Computer Networks 52 (2008) 3130-3147

Contents lists available at ScienceDirect

et

Computer Networks ik

journal homepage: www.elsevier.com/locate/comnet

Resource optimization algorithms for virtual private networks using

the hose model

Monia Ghobadi *, Sudhakar Ganti, Gholamali C. Shoja

Department of Computer Science, University of Victoria, BC, Canada V8W 3P6

ARTICLE INFO

ABSTRACT

Article history:

Received 23 January 2008

Received in revised form 28 July 2008
Accepted 5 August 2008

Available online 14 August 2008

Responsible editor:]J. Domingo-Pascual

Keywords:

Virtual private networks
Hose model

Quality of service
Provisioning cost
Spanning tree

Virtual private networks (VPNs) provide a secure and reliable communication between
customer sites over a shared network. With increase in number and size of VPNs, service
providers need efficient provisioning techniques that adapt to customer demands. The
recently proposed hose model for VPN alleviates the scalability problem of the pipe model
by reserving for aggregate ingress and egress bandwidths instead of between every pair of
VPN endpoints. Existing studies on quality of service guarantees in the hose model either
deal only with bandwidth requirements or regard the delay limit as the main objective
ignoring the bandwidth cost. In this work we propose a new approach to enhance the hose
model to guarantee delay limits between endpoints while optimizing the provisioning cost.
We connect VPN endpoints using a tree structure and our algorithm attempts to optimize
the total bandwidth reserved on edges of the VPN tree. Further, we introduce a fast and
efficient algorithm in finding the shared VPN tree to reduce the total provisioning cost
compared to the results proposed in previous works. Our proposed approach takes into
account the user preferences in meeting the delay limits and provisioning cost to find
the optimal solution of resource allocation problem. Our simulation results indicate that
the VPN trees constructed by our proposed algorithm meet maximum end-to-end delay
limits while reducing the bandwidth requirements as compared to previously proposed
algorithms.

Crown Copyright © 2008 Published by Elsevier B.V. All rights reserved.

1. Introduction

Globalization has revolutionized the business world in

public network, like the Internet, when it came to reliabil-
ity, performance and security. But maintaining a WAN,
particularly when using leased lines, can be quite expen-

the last couple of decades. Instead of simply dealing with
local or regional concerns, many businesses now have to
think about global markets. Many companies have facili-
ties spread out around the world, and hence they all need
a way to maintain fast, secure and reliable communica-
tions wherever their offices are. Until fairly recently, this
meant the use of leased lines to maintain a wide area net-
work (WAN)[6]. Leased lines provided a company with a
way to expand its private network beyond its immediate
geographic area. A WAN had obvious advantages over a

* Corresponding author. Tel.: +1 647 899 0370.
E-mail addresses: monia@cs.uvic.ca (M. Ghobadi), sganti@cs.uvic.ca
(S. Ganti), gshoja@cs.uvic.ca (G. C. Shoja).

sive and often the cost increases with distance between
the offices.

As the popularity of the Internet grew, businesses
turned to it as a means of extending their own private net-
works. First came intranets, which are password-protected
sites designed for use only by the company employees.
Now, many companies are creating their own Virtual Pri-
vate Network (VPN) to accommodate the needs of remote
employees and distant offices.

A VPN is a group of computer systems connected as a
private network that communicates over a public network.
VPNs offer a cost-effective, scalable, and manageable way
to create a private network over a public infrastructure
such as a service provider’s frame relay [7], ATM [3], or

1389-1286/$ - see front matter Crown Copyright © 2008 Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2008.08.010

mailto:monia@cs.uvic.ca
mailto:sganti@cs.uvic.ca
mailto:gshoja@cs.uvic.ca
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

M. Ghobadi et al. / Computer Networks 52 (2008) 3130-3147 3131

IP network [20]. For this reason, VPNs are deployed by
businesses to meet their networking and communication
needs and have rapidly emerged as leading solutions for
multi-site enterprise communication demands.

The emergence of IP technologies such as MPLS [1] and
RSVP-TE [17] have made it possible to realize IP-based
VPNs that can provide the end customers with QoS guaran-
tees. Thus, an IP VPN service that replaces the traditional
point-to-point connectivity between sites using legacy
solutions must offer comparable performance, security
and functionality.

There are two popular models for providing QoS in the
context of VPNs - the pipe model [1] and the hose model
[2]. The pipe model is a simple service model for an IP
VPN which emulates the private line or frame relay service.
As depicted in Fig. 1, in the pipe model, a VPN customer
purchases a set of customer-pipes, i.e., allocations of spe-
cific bandwidth on paths between every source-destina-
tion pair of the VPN endpoints. The network provider
would need to provision adequate bandwidth along the
path of each pipe to ensure that the Service Level Agree-
ment (SLA) is satisfied. The primary disadvantage of this
approach is that it requires the customer to have precise
knowledge of its own traffic matrix between all the VPN
sites. Moreover, resources made available to a customer-
pipe cannot be allocated to other traffic.

Due to the progress in security and the success of IP net-
working technologies, the number of endpoints per VPN is
growing, and the communication patterns between end-
points are becoming increasingly difficult to predict. It is
expected that users will be unwilling to, or simply unable
to predict loads between pairs of endpoints. Similarly, it
will become increasingly difficult to specify QoS require-
ments on a point-to-point basis, as is the conventional
approach.

