite recent proposals to mitigate com-
munication bottlenecks through overlapping communi-
cation and computation [1], or reducing the size of
exchanged data [2]-[4], network performance continues

ISBN 978-3-903176-72-0 ©2025 IFIP

to be a critical bottleneck in distributed ML training
workloads [5], [6].

State of the Art. The independently submitted ML jobs
typically utilize the shared network without coordination
with each other, as they lack the mechanisms to do
so. The resource management frameworks that focus
on ML workloads are not primarily concerned with the
network resources, but focus on efficient GPU alloca-
tion strategies, such as effectively packing jobs onto
available accelerators, reducing resource contention, and
ensuring fairness [7]-[9]. They tend to treat network
communication as a black-box operation that is not
included in the overall scheduling decisions. Previous
research aimed at improving communication perfor-
mance for ML workloads have largely focused on
isolated workloads and operations, such as optimizing
collective communication events by optimizing for the
current topology or scheduling communication phases.
These works generally overlook interference between
concurrent workloads [10], [11].

Recently, a growing line of research [5], [12], [13]
have acknowledged the limitations of isolated optimiza-
tions and proposed network-aware, cluster-wide solu-
tions that consider concurrent job executions. These
solutions are grounded in two key observations: Ob-
servation #1: Fair sharing of network resources is far
from optimal in terms of minimizing average flow and
job completion times [14], [15]. Effective scheduling
of the communication events along the time dimension,
such as delaying or prioritizing communications strate-
gically [12], [16], can limit the scenarios of network
sharing and optimize for completion times. Observation
#2: The common link-level load-balancing schemes in
large networks result in frequent suboptimal routing
choices, as exemplified by the Equal Cost Multi-Path
(ECMP) hash collision problem [17], limiting total
available network capacity. Recent works proposed im-
proved routing techniques, selecting optimal paths for
concurrent flows. These works schedule across the space
dimension explicitly, maximizing network capacity us-
age to enhance overall performance [5], [13].

Our Position. We observe that network-aware solutions
typically tackle the interconnected dimensions of time
scheduling (when to communicate) and space schedul-

ing (where to route network flows) independently. We
argue that isolating these two dimensions restricts the
full potential of the network scheduling techniques. In
fact, decisions about optimal timing schedule depend
on routing decisions (which flows share the same path),
while efficient routing schedule relies on timing deci-
sions (which flows are transmitting at the same time).
Therefore, addressing communication scheduling and
routing in a unified manner by jointly optimizing across
both time and space dimensions is necessary for achiev-
ing optimal network utilization and job performance. We
elaborate more on this in sections II and III.

Driven by this, we present FORESIGHT, a system
that explicitly integrates scheduling for communication
operations at both time and space dimensions simulta-
neously. We leverage the communication characteristics
typical to ML training workloads, such as repetitive op-
timization steps, collective communication events, and
on-off communication patterns, to develop our solution.
We argue that the highly predictable behavior allows
us to anticipate future network demands and make
informed decisions on how the network resources should
be utilized.

Qur Solution. Optimizing the network scheduling while
jointly considering both time and space dimensions
is computationally hard [17]. As the job count and
their sizes increase, the complexity of scheduling de-
cisions grows exponentially, making exhaustive search
infeasible. Interdependence between timing and routing
choices further complicate the problem, as adjustments
in one dimension affect the other. From a workload
perspective, any delay or slowdown in a task alters
future execution times for every dependent operation,
based on the unique internal structure of every job.

FORESIGHT captures the communication patterns of
the jobs, allowing for an initial scheduling strategy in the
time dimension. With this schedule in place, we make
routing decisions (space dimension), selecting network
paths that can fit the demand for the flows. We show this
may not produce an optimal schedule, and iteratively
adjust timing decisions based on routing feedback to
improve scheduling across both time and space. This
approach, while making the problem tractable, results
in a contention-free schedule for the network resources.
We outline the rationale and the details of our algorithm
in Sec. III.

This scheduling strategy improves network efficiency
and ML job performance without requiring modifi-
cations to existing network hardware or applications.
Through extensive evaluations, we show that FORE-
SIGHT can drastically reduce network congestion, and
improves the job iteration times by up to 46% in our
experiments. We study the performance gains in depth
in Sec. IV, and conclude the paper in Sec. V.

fragmentation

time (steps) \

Frag.

> 04

Machine

" Frag.
035 ¢

Rack

Fig. 1. Simulating job arrivals in a shared cluster. The resources
can get fragmented despite attempts to allocate contiguous machines.
Color-coded job placement are shown in bottom for 2 sample points.