The hose model, introduced by Duffield et al. in [2],
serves as both a VPN service interface as well as a perfor-
mance abstraction. A hose offers performance guarantees
at a given endpoint for the traffic to and from the set of
all other endpoints in the VPN. Thus, the hose service inter-
face allows the customer to send traffic into the network
without the need to predict point-to-point loads. Fig. 2
illustrates an example of the use of the hose model. Each

Service provider network

Customer pipe

Fig. 1. VPN pipe model.

Service provider network

- \;_\\E,'"/ B,

VPN,

B_?H'."B_Z‘ il

{ VPN, VPN;

Provider pipes

Fig. 2. VPN hose model.

VPN endpoint i is connected to the network by a hose,
which is specified by its aggregate ingress and egress band-
widths (B™ and B™, respectively). B™ is the amount of
aggregate traffic from all endpoints to endpoint i and B"
is the amount of aggregate traffic from endpoint i to all
other endpoints of the same VPN. Thus, in the hose model,
the VPN service provider supplies the customer with cer-
tain guarantees for the traffic that each endpoint sends to
and receives from other endpoints of the same VPN. The
customer does not have to specify how this traffic is dis-
tributed among other endpoints. As a result, in contrast
to the pipe model, the hose model does not require a cus-
tomer to know its own complete traffic matrix.

Our goal is to address the resource management prob-
lem in VPNs and introduce algorithms that enable efficient
resource provisioning with QoS guarantees. Our algorithms
are based on the hose service model, which is a widely ac-
cepted service specification. As we will explain in Section
2, existing studies on quality of service guarantees in the
hose model either deal only with bandwidth requirements
or regard the delay limit as the main objective ignoring the
total provisioning cost. In this work we propose a new ap-
proach to enhance the hose model to guarantee end-to-end
delay limits between endpoints while optimizing the pro-
visioning cost. Further, we introduce a fast and efficient
algorithm in finding a shared VPN tree with minimum total
provisioning cost compared to the results proposed previ-
ously in [23]. We connect VPN endpoints using a tree
structure and our algorithm attempts to optimize the total
bandwidth reserved on edges of the VPN tree. Our pro-
posed approach takes into account the user preferences
in meeting the delay limits and provisioning cost in order
to find the most optimal solution with respect to user spec-
ified parameters. Our simulation results indicate that the
VPN trees constructed by our proposed algorithm meet
the delay limits while reducing the bandwidth require-
ments as compared to previously proposed algorithms
[8,23].

2. VPN network model

A VPN network is modeled as a connected graph
G = (V,E) where V is the set of nodes and E is the set of

3132 M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147

bidirectional links connecting the nodes. Each link (u, v) is
associated with two QoS metrics: maximum bandwidth
(capacity) over the link and the delay between link end-
points. The delay value of a path is defined as the sum of
the delay values of all the links along the path.

The VPN specification in the hose model includes:

1. A subset of endpoints P C V corresponding to the VPN
endpoints, and

2. for each VPN endpoint p € P, the associated ingress and
egress bandwidths Bi)" and Bg‘“, respectively.

In this paper, we refer to the total bandwidth reserved
on all links in the provisioned VPN as the provisioning cost
of the solution. The basic problem of finding a reservation
of minimum cost in the hose model may be subject to var-
ious conditions. First, ingress and egress bandwidth Bip" and
Bg”t, p € P may be defined in three different ways:

(1) The symmetric case: BL" = Bg‘", Vp € P.

(2) The sum-symmetric case:y", By = 5°,»Bo", VpeP.
(3) The asymmetric or general case: B and Bg“' are arbi-
trary values.

Additional variations arise from different approaches
for implementing the resource provisioning in the hose
model:

(1) Pipe mesh approach: This approach was first sug-
gested in [2] to implement the hoses with a mesh
of pipes between the VPN endpoints. This can be
viewed as the traditional pipe model in which a hose
is implemented by a mesh of customer-pipes
between VPN endpoints. For a given customer-pipe
from VPN endpoint i to VPN endpoint j,
min(BM", B}“) units of bandwidth is reserved on each
link along the path.

(2) Multiple source-based trees approach: This approach
builds a source-based tree to implement each hose.
The provider needs to build one tree per each hose
resulting in a total of |P| source-based trees [8].

(3) Shared tree approach: This approach uses a single
shared tree to connect all the VPN endpoints. The
traffic between VPN endpoints u and v (from u to v
or from v to u) is routed along the unique path P,
in T. The resource provisioning objective is to find
a shared tree with minimum total provisioning cost.

(4) General subgraph approach: In this approach the
structure of the VPN may form a tree or a general
subgraph in which there is a path P; for each
(ordered) VPN endpoints (i, j). The traffic from each
VPN endpoint pair (i, j) will be routed on the path
P;. The resource provisioning objective is to find a
feasible solution minimizing the total required
bandwidth to be reserved on the set of edges.