II. BACKGROUND AND MOTIVATION

Machine Learning Jobs. Large-scale ML training jobs,
most notably on Deep Neural Network (DNN) models,
necessitate distributed training across numerous ma-
chines due to their increasing size, and replication of
data is essential to complete training within a reasonable
time-frame. To manage this complexity, various ap-
proaches have been developed to distribute the training
process across multiple machines, such as data, model,
and pipeline parallelism [18], resulting in a collection
of intertwined computation and communication tasks.
These training processes are characterized by succes-
sive optimization steps, with each iteration typically in-
volving the same sequence of computation and commu-
nication tasks. The latter usually involves transmitting
the parameters, gradients, or activations across a wide
range of machines, using Collective Communication
(CC) operations such as all-reduce, all-gather,
or all-to-all, commonly managed by a library,
such as NCCL. This repetitive structure allows for the
prediction of future workload behavior. By profiling a
single iteration of a job and identifying its network
footprint, it becomes possible to create a clear picture of
its future operations. This approach can be extended to
the set of concurrently running jobs to understand their
potential interactions and conflicts, and where interven-
tions are necessary to reduce resource contention.
Resource Fragmentation. Proper allocation of accel-
erators to jobs significantly impacts communication
contention. Ideally, contention-free placement would
cleanly separate network resources across jobs, but such
placements are hard to achieve in practice. Job resource
requirements vary widely, from small to extremely large,
and job durations are often dictated by accuracy targets,
which are difficult to predict for both job owners and
cluster managers. Combined with independent job ar-
rival times, this leads to sub-optimal placement deci-
sions and significant resource fragmentation over time.
To illustrate these challenges, we simulate a cluster
of 128 machines grouped in 16 racks. Jobs arrive and
remain for durations determined by Pareto distributions.
Upon arrival, each job looks for the largest contiguous

Raw Demand Timing Schedule

Delaying some

Routing Schedule Runtime

! ECMP random 1

iterations to avoid
overloading network

>

'
n

Load (link capacity units)

'
'

a —— >

flow routing '

Assigning the flows to available
paths that have enough capacity

Spine 0

©

100

util. (

0

o 100 200 300 400 500 600
Spine 1

Overload

100

Util. (%)

0

0 100 200 300 400 500 600
Time (ms)

Fig. 2. Overview of the scheduling and routing process, showing how job demand is managed through timing and routing adjustments.
Effective scheduling balances network utilization, improving overall runtime performance.

set of machines that fits its machine requirement; if
a large-enough contiguous block is not found, more
available machines are assigned to the job, albeit in a
non-contiguous manner. Assuming ring-based commu-
nications among assigned machines, we define the frag-
mentation level of the machine assignment for the entire
cluster as the ratio of the number of inter-rack flows to
total flows. Fig. 1 shows how the available resources can
get fragmented over time, causing fragmentation levels
to heavily fluctuate. This often leads to scenarios where
a majority of the total communication volume is not
contained within racks, thus increasing the potential for
contention among flows.

Snapshots of resource allocation in Fig. 1 show

scattered resource allocations to the jobs. The available
resources (shown in white) are the result of the pre-
vious jobs leaving the cluster, leaving “holes” on their
departure. When news jobs request for resources, the
cluster managers would be eager to allocate as much
of the available resources to maximize the utilization of
their machines. This perpetuates the issue and keeps the
fragmentation high through time.
Interconnecting Networks. Fragmented resources lead
to large volumes of inter-rack traffic. To relay this traffic,
large-scale cluster interconnects are designed with mul-
tiple tiers and numerous paths between racks to provide
high bandwidth and ensure reliability [19]. Effective
load-balancing (LB) among these paths is therefore
crucial for maximizing network usage and delivering
maximum performance. ECMP, as an effective and
scalable LB approach, has become the standard method
used to randomly assign flows to available network
paths [6]. While simple to deploy, ECMP suffers from
hash collisions, leading to imbalanced load distribution
and underutilization of available network resources.

To address the shortcomings of ECMP, other LB
schemes have been proposed. Some approaches focus
on finer-grained choices using fixed-size cells [20] or
flowlets [21], [22]. These solutions often require modi-
fications to network switches, making them challenging

to deploy. Other strategies combine load balancing with
transport-layer mechanisms, but they remain reactive to
network congestion [23], [24]. Packet spraying and its
variations [25], aim to eliminate load imbalance but may
not be compatible with Remote Direct Memory Access
(RDMA) transport protocols commonly used in high-
performance clusters due to the out-of-order delivery of
the packets [26].

Network Scheduling. Making optimal routing decisions
in an online manner based on the locally available infor-
mation yields sub-optimal results. Works like [17], [27]
argue that with a centralized view of network demand,
optimal decisions can be made that minimize network
contention and improve application-level performance.
For example, [27] specifically schedules every single
packet in the network to eliminate queues. However,
such operations could be computationally expensive
and might face scalability issues. Other works draw
on application-level information, such as flow sizes or
transmissions deadlines [14], [28] and improve metrics
like average completion times for the flows.