The above variation of the resource provisioning prob-
lem in VPNs has been studied in [22,28]. However, for
many key applications of VPNs, we need to impose the
requirement that the union of the edges in the path set
P; should form a tree. This requirement is motivated by

applications that require guarantees on delay and through-
put [23] to preserve that the traffic from endpoint i to j is
traversed over the same path from j to i. Important appli-
cations of this type are VoIP [15] and IP-TV [30], where
strong real-time requirements prevail. Moreover, the
underlying virtual private network should be structurally
simple enough to facilitate routing. In summary, a VPN
shared tree has several benefits, as listed below [9,23,32]:

1. Sharing of bandwidth reservation: A bandwidth reserva-
tion on a link of the tree can be shared by the entire
traffic between the two sets of VPN endpoints con-
nected by the link. Thus, the bandwidth reserved on
the link only needs to accommodate the aggregate traf-
fic between the two sets of VPN endpoints.

2. Scalability: A tree structure scales better in terms of
adding new endpoints to the VPN especially for net-
works with large number of VPN endpoints. This is
because only one path from the new endpoint to one
of the nodes in the tree is required rather than a path
to every endpoint in the VPN.

3. Simplicity of routing: The structural simplicity of trees
ensures that Multi-Protocol Label Switching (MPLS)
[1], the predominant standard for setting up paths
between pair of VPN endpoints, is considerably simpli-
fied since fewer labels are required and label stacks on
packets are not as deep.

4. Ease of restoration: Trees also simplify restoration of
paths in case of link failures, since all paths traversing
a failed link can be restored as a single group, instead
of each path being restored separately.

In order to take advantage of the above benefits, in this
study we will connect VPN endpoints using a tree struc-
ture. The following sections provide the research objec-
tives and background for provisioning algorithms in VPNs.

3. Motivation and related work

With increasing popularity of IP VPNs for enterprise
networking solutions, providers are faced with new chal-
lenges in provisioning and operating a complex and grow-
ing VPN infrastructure. In the presence of accurate
information about customer traffic profile and available
network resources, a provider can make provisioning deci-
sions while ensuring that SLAs are met. However, with the
growth in size and number of VPNs and the uncertainties
in the traffic patterns of customers, providers are faced
with new challenges in efficient provisioning, QoS guaran-
tees, and capacity planning for their networks.

The nature of the SLA between a customer and a service
provider is driven by the traffic characteristics and QoS
requirements of the customer applications that make use
of the VPN. For example, a VoIP VPN service might require
tight bounds on the packet loss rate, delay, and possibly jit-
ter. On the other hand, a data-only VPN service might have
relatively less stringent or no delay limits.

Although the hose model provides customers with sim-
pler and more flexible SLAs, the model presents the pro-
vider with a more challenging problem of resource

M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147 3133

management. On the other hand, VPNs are being used by
customers as a replacement for networks constructed
using private lines and should, at the very least, provide
a comparable quality of service. However, it is difficult to
provide QoS guarantee in the hose model since VPN cus-
tomers specify QoS requirements per VPN endpoint and
not for every pair of endpoints.

This paper presents ways to provision VPNs in order to
guarantee quality of service while saving cost. We apply
the concept of the hose model presented in [2] and present
new ideas and methods to improve on the previous re-
search in this area. In the following section we will de-
scribe current VPN provisioning algorithms in the hose
model.

A number of provisioning algorithms for VPNs in the
hose model have been proposed [2,9,21-23,27,28,32,33].
In [2], Duffield et al. introduced the hose model for provi-
sioning a VPN. In their work, a hose is implemented with
a source-based tree or a Steiner tree [14] and a factor of
two to three in capacity savings over the pipe model is
achieved. The authors suggest that using a Steiner tree to
connect VPN endpoints would optimize the total provi-
sioning cost.

Further, in [9,32],! the optimal bandwidth allocation
problem was formulated as follows:

“Given a set of VPN endpoints P and their ingress Bg‘
and egress B)" bandwidths for each VPN endpoint p € P,
compute a shared VPN tree T, connecting VPN endpoints
for which the total bandwidth reserved on edges of T is
minimum”.

Their work gives algorithms and results for the above
problem summarized as:

e With assumption of infinite bandwidth capacity on the
links and symmetric ingress and egress bandwidths for
all VPN endpoints p € P, a Breadth First Search (BFS)
based polynomial algorithm will compute the optimal
provisioning tree.

e With assumption of infinite bandwidth capacity on the
links and asymmetric ingress and egress bandwidths
for VPN endpoints, the authors proved that computing
the optimal reservation is an NP-hard problem [34].

The total bandwidth cost of tree T, is calculated in [9] as
follows: For a given shared tree T, and a link (u, v), let P*"
(or P*") denote the set of VPN endpoints in the connected
component of T containing node u (or v) when link (u, v) is
deleted from T. Since all traffic from VPN endpoint u to VPN
endpoint v traverses the unique path in the VPN tree T, the
traffic from node u to v cannot exceed mln{zlepr
> epuy \B"}, that is the minimum of the cumulative" egress
banc[w1dths of endpoints in P(”" and the sum of ingress
bandwidths of endpoints in P{"). This is because the only
traffic that traverses link (u, v) from u to v is the traffic orig-
inating from endpoints in P and directed toward end—
points in P!". The bound on the former is 7, PO B,
while the latter is bounded by Zz PmB Thus, the'band-

1 [9] is the journal version of [32].

width to be reserved on link (u, v) of T in the direction from
u to v is given by:

PON: I (1)

1P lep{)

Cr(u,v) = min

Similarly, the bandwidth that must be reserved on link
(v, u) in the direction from v to u can be shown to be:

Cr(v,u) = min

STBM Y B (2)

e e

Note that in case of asymmetry bandwidths, Cr(u,v) may
not be equal to Cr(v,u). Therefore, the total bandwidth re-
served for tree T is given by:

CT—ZCTVU (3)

(u,v)eT

The authors in [9] formulated the bandwidth allocation
problem as an integer linear program and a 10-approxima-
tion algorithm is introduced by solving the linear program
relaxation and rounding the fractional solution. The simu-
lation results show that their algorithms perform better
than BFS-based and Steiner tree algorithms. It was proved
that the proposed approximation algorithm will find a
solution with cost at most a factor 10 times the optimum
solution [9].