Based on the understanding that workload-specific
characteristics at a global level enable better scheduling,
systems like Crux, CASSINI, and MCCS have been
designed to address the challenges of distributed Deep
Neural Network (DNN) training. Crux [5] tackles inter-
job communication contention by introducing the con-
cept of GPU intensity, prioritizing jobs with higher GPU
intensity to maximize GPU utilization. CASSINI [12]
focuses on the periodic communication patterns of ML
workloads, employing a geometric abstraction to find
opportunities for interleaving the communication phases
of different jobs through time-shifting, thereby mini-
mizing network congestion. Finally, MCCS [13] takes
a service-based approach to collective communication
in multi-tenant clouds, allowing the cloud provider
to centrally route collective communication operations
based on network topology and utilization, optimizing
performance for tenants.

Time-Space Scheduling. Time or space scheduling in

isolation, as done in the aforementioned works [5], [12],
[13] do not yield the optimal results. Fig. 2-A shows an
example where three training jobs share a 4-machine
rack with half as much capacity to the upper tier. As
these jobs periodically transmit their gradients to other
machines, their communications occasionally overlap,
and their aggregate demand exceeds the available capac-
ity. Attempting to schedule these flows across different
paths for optimal transmission would be ineffective,
as there are simply not enough paths to accommodate
their peak demand. Approaches that rely only on time
scheduling, might introduce delays or prioritization, as
in Fig. 2-B, ensuring that peak demands of jobs do not
coincide. However, if they still depend on the inefficient
ECMP routing in runtime, collisions might happen and
transmission times can extend beyond what was ex-
pected. As a result, the job progress might diverge from
the original schedule, leading to even further unintended
collisions (Fig. 2-C).

To successfully schedule these workloads across the
available resources, one might leverage the fact that
demand no longer exceeds capacity after the time
scheduling and apply a successful routing strategy that
distributes traffic across the two available paths, as seen
in (Fig. 2-D). This approach ensures that the runtime
behavior remains on track with the schedule, allowing
the jobs to complete in 550 ms instead of approximately
620 ms in the ECMP scenario (Fig. 2-E). While this ex-
ample outlines the importance of time-space scheduling,
in Sec. III we study where this approach doesn’t yield
the optimal results and describe how we attempt to fix
the issue.

III. DESIGN

Problem Statement. We define the problem as multiple
iterative training jobs running concurrently across an
interconnected cluster of machines. The strategy used to
allocate machines to jobs lies outside the scope of our

2
\gg%
B 100% rate
o
*
2 .gi£:::::L444,?O%rme
[} o
3
o
] 1:1,25% rate)
.
> &fé‘
Increased \
@ TA duration
. O f-- on A R - S
/ Over Capacity = Q'\\'\\
/ <

f logical
capacity

load

throttle throttle time

Logical Link #1
load

time

Fig. 3. Managing network congestion by throttling and time-shifting
in a leaf-spine topology. When jobs exceed link capacity, throttling
reduces flow rates, extending duration, while time-shifting delays
execution to balance resource usage.

work, though we assume that the placement could be far
from optimal. We assume that a single iteration of each
job has been profiled at the flow level in isolation from
the other jobs, showing the sending rate through time
for each flow. However, we do not assume knowledge of
dependencies between the flows. Our goal is to create
a contention-free network schedule for a given period
of time, such that the average iteration time across all
jobs is minimized. Specifically, for each iteration, we
determine 1) when it should start, i.e., if any extra delay
should be added before the iteration, and 2) the network
path each flows should take. The length of the schedule
is at most the Largest Common Multiplier (LCM) of the
iteration lengths, but smaller numbers could be chosen
if the LCM is too large.

Simplifying the Network. Solving timing and routing
simultaneously is challenging because each influences
the other directly: routing decisions rely on knowing
which flows occur simultaneously (dictated by timing),
while timing decisions depend on knowing which flows
share the same network paths (determined by routing).
To overcome this cyclical dependency, we approach
the problem in stages. Initially, we simplify the rout-
ing aspect by abstracting the network topology. For
example, in a leaf-spine topology, we consolidate all
spines into a logical one with the aggregated capacity.
This simplification allows us to come up with a rough
estimate of the timing decisions, ensuring the demands
don’t exceed the network capacity at a logical level.
Then, based on these timing decisions, we can assign
flows to network paths accordingly, such that the link-
level capacities are not exceeded.

Beyond Simple Delays. while making the timing deci-
sions, we represent the network as a set of logical links.
In a leaf-spine topology, each leaf switch has upward
and downward logical links connecting it to the logical
spine, while directly connecting to multiple machines
within its rack. Each job with machines in a rack sends
network traffic over the logical link connecting that rack
to the rest of the cluster, unless the job is fully confined
to a single rack. An example scenario can be seen in
Fig. 3-A.

We aim to schedule network traffic so that no logical
link exceeds its capacity at any point. Previous work
that focuses on timing schedules [12], suggested that
applying a single initial delay to each job is sufficient to
prevent overlapping traffic. However, this might not be
true in many cases, especially when the communication-
to-computation ratios are large, and job iteration times
are not similar. Furthermore, shifting one job’s iteration
affects traffic across multiple logical links simultane-
ously, leading to scenarios that singular delays are not
enough. To address this, we argue that delays should
be applied more frequently, potentially before every
iteration, to effectively schedule the iterations.

FORESIGHT schedules iterations one at a time, as
illustrated in Fig. 3-C. At each step, we select the
job that has received the least service so far, ensuring
fairness across all jobs. We then calculate the minimum
delay required for the current iteration to fit within the
capacity constraints of all involved logical links, repeat-
ing this process until all iterations have been scheduled.
Although this method guarantees a schedule without
capacity violations, delaying iterations isn’t always the
best choice, particularly when partial network capacity
remains unused. In such scenarios, we explore throttling
as an alternative, which limits the transmission rates of
flows at the hosts. This spreads an iteration’s network
load over a longer duration, while lowering the peak
network demand.

We therefore profile each job at different throttling
rates, as shown in Fig. 3-B. During scheduling, we
select the rate that minimizes each iteration’s completion
time. Note that throttling isn’t necessarily the same
as a uniformly stretching the workload in time, as
internal job dependencies influence whether specific
communication events lie on the critical path, impacting
dependent tasks differently.

Assigning Flow Paths. Once the timing schedule has
been established based on logical network capacity, the
next step is to assign each flow to a specific network
path. In a two-tier leaf-spine topology, this involves se-
lecting a spine switch to route traffic between the source
and destination leaf switches. Because each routing
decision affects multiple links (upward and downward
links), a greedy assignment of flows to spines typically
does not yield optimal results. Instead, we model the leaf
switches as nodes in a bipartite multigraph, where each
flow corresponds to an edge connecting the source leaf
on the left side to the destination leaf on the right. We
then apply edge coloring to this graph, ensuring no two
edges connected to the same node share the same color.

[Pattern #2] { Pattern #2 }

Patterns

[Pattern #1 } { Pattern #1 } {Pattern #1 | Pattern #3

Merged Pattern #1 Pattern #1 & #2
______ onoeeo I
B NS,
Graph ‘\
Coloring o e
Src. Dst.
Leaf Leaf
A) Needed Colors: 2 B)Needed Colors: 3 @ Needed Colors: 4
Fig. 4. Increasing complexity in graph coloring due to pattern

merging. As more patterns overlap, additional colors are required to
prevent conflicts in routing.

Each color assigned to an edge identifies the chosen
spine switch for the corresponding flow, as been shown
in [27].

The flows routed together are those transmitting si-
multaneously. Due to the repetitive and collective nature
of these communication events, we observe recurring
patterns. For instance, in a ring-all-reduce operation,
each node transmits data chunks to the next machine
in the ring over multiple rounds, repeating this process
for each layer in every iteration. When patterns of
different jobs overlap, their routing decisions must be
made together. To achieve this, we identify the patterns
and merge them when overlaps occur. This merging can
progress iteratively, as shown in Fig. 4, growing into
larger and larger merged regions. Different combinations
of merged patterns define the distinct coloring problems
we must solve. Efficient coloring algorithms exist to
solve the edge coloring with O(E'log V') complexity,
where E is the number of flows and V' is the number
of leaf switches [29].

Algorithm 1: Time-Space Scheduling

1 function SolveTiming (jobs, bad_ranges) :

2 while jobs remains to be scheduled do
3 (job, iter_id) = Least Attained Service job
4
5 if iteration span € bad_ranges then
6 if first encounter then
7 | # inflate communication times
8 else
9 # reduce available capacity
10
11 foreach rate € profiled rates do
12 delay,, . = least added delay such that
demand fits on all used links
13 finishrae = start + length,, . + delay,,
14
15 selected_rate = arg m%n(ﬁnishme)
rate
16 selected_delay = delaygjecred_rate
17
18 timingy, ¢ jq = (selected_rate, selected_delay)
19 return timing

21 function SolveRouting (jobs, timing) :

22 patterns = GetPatterns ()

23 merged_ranges = MergeRanges (patterns)

24 bad_ranges = empty

25

26 foreach range in merged_ranges do

27 combined_flows = flows of overlapping patterns
28 graph = CreateGraph (combined_flows)

29 coloring = ColorGraph (graph, num_spines)
30 routingg,,, = coloring(flow)

31

32 if needed colors > spine count then

33 | bad_ranges.append(merged_range)
35 return routing, bad_ranges

37 function Schedule (jobs):

38 bad_ranges = empty

39 repeat

40 timing = SolveTiming (jobs, bad_ranges)

41 routing, bad_ranges = SolveRouting (jobs,
timing)

42 until bad_ranges is empty

43

44 return timing, routing

Fixing the Routing Issues. Expanding merged patterns
can lead to scenarios where initially non-overlapping
patterns are combined due to shared timing with other
patterns, as seen for patterns #1 and #3 in Fig. 4-C.
This issue primarily arises because flows in pattern
#2 cannot change their paths mid-transfer. As more
patterns overlap, additional colors are needed for a
proper edge-coloring. If the number of required colors
exceeds available spines, some flows inevitably collide.
To address this, we first identify problematic ranges
where edge coloring fails. These problematic ranges
are then returned to the timing solver, which introduces
additional delays to reduce complexity in these ranges
by: a) inserting artificial delays between jobs to break
overlap chains among patterns, and b) reducing logical
capacity, effectively treating the network as having fewer
spines to minimize pattern overlaps, if the problem
persists.