In [23], Gupta et al. studied the VPN provisioning prob-
lem under different scenarios: symmetric versus asymmet-
ric ingress and egress bandwidths, as well as using a tree
versus using a graph to connect VPN endpoints and the fol-
lowing results are given:

e For asymmetric bandwidths with an assumption that
links have infinite bandwidth capacity, the approxima-
tion ratio of the approach to build a shared tree (named
as AsymT algorithm) is improved to 9.002 from 10.

e For symmetric bandwidths with an assumption that
links have infinite bandwidth capacity, it is shown that
the cost of the optimal tree is at most twice as large as
the cost of the optimal reservation, which may not form
a tree.

e For symmetric bandwidths with an assumption that
links have finite bandwidth capacity, it is NP-hard to
check whether there is a feasible shared tree. A polyno-
mial algorithm is given to compute a shared tree whose
cost is within a constant factor of the optimum and that
violates edge capacities at most by a constant factor.

The bandwidth efficiency of the hose model is studied
in [25] where the over provisioning factor of the model is
evaluated in networks with various sizes and node densi-
ties. The authors conclude that hose model performs better
in reducing blocking probability, decreasing traffic loss,
and ease of implementation over the pipe model. In [22],
a randomized 5.55-approximation algorithm for the gen-
eral VPN design problem is given that finds a set of paths
{P;} between each ordered pair (i, j) of VPN endpoints such
that all valid traffic matrices can be routed using these
paths. In their approach, the union of the paths may not

3134 M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147

necessarily form a tree and thus their solution is not suit-
able for VPNs that carry delay sensitive applications. An-
other shortcoming of this solution is that it may not
perform well for real network topologies as they are not
completely random.

In [28], a multi-path routing provisioning approach is
proposed for the hose model. The authors ran 6200 series
of experiments with small connected random graphs with
3-5 nodes. Their results indicate that multi-path routing
had reduced reservation cost compared to shared tree
routing for roughly 20% of the instances with 3 nodes,
25% of the instances with 4 nodes, and 17% of the instances
with 5 nodes. In the cases where the multi-path routing
had reduced reservation cost compared to tree routing,
the cost reduction was 8.6% on the average. The authors
viewed the results as an indication that multi-path routing
has the potential of offering bandwidth savings for VPN
reservations in the hose model. However, as discussed ear-
lier, the target of our work is to find an optimal shared tree
and thus multi-path routing is not suitable for our work.

In [24] it is shown that for sum-symmetric tree routing,
the optimal solution may be computed in polynomial time
and its cost is within a factor of three of the optimal solu-
tion’s cost. Further, in [33] the authors enhanced the algo-
rithm in [9,32] to consider the case where the links have
finite capacities under the assumption that ingress and
egress bandwidths are symmetric. In our work, however,
the ingress and egress bandwidths can also be asymmetric.

The above studies on resource provisioning, and QoS
guarantees in the hose model deal only with bandwidth
requirements and do not consider providing end-to-end
delay bound guarantee between VPN endpoints, which is
an important metric in VPNs that carry delay sensitive
applications such as VolP, IP-TV, and VColP [16,29].

In [8], the authors enhanced the original hose model to
allow for specification of delay limits between VPN end-
points. They proposed three provisioning approaches for
the enhanced hose model: the pipe mesh approach, the
multiple source-based trees approach, and the shared tree
approach. Using theoretical analysis and simulation results
the authors concluded that the shared tree approach is
appealing because of its low provisioning cost and ease
of routing and restoration.

Enhancing the hose model to include the delay bound
requirement is done by grouping applications that use
the VPN into different delay classes characterized by their
end-to-end delay limit requirements. This delay limit must
hold between every pair of endpoints. Thus, the network
may identify a set of delay classes and each delay class is
characterized by its maximum allowable end-to-end delay.
To construct a shared tree supporting the delay limit the
authors in [8] proposed a solution based on Minimum
Diameter Steiner Tree (MDStT) algorithm. The diameter
of a Steiner tree is defined as the maximum delay between
any two VPN endpoints. Thus, the maximum allowable
end-to-end delay limit that can be supported by the tree
can be obtained by finding the MDStT. To find the solution,
the authors proved that MDStT problem is equivalent to
the absolute subset 1-center problem of a general graph.

An absolute subset 1-center of a graph G = (V,E) with
respect to a subset P C V is a point x (on a link or at one

of the nodes) which represents the position at which the
greatest distance from x to any destination in P is mini-
mized. The distance from x to a given destination in P is de-
fined as the length of the shortest path (with respect to link
weights) connecting them.