Alg. 1 shows how this process is iteratively applied to
fix all routing issues. At every step, timing decisions are
made based on the bad ranges identified by the routing.
The routing decisions are then made based on the new
timings, identifying new problematic ranges. The back-
and-forth between the two components continues until
routing can be successfully done for all flows.
Handling Flow Granularity. The edge-coloring output
assigns the whole link to a flow, regardless of whether
the flow is going to use the entire capacity. This leads
to inefficient routing attempts, especially when throttled
job profiles are used. Additionally, the rigid allocation
of entire flows to links can create difficulties in path
assignment. For example, if 3 flows each consume % ofa
link’s capacity and must be distributed across two links,
one link will become overloaded while the other remains
underutilized due to the indivisibility of flows. To ad-
dress this issue, we break flows into subflows to provide
greater routing flexibility when needed. The subflows
can then be distributed across different paths, making the
routing problem easier to solve. To solve edge-coloring
with subflows, each flow might be presented by more
than a single edge depending on its rate. Each spine will
then also be represented by more than one color. Once
the coloring is complete, subflows are consolidated back
into larger flows if they use the same spine.

In Sec. IV, we show how these components build on
top of another, to create a contention-free schedule for
the flows, as we study the performance gains of our
solution based on the mentioned design decisions.

IV. EVALUATIONS

Simulation Environment. To evaluate FORESIGHT, we
developed a network simulator in C++ [30] in ~7K
lines of code, designed to execute concurrent workloads
on a shared cluster. Each workload is defined by a
Directed Acyclic Graph (DAG) of communication and

1.51
S | et _E
1.0 == [
(0]
Q.
[7p]
0.5 \ : ; !
1 2 4 8
oversub
Scheduling
$1.59 . TS
§ é B TS+RO
=3 B TS+RO+SUB
Trof = {-ﬁ -x-}"’:'% = Foresight

(48, 48) (24, 24) (4,16) (4, 8)

Job size range

Fig. 5. Our solution outperforms the other baselines in improving the
average iteration time of the jobs.

computation tasks and their dependencies. The simulator
operates at a flow level, but progresses in discrete
timesteps. At every step, the simulator calculates the
sending rate of active flows (the rate share on the bot-
tleneck link), continuing until the flows have completed
their transmission. Meanwhile, the end-hosts perform
the computation tasks that unblocks the subsequent
transmissions.

We simulate leaf-spine topologies, with varying rack

size and switch count, as specified in each experiment.
We run various jobs for a number of intervals that fits
within a given period. Each job is allocated to a num-
ber of machines and simulates a data-parallel training
process, which involves all layers performing a forward
pass followed by a backward pass. Once the backward
pass for any layer finishes, the machines perform a ring-
all-reduce operation to synchronize the corresponding
gradients. When all layers are synchronized, the training
moves on to the next iteration.
Experiment Setting. The baseline configuration in our
experiments employs ECMP, such that each cross-leaf
flow selects a random spine switch, and flows competing
for the same link, share bandwidth according to a max-
min fairness model. All jobs begin execution in parallel
in the baseline configuration. In the simulation, we
monitor the length of each training iteration in each job.
The primary performance metric is the overall average
iteration time across all jobs, with lower values indi-
cating higher utilization of the network and accelerator
resources, hence faster completion of the jobs.

In the following sections we explore 1) the effective-
ness of different scheduling approaches in improving
the performance of the training jobs, 2) the impact of
environment parameters on the gains that our schedule
can bring about, and 3) in what ways are the jobs
affected by the scheduling decisions.

1) Impact of Time-Space Scheduling. In our first
experiment, we study how our solution behaves in

oversub=1 oversub=2
1.00
0.75+
0.50
0.25+
0.00 1
1.00 1.25 1.50 1.75 1.00 1.25 1.50 1.75
Speedup Speedup
Fragmentation
—— 0.3 —=— 0.4 —— 0.5 0.6 —— 0.7

Fig. 6. CDF of the performance gain of FORESIGHT across different
job placements.

different situations and how it manages to outperform
the other baselines:

o Timing Schedule (TS): Introduces delays between
iterations to avoid overloading network capacity.

« Routing (RO): Assigns spine switch to each flow
based on TS, calculated with edge-coloring.

o Subflows (SUB): Splits flows into lower-rate subflows
across multiple spines to improving routing.

o FORESIGHT: Iteratively detects and corrects routing
failures by changing the timing decisions.

We simulate 48 machines, grouped in 8-machine
racks. The size of each job is chosen between 4 and
16, and the placement has an fragmentation level of 0.5.
Number of spines changes from 1 to 8, to show different
oversubscription ratios. Fig. 5 shows the effectiveness
of our solution varies based on the available network
resources.

When there is no oversubscription, the timing sched-
ule (TS) has no impact, as the network capacity is
always sufficient to accommodate workloads without
introducing delays. However, as multiple paths exist,
routing flows along different paths (RO) significantly
improves the progress of the jobs. While naive routing
can be effective in low-congestion scenarios, it fails to
capture potential improvements in more complex cases.
The addition of subflows improves routing flexibility,
but without a mechanism to actively fix the routing
issues, it still fails to achieve much gains. FORESIGHT,
identifies and corrects unsuccessful routing-timing com-
binations, leading to substantial performance gains. At
moderate oversubscription levels (1 and 2), we observe
an average improvement of 19% and 21% in iteration
times, respectively. Under extreme oversubscription (8),
we observe that creating a valid schedule is impossible,
and we fall back to the baseline network operation. Note
that timing scheduling on its own is usually counter-
productive, as it fails to consider the uncertainties that
arise from runtime-based routing decisions.

The impact of our approach is also influenced by job
size and workload diversity. In cases where a single job
spans multiple racks, better routing decisions improve

oversub=1 oversub=2
m
-4 6 10 12 17 .
° 40 25
3
B 30 B 20
-20 |
[o 15
~ -10 -10
e -
= ~
S "
=))
Comm./Comp. ratlo Cor’rTm./CZmp.?atio
oversub=1 oversub=2
«- 7 8 8 7 5 50 4 7 9 10 10 60
° ° 50
Se- 15 16 11 40 G- 6 19 20 20
g g
- mEE @ |- ;- DO
‘n ©
- IEEnn - : - Doo
-aaEaEn - - Doong -
4 8 12 24 4 8 12 16 24

Rack size Rack size

Fig. 7. Gains of our solution across varying fragmentation levels,
communication intensity, job sizes, and rack sizes. Higher fragmen-
tation, increased communication, larger jobs, and appropriately sized
racks contribute to higher gains.

job performance by 34% on average. In such large-
scale jobs, the collective communication pipeline is
affected by many cross-rack flows, and a slowdown in
any of those transmissions can potentially slow down
all subsequent operations. When a mix of two jobs is
running, the timing schedule also helps with reducing
contention, leading to speedup improvements of up to
36% on average. In workloads dominated by many
small jobs, a significant portion of the communication
remains within rack boundaries, making these jobs less
affected by routing conflicts. Even in these cases, our
approach provides consistent, but more modest, im-
provements by ensuring efficient utilization of available
network resources. Overall, our solution shows strong
adaptability across different network conditions and job
compositions, consistently enhancing iteration times and
minimizing contention.
2) Impact of Environment Parameters. Job placement
significantly impacts the effectiveness of our solution,
as workloads that naturally avoid conflicts leave little
room for scheduling improvements. To quantify this, we
defined fragmentation in Sec. II, as the ratio of inter-rack
flows to all flows. We analyze multiple placement sce-
narios with varying fragmentation levels while keeping
the number of machines and network topology constant.
Fig. 6 shows the CDF of speedups for 400 different
placements. We observe that low fragmentation results
in less cross-rack communication, limiting potential
gains, whereas high fragmentation increases routing
conflicts, creating more opportunities for scheduling to
improve performance. It is also worth noting that our

TABLE 1
COMPARISON OF JOB PERFORMANCE ACROSS SCHEDULING
APPROACHES. OPTIMIZING TIMING AND ROUTING REDUCES
SLOWDOWNS AND IMPROVES FAIRNESS (TIMES ARE IN MS)

Job ID 1 2 3 4 5

(isolated) iter. time 468 1064 786 686 890
ECMP Avg iter. 697 1310 1014 950 951
slowdown 1.49 1.23 1.29 1.38 1.07
Avg. iter. 492 1086 809 707 902
Ours Avg. delay | 22.1 21.6 214 19.1 11.31
slowdown 1.05 1.02 1.03 1.03 1.01
Avg. iter. 473 1071 791 689 895

Perfect
slowdown 1.01 1.01 1.01 1.0 1.0

solution is robust enough to never cause negative impact
on the execution metrics of the jobs.

Another key factor in determining the potential con-
flicts within the cluster is the ratio of communication
to computation time, as larger and more frequent com-
munication events place a greater load on the network,
emphasizing its influence on the overall progress rate
of jobs. Recent studies have reported that up to 85% of
training time in models such as VGG can be spent on
communication [18]. The results in Fig. 7 show the gains
of our solution as we iterate across different fragmen-
tation levels and communication-to-computation ratios.
As fragmentation increases, we observe a clear upward
trend in the gains, indicating that more scattered job
placements lead to improved gains, reaching up to 46%
under the highest intensity. Similarly, higher communi-
cation intensity positively correlates with greater gains.