In [8] the MDStT algorithm is developed based on the
algorithms for the absolute center problem [10,19]. The
main idea of the algorithm is to identify a local absolute
subset 1-center for each link in the graph. The global abso-
lute center can be found by selecting the optimal one from
the |E| local centers.

The MDStT algorithm supports the lowest delay limit
using a tree structure. However to build a low provisioning
cost tree, the authors suggested a Least-Cost-Least-Delay
(LCLD) approach which tries to reduce the provisioning cost
based on minimum hop counts while maintaining the delay
limit. The LCLD algorithm satisfies the delay limit, but the
approach to reduce the provisioning cost can be improved.

In [18], we proposed a new ranking approach to enhance
the hose model to guarantee delay requirements between
endpoints while optimizing the provisioning cost. Further
in [5] we presented a new hierarchical approach, called
HIST algorithm, for optimal resource provisioning in the
VPN hose model. Our HIST algorithm is more efficient in
terms of time complexity and provisioning cost than the
one used in [18]. In this work, we aim to address the short-
comings of previous works in the following ways:

e Construct a shared tree that provides maximum allow-
able end-to-end delay guarantee between VPN
endpoints.

¢ Introduce a more efficient algorithm to reduce the pro-
visioning cost of such tree while satisfying the delay
limit.

e Take into account the user preferences in meeting the
delay limit and reducing bandwidth cost.

e Introduce a hierarchical algorithm for VPN provisioning
problem in the hose model.

4. Problem statement, proposed solution and
methodology

Virtual private networks (VPNs) are becoming an
increasingly important source of revenue for Internet Ser-
vice Providers (ISPs). The aim is to provide the VPN end-
points with a service comparable to a dedicated private
network established with leased lines.

In this work, we address the problem of resource alloca-
tionin VPN hose model with QoS guarantees while minimiz-
ing the total provisioning cost. Our main objective is to find a
near-optimal tree supporting the maximum allowable end-
to-end delay limit while trying to minimize the total provi-
sioning cost. The problem can be formulated as follows:

Optimal Bandwidth and Delay-constrained Shared Tree
Problem (OBDSTP): Given a set of VPN endpoints P with
their associated ingress and egress bandwidths and the
maximum allowable end-to-end delay, compute a shared
tree T connecting all the VPN endpoints that satisfies the
delay limit in which the total provisioning cost is the min-
imum. In [11] we proved that OBDSTP is NP-hard.

M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147 3135

We propose Optimal Bandwidth and Delay-constrained
Shared Tree (OBDST) algorithm as a new heuristic ap-
proach to enhance the hose model to guarantee delay lim-
its between endpoints while reducing the provisioning cost
and execution time compared to previous works. Our
OBDST algorithm takes into account the user preferences
in meeting the most stringent delay limits versus decreas-
ing the provisioning cost to find a near optimal solution for
the OBDSTP.

Further, we introduce Hierarchical Iterative Spanning
Tree (HIST) algorithm as a more efficient provisioning algo-
rithm in finding the shared VPN tree compared with previ-
ous provisioning algorithms. Our HIST algorithm considers
essentially the provisioning problem in hose model, i.e.,
how much capacity is needed in network links to provision
the hose model. Our simulation results indicate that the
HIST algorithm performs the best over a wide range of
parameter values, and in most cases, reserves less band-
width than previous works [9,23,32].

5. OBDST algorithm

Optimal Bandwidth and Delay-constrained Shared Tree
Algorithm (OBDST) is our proposed heuristic solution to
solve OBDSTP. This algorithm finds a shared tree connect-
ing all the VPN endpoints satisfying the delay limit while
trying to reduce the provisioning cost compared to the pre-
vious works.

Our methodology is to find two sets of shared trees: one
optimizing the delay limit and the other reducing the
bandwidth cost. From these sets, we select the best solu-
tion regarding both delay and bandwidth requirements
using user specified preference parameters. Our approach
consists of four phases:

In phase 1, we use a modified version of Minimum
Diameter Steiner Tree (MDStT) based algorithm introduced
in [8] to construct shared tree(s) connecting all VPN end-
points, with the objective of satisfying the given maxi-
mum_allowable_delay limit. In this step, similar to
Least-Cost-Least-Delay (LCLD) approach in [8], we develop
our MDStT algorithm based on the absolute center prob-
lem [19]. In our approach, if more than one local 1-center
points satisfy the delay limit, in contrast to LCLD approach,
all of them would be considered as candidates for center of
the graph. For each center candidate, a Steiner tree [14]
connecting it to all VPN endpoints using the minimum de-
lay path would be constructed. The set of constructed trees
is called Optimal Delay-constrained Shared Tree (ODST)
set. All the shared trees in this set satisfy the delay limit
but might not minimize the provisioning cost.

In phase 2, the total provisioning cost of each tree in
ODST set, using Formula (3) from Section 3, is computed.
The maximum provisioning cost for trees in ODST set is
chosen as the bandwidth threshold to be used in the next
phase.

In phase 3, we use our Hierarchical Iterative Spanning
Tree (HIST) algorithm, explained in detail in Section 6, to
construct shared tree(s) connecting all the VPN endpoints
with the cost less than the bandwidth threshold. The set
of constructed trees in this phase is called Optimal Band-

width-constrained Shared Tree set (OBST set). This means
that the shared trees in OBST set have total provisioning
cost less than the bandwidth threshold.