We further study how job and rack sizes influence the

gains of our solution under different oversubscription
levels in Fig. 7. Across both heatmaps, we observe that
larger job sizes generally lead to higher gains, sug-
gesting that our approach is particularly beneficial for
workloads with greater resource demands. Additionally,
increasing the rack size tends to yield higher gains, as
larger racks with at the similar oversubscription ratio
means larger number of routing options, pushing up the
gains of space scheduling.
3) Effect on Jobs. Table I shows an example com-
parison of iteration times across different scheduling
approaches for five jobs running on 48-machine. The
second rows shows the iteration time for the jobs if
running in isolation and experiencing no contention
with the other jobs. The baseline approach results in
significant and unfair slowdowns due to inefficient de-
cisions in network resource utilization. The slowdown
values range from 1.07 to 1.49, with some jobs be-
ing disproportionately affected. This imbalance occurs
as contention in the network affects jobs differently
depending on their placement and demand patterns,
leading to such a wide range of negative impacts.

In contrast, our solution, which optimizes both timing
and routing, significantly reduces iteration times com-

pared with the baseline approach as we virtually elim-
inate network congestion. The iterations times are only
minimally increased compared with isolated execution,
primarily due to the minor timing adjustments in the
form of added delays, ranging from 11 to 22 ms of
average delay per iteration. The negative impact on the
jobs is fairly similar, compared with the wide range
seen in the baseline method, as we employ the least-
service-attained heuristic in the time scheduling. We
use this example to indicate that a coordinated time-
space scheduling is a practical approach for mitigating
congestion, improving performance, and ensuring fair
resource allocation across jobs, with performance close
to that of a perfect routing and rate-sharing scheme.

V. DISCUSSION AND CONCLUSION

Deployment Challenges. To deploy FORESIGHT in a
training cluster, it is essential to support adding delays
to training iterations and throttling the flow rates. This is
managed by an agent running on the servers, added by
the cluster managers, to apply time shifts as discussed
in [12]. The same agent can also enforce flow throttling
to regulate network usage, as well as the routing deci-
sions specified within the space schedule. Prior research
[5] suggested that this can be achieved by strategi-
cally selecting transport-layer ports to influence ECMP
decisions. Furthermore, source-routing techniques can
be employed by the agents to drive routing without
requiring modifications to switch architecture. Finally,
the complexities of breaking flows into smaller subflows
has been studied in prior works [31].

Offline Scheduling. Machine learning workloads are
generally stable and repetitive, which makes offline
scheduling a viable option for them in many cases.
While offline scheduling might be simpler to approach,
it can struggle to adapt to unexpected changes, back-
ground processes, or device failures. On the other hand,
online scheduling offers greater flexibility in handling
such uncertainties but often requires more complex sys-
tem changes, or run the risk of causing latencies on the
critical path of execution. Leveraging the predictability
of machine learning workloads presents an opportunity
to strike a balance between these two approaches.
Flow-level Simulation. Our flow-level simulator might
not capture some of the nuances of a network’s op-
eration, such as queue occupancy levels, PFC signals,
or the immediate impact of congestion notifications on
transmission rates. We argue that since our proposed
schedule creates a contention-free environment for the
flows, we are minimally affected by these. On the other
hand, the methods we compare against are more prone
to having their performance negatively affected by these
details, which only enhances our comparative advantage.
Conclusions. In this paper, we presented FORESIGHT,
a unified scheduling system that jointly optimizes com-

munication timing and routing for distributed ML work-
loads. By leveraging the predictable structure of ML
training jobs, we minimize network contention and
improve resource utilization. Our evaluations show that
FORESIGHT reduces network congestion and cuts down
iteration times by up to 46%. This approach offers
a practical and scalable solution for improving ML
training efficiency in shared cluster environments.

REFERENCES

[11 Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo, “A generic communication scheduler for distributed
dnn training acceleration,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 16-29.

[2] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsi-

fication for communication-efficient distributed optimization,”

Advances in Neural Information Processing Systems, vol. 31,

2018.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic,

“Qsgd: Communication-efficient sgd via gradient quantization

and encoding,” Advances in neural information processing sys-

tems, vol. 30, 2017.

[4] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep
gradient compression: Reducing the communication bandwidth
for distributed training,” arXiv preprint arXiv:1712.01887, 2017.

[5] J. Cao, Y. Guan, K. Qian, J. Gao, W. Xiao, J. Dong, B. Fu,
D. Cai, and E. Zhai, “Crux: Gpu-efficient communication
scheduling for deep learning training,” in Proceedings of the
ACM SIGCOMM 2024 Conference, 2024, pp. 1-15.

[6] A. Gangidi, R. Miao, S. Zheng, S. J. Bondu, G. Goes, H. Morsy,
R. Puri, M. Riftadi, A. J. Shetty, J. Yang et al., “Rdma over
ethernet for distributed training at meta scale,” in Proceedings
of the ACM SIGCOMM 2024 Conference, 2024, pp. 57-70.

[71 K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and
efficient {GPU} cluster scheduling,” in 17th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
20), 2020, pp. 289-304.