We originally used a modified version of AsymT algo-
rithm [23] in this step. The modification involved saving
all the trees satisfying the bandwidth threshold require-
ment instead of finding only one tree with the smallest
cost. Recalling from Section 3, AsymT is the best known
approximation algorithm to find a tree T while the ingress
and egress bandwidths are asymmetric. However as we
were looking for an efficient solution, we further replaced
it by our HIST algorithm which provides a better solution
in terms of time complexity and provisioning cost. The
simulation results studying the performance of HIST algo-
rithm and comparisons with the AsymT algorithm are pro-
vided in detail in Section 9.

In phase 4, a ranking scheme is introduced to rank the
trees in ODST and OBST sets. The tree(s) with smallest rank
would be the best candidate for OBDSTP. Ranking the trees
is done according to user specified bandwidth/delay pref-
erence and maximum allowable end-to-end delay of the
particular service class. We formulate the following
scheme for choosing from the above sets of trees the ones
that will be closest to satisfy user’s bandwidth/delay pref-
erences. For each shared tree T that belongs to OBST or
ODST sets, the following value will be calculated:VT e
ODST v OBST,

Rank(T) = delay_preference

(delay_diameter);
maximum_allowable_delay

+ bandwidth_preference

" (bandwdith_cost); 4)
bandwidth_threshold (

In the above formula, the maximum_allowable_delay is
defined as the maximum allowable end-to-end delay
dependent on the class-of-service. The (delay_diameter)r
is defined as maximum end-to-end delay between VPN
endpoints of each tree T. The (bandwidth_cost)r is defined
as sum of provisioning costs over the links of T using for-
mula (3). As explained earlier, the bandwidth threshold is
the maximum bandwidth cost for trees in ODST set. In this
work, the user preferences are the delay and bandwidth
preference. These parameters are set by the user and are
dependent on the traffic characteristics. The lowest ranked
trees are candidates for providing near-optimal solutions.

This approach provides needed flexibility with respect
to user’s preferences in choosing delay versus bandwidth
requirement. For example, VoIP applications may use lar-
ger delay preference while a guaranteed data service appli-
cation may use larger bandwidth preference. Larger delay
preference works in favor of the trees with smaller delay
diameter.

As an example consider the network N; depicted in
Fig. 3. It contains a network with six nodes. Nodes 0, 1, 2,
3 are VPN endpoints with ingress/egress bandwidth equals
to 5/5, 6/6, 7/7, 8/8 Mbps, respectively. The numbers on
each edge indicate the link’s delay in milliseconds. Assume
that the maximum allowable end-to-end delay for a partic-
ular application is 58 ms.

3136 M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147

Ingress: 8 Mbps
Egress: 8 Mbps

Ingress: 7 Mbps
Egress: 7 Mbps
3 2

o 1
Ingress: 5 Mbps Ingress: 6 Mbps

Egress: 5 Mbps Egress: 6 Mbps

Fig. 3. Sample network N;.

The result of phase 1 of OBDST algorithm is illustrated
in Fig. 4 in which the two shared trees (a) and (b) belong
to the ODST set and satisfy the maximum allowable end-
to-end delay limit. Then in phase 2, we compute the band-
width cost of each tree and the bandwidth threshold is set
as the maximum bandwidth cost over the trees in ODST. In
this case the maximum bandwidth cost is the cost of the
tree in Fig. 4a which is 74 Mbps.

Now, in phase 3, we execute our HIST algorithm, ex-
plained in detail in Section 6, on the original network N;
to find all the shared trees with total bandwidth cost less
than the bandwidth threshold computed in phase 2. The
HIST algorithm finds trees depicted in Fig. 5 and they will
be added as members of OBST set. Note that for the sake
of clarity we have not shown the homogeneous trees in
Figs. 4 and 5.

In phase 4, the ranking is performed for each tree in
ODST and OBST sets using Formula (4). Assume that the
bandwidth preference and delay preference are set equal
to one. The ranking value for each tree is as following:

Rank of tree in Fig. 4a = 74/74 + 50/58 = 1.86
Rank of tree in Fig. 4b=52/74 + 58/58 = 1.70
Rank of tree in Fig. 5a =52/74 + 58/58 = 1.70
Rank of tree in Fig. 5b =62/74 + 59/58 = 1.85
Rank of tree in Fig. 5¢c = 74/74 + 89/58 = 2.53

For this example, both trees in Fig. 4b and Fig. 5a have
the same minimum rank. Therefore, one can choose either

\/ \/

/\

Delay Diameter: 58 ms
(BW Cost: 52 Mbps)

N

Delay Diameter : 50 ms
(BW Cost: 74 Mbps)

Fig. 4. ODST set, the result of performing phase 1.

a b c
\ / N N
N / RNEVZ N

BW Cost: 52 Mbps BW Cost: 62 Mbps BW Cost: 74 Mbps
(Delay Diameter): 58 ms (Delay Diameter): 50 ms (Delay Diameter): 89 ms

Fig. 5. OBST set, the result of performing phase 3.

one of them. However, executing the LCLD algorithm on
this network would result in selection of tree depicted in
Fig. 4a that has a considerably larger bandwidth cost.

6. Hierarchical iterative spanning tree algorithm

In this section, we describe our proposed Hierarchical
Iterative Spanning Tree (HIST) heuristic algorithm to com-
pute a near-optimal VPN tree; that is, the tree for which
the amount of total bandwidth reserved on its edges is
near-optimal. The HIST algorithm is a novel hierarchical
approach to construct shared trees for the general VPN tree
computation problem where ingress and egress band-
widths of VPN endpoints are arbitrary. The problem can
be formulated as follows:

Optimal Bandwidth-constrained Shared Tree Problem
(OBSTP): Given a set of VPN endpoints P and ingress egress
bandwidths for each VPN endpoint, find a shared tree T
connecting VPN endpoints for which the total bandwidth
reserved on edges of T is minimum.

As stated in Section 3, it is proved in [9] that OBSTP is
NP-hard. In this section we explain our HIST algorithm as
a heuristic approach to find a near-optimal solution for
the OBSTP. Our simulation results with synthetic network
graphs as well as real Tier-1 ISPs indicate that the VPN
trees constructed by our proposed algorithm require less
bandwidth reservation compared to AsymT algorithm
[23]. Furthermore, we implemented and executed these
algorithms on the same hardware platform and the HIST
algorithm'’s execution time was measured to be far less
than that of AsymT algorithm. The simulation results will
be discussed in more detail in Section 9. In the following,
the basic idea behind our hierarchical approach will be
explained.

In our approach, we considered a network with two lev-
els of hierarchy: the core of the network and the edge of
the network. VPN endpoints are located in the edge net-
work and are connected to the routers in the core network.
The edge network, representing VPN endpoints for a par-
ticular customer is essentially different branches of that
VPN.

Our algorithm consists of two steps: step one is exe-
cuted on the edge network to find a possible minimum cost
tree connecting all the VPN endpoints without considering
any intermediate routers in between. The result of this step
is independent of the underlying network topology and is

M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147 3137

only dependent on the VPN endpoints’ ingress and egress
bandwidths. In step two we extend the result of step one
to the core network and connect the VPN endpoints by
intermediate routers in a way to reduce the total provi-
sioning cost. In the following sections, these two steps
are explained in detail.

6.1. Step 1: ITERATIVE_SPANNING_TREE procedure

As described in Section 3, a VPN network is modeled as
a graph G = (V,E) where V is the set of nodes and E is the
set of bidirectional links connecting the nodes. The VPN
specification in the hose model includes a subset of end-
points P C V corresponding to the VPN endpoints and for
each VPN endpoint i € P, its associated ingress and egress
bandwidths B" and B{"", respectively.

The idea of step one is to assume that all VPN endpoints
are connected to each other as vertices of a graph G'. The
graph G', which is constructed iteratively in this step, can
be considered as a virtual topology in which VPN end-
points are connected by virtual links. Thus in this step,
we try to find minimum cost shared tree T, connecting
the vertices in graph G’ (the VPN endpoints). Later, in the
second step, we will replace each virtual edge (u, v) in T
by the appropriate physical path between VPN endpoints
u and v trying to keep the provisioning cost minimum.

Let us assume that the virtual topology G' = (V',E') is a
Kp, complete graph where V' =P (set of VPN endpoints)
and E' = {(u, v)|u, v € P and u # v} (each pair of vertices is
connected by an edge). We will relax this assumption in
the next paragraph. The aim is to find a spanning tree Ty
connecting all the vertices in ¢’ with minimum cost. As
the number of VPN endpoints in a network is mostly less
than 10% of total number of nodes, one may suggest that
T can be found by constructing all the spanning trees of
graph G’ and finding the one with minimum cost. However,
since the number of spanning trees for a complete graph K,
with n nodes is n"~2, this approach is not scalable in terms
of increasing the number of VPN endpoints.

Thus, we introduced an iterative approach to build the
graph G’ to overcome this problem. Fig. 6 contains the Iter-
ative_Spanning_Tree procedure which builds graph G’ and
outputs Tg.

The input of this procedure is the set of VPN endpoints P
and the output is Ty that is a tree connecting VPN end-
points by virtual links. Since only the ingress and egress
bandwidths of the VPN endpoints contribute to the shared

ITERATIVE_SPANNING_TREE (P)

1.T¢=¢,G'=9

2. for each vertex v eP

3. G'€«Tg

4. add new vertex vto G’

5. add an edge from v to all other nodes in G’
6 Ts € Modified_Shioura(G')

7. return (T;)

Fig. 6. ITERATIVE_SPANNING_TREE procedure.

tree’s cost, the Iterative_Spanning_Tree procedure only iter-
ates on the VPN endpoints while the previous works,
AsymT and primal-dual algorithms introduced in
[9,23,32], iterate over all the nodes of the graph. As the
number of VPN endpoints is normally 10% of the total
number of nodes, this will reduce the execution time of
our algorithm compared to previous works.

Without loss of generality, assume that the VPN end-
points are indexed as p;,p,,...,pp. The procedure starts
with empty G’ and T topologies. At iteration k, there is a
tree T, with k vertices connecting k VPN endpoints. At iter-
ation k + 1, the (k + 1)th VPN node will eventually join the
tree by adding node p,; to G’ and also k edges from p,; to
nodes p;,p,,...,DP; in G'. To find the spanning tree T in G,
we use a modification of the algorithm proposed by Shio-
ura et al. in [12], recognized as the best algorithm in terms
of the time complexity and memory requirements to com-
pute all the spanning trees of a given graph. In the follow-
ing section we provide a short review of their work along
with our modification to the algorithm.