[8] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwa-

tra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang et al.,

“Gandiva: Introspective cluster scheduling for deep learning,”

in 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), 2018, pp. 595-610.

A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,

H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive

cluster scheduling for goodput-optimized deep learning,” in

15th {USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 21), 2021.

[10] G. Wang, S. Venkataraman, A. Phanishayee, N. Devanur, J. The-
lin, and I. Stoica, “Blink: Fast and generic collectives for
distributed ml,” Proceedings of Machine Learning and Systems,
vol. 2, pp. 172-186, 2020.

[11] A. Shah, V. Chidambaram, M. Cowan, S. Maleki, M. Musuvathi,
T. Mytkowicz, J. Nelson, O. Saarikivi, and R. Singh, “{TACCL}:
Guiding collective algorithm synthesis using communication
sketches,” in 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), 2023, pp. 593-612.

[12] S. Rajasekaran, M. Ghobadi, and A. Akella,
“CASSINI:Network-Aware job scheduling in machine learning
clusters,” in 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24), 2024, pp. 1403-1420.

[13] Y. Wu, Y. Xu, J. Chen, Z. Wang, Y. Zhang, M. Lentz, and
D. Zhuo, “Mccs: A service-based approach to collective com-
munication for multi-tenant cloud,” in Proceedings of the ACM
SIGCOMM 2024 Conference, 2024, pp. 679—-690.

[14] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows
quickly with preemptive scheduling,” ACM SIGCOMM Com-
puter Communication Review, vol. 42, no. 4, pp. 127-138, 2012.

[3

[t}

[9

—

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

S. Rajasekaran, M. Ghobadi, G. Kumar, and A. Akella, “Con-
gestion control in machine learning clusters,” in Proceedings of
the 21st ACM Workshop on Hot Topics in Networks, 2022, pp.
235-242.

S. Rajasekaran, S. Narang, A. A. Zabreyko, and M. Ghobadi,
“Mltcp: A distributed technique to approximate centralized flow
scheduling for machine learning,” in Proceedings of the 23rd
ACM Workshop on Hot Topics in Networks, 2024, pp. 167-176.
M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vah-
dat er al., “Hedera: dynamic flow scheduling for data center
networks.” in Nsdi, vol. 10, no. 8. San Jose, USA, 2010, pp.
89-92.

A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Deva-
nur, G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient
pipeline parallel dnn training,” arXiv preprint arXiv:1806.03377,
2018.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” ACM SIGCOMM computer
communication review, vol. 38, no. 4, pp. 63-74, 2008.

K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and
A. Akella, “Presto: Edge-based load balancing for fast datacenter
networks,” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 4, pp. 465-478, 2015.

M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav
et al., “Conga: Distributed congestion-aware load balancing for
datacenters,” in Proceedings of the 2014 ACM conference on
SIGCOMM, 2014, pp. 503-514.

E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall,
“Let it flow: Resilient asymmetric load balancing with flowlet
switching,” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), 2017, pp. 407-420.

M. A. Qureshi, Y. Cheng, Q. Yin, Q. Fu, G. Kumar, M. Moshref,
J. Yan, V. Jacobson, D. Wetherall, and A. Kabbani, “Plb: conges-
tion signals are simple and effective for network load balancing,”
in Proceedings of the ACM SIGCOMM 2022 Conference, 2022,
pp- 207-218.

T. Bonato, A. Kabbani, D. De Sensi, R. Pan, Y. Le, C. Raiciu,
M. Handley, T. Schneider, N. Blach, A. Ghalayini et al., “Smartt-
reps: Sender-based marked rapidly-adapting trimmed & timed
transport with recycled entropies,” arXiv e-prints, pp. arXiv—
2404, 2024.

S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and
A. Firoozshahian, “Drill: Micro load balancing for low-latency
data center networks,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, 2017, pp.
225-238.

C. H. Song, X. Z. Khooi, R. Joshi, I. Choi, J. Li, and M. C. Chan,
“Network load balancing with in-network reordering support for
rdma,” in Proceedings of the ACM SIGCOMM 2023 Conference,
2023, pp. 816-831.

J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized” zero-queue” datacenter network,” in
Proceedings of the 2014 ACM conference on SIGCOMM, 2014,
pp. 307-318.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prab-
hakar, and S. Shenker, “pfabric: Minimal near-optimal datacenter
transport,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4, pp. 435-446, 2013.

R. Cole and J. Hopcroft, “On edge coloring bipartite graphs,”
SIAM Journal on Computing, vol. 11, no. 3, pp. 540-546, 1982.
F. Zandi, “Psim. network simulator for dag-based protocols on
custom networks.” https://github.com/FaridZandi/psim/, 2025.
Y. Lu, G. Chen, B. Li, K. Tan, Y. Xiong, P. Cheng, J. Zhang,
E. Chen, and T. Moscibroda, “{Multi-Path} transport for
{RDMA} in datacenters,” in 15th USENIX symposium on net-
worked systems design and implementation (NSDI 18), 2018, pp.
357-371.