6.1.1. Modified_Shioura procedure

As explained in [12], Shioura et al.’s algorithm enumer-
ates all the spanning trees of a graph. This is done by first
building a depth-first spanning tree T° and replacing some
of its edges with appropriate substitute edges to build a
new spanning tree. The former tree is called the parent
tree, T, and the latter tree is called the child tree, T¢. For
every newly built spanning tree the same procedure will
apply to find all of its children. In this section, we provide
details about our modifications to this algorithm.

Figs. 7 and 8 contain the Modified_Shioura and Find_Chil-
dren algorithms based on Shioura et al.’s all-spanning trees
and find-children procedures provided in [12]. The input of
Modified_Shioura procedure is graph G’ and the output is
minTree which is a spanning tree in ¢’ with minimum pro-
visioning cost over the enumerated spanning trees. In Mod-
ified_Shioura procedure, we first find a depth-first spanning
tree T° in G’ and set the minTree equal to it. Further, we call
the Find_Children procedure to enumerate the spanning
trees in G’ and return the minTree which is the tree with
minimum cost over the enumerated spanning trees.

Similar to find-children procedure in [12], calling
Find_Children procedure with arguments T?, k, and minTree
results in finding children of tree TP not containing an edge
e and saving the child with minimum cost in minTree.
Whenever a child T¢ is found, Find_Children procedure

MODIFIED_SHIOURA(G")

.n € number of nodes in G’

.if n <2 then return G’

.minTree € ¢

. T’ € A depth-first spanning tree in G’
.minTree € T°

.minTree €< Find_Children(To, n— 1, minTree)
. return (minTree)

~NON DW=

Fig. 7. MODIFIED_SHIOURA procedure.

3138 M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147

FIND_CHILDREN(T?, k, minTree)

1. if k <0 then return minTree

2. for each edge g eEntr(T’, e) as defined in [12]
3. new tree T° = Replace g with ¢, in 77

4. if cost of T° < cost of minTree

5. minTree € T°

6. if diameter of 7° < diameter of 7"

7. Find_Children(T*, k — 1, minTree)
8. Find_Children(7?, k — 1, minTree)

Fig. 8. Find_Children procedure.

recursively calls itself to find-children of T¢. Further, it
recursively calls itself again to find all children of T® not
containing edge ey_.

Our modifications to Shioura et al.’s algorithm includes
adding lines 4-6 to Fig. 8 in order to find minTree as the
tree with minimum cost over the enumerated spanning
trees in graph G'. Lines 4 and 5 keep track of the tree with
minimum cost and line 6 is a pruning scheme in which we
find the children of a tree provided that the tree diameter,
which is the longest shortest path between tree endpoints
based on the number of hops, is less than its parent’s diam-
eter. As shown in Table 2 in Section 9, our pruning scheme
helps in decreasing the number of enumerated spanning
trees and hence the execution time, while it keeps the re-
sults close to the case without using the pruning scheme.
Note that this pruning scheme can be omitted for graphs
with small number of VPN endpoints since the number of
spanning trees of graph G’ will not be very large.

6.2. Step 2: Hierarchical_Extension procedure

In previous sections we explained the first step of HIST
algorithm in which we assumed that VPN endpoints are
vertices of a virtual topology G’ and we found a spanning
tree T, connecting VPN endpoints. In the second step, we
will map each virtual edge (u, v) in T¢ to the physical path
between VPN endpoints u and v in the original network G.

Fig. 9 contains the Hierarchical_Extension procedure. The
input to this procedure is graph G and tree T which is the

HIERARCHICAL_EXTENSION(7; ,G)

1. finalTree = @

2. for each edge e eG

3. weight(e) €1

4. for each edge (u, v) €T

5. if (there is no path between u and v in finalTree)

6. path,, € shortest path between u and v in G
based on edge weights

7. for each edge g epath,, and g ¢finalTree

8. add g to finalTree

9. weight(g) €< 0

10. return (finalTree)

Fig. 9. Hierarchical_Extension procedure.

output of the last iteration of Iterative_Spanning _Tree pro-
cedure. The main goal of this procedure is to extend Ty
to the core of the network to contain the intermediate
routers.

At the beginning of the procedure, the final shared tree
connecting all the VPN endpoints in the network, finalTree,
is empty and all edges in the network have weights equal
to one. These weights will be used by the Dijkstra’s
algorithm [13]. For each edge (u, v) in T, if there is no path
between u and v in the finalTree already, we use Dijkstra’s
algorithm to find the shortest path between u and v in the
graph G. The new edges will be added to the finalTree.
Moreover, to increase the link sharing probability, we set
the weights of all edges in G that were added to finalTree
to zero. Thus, the edges that are already in finalTree have
less weight and hence higher probability of being selected
in Dijkstra’s algorithm over other edges. This is done to in-
crease the probability of using the current edges in final-
Tree which increases the probability of having fewer
edges in the finalTree and reducing the total provisioning
cost. Finally, when all the VPN endpoints are connected
to each other, the resulting finalTree is the shared tree con-
necting all the VPN endpoints.

As an example, consider the network N, in Fig. 10. The
four VPN endpoints 1-4 have ingress/egress bandwidth
requirements of 3/12, 12/15, 5/8, 9/4 units, respectively.
This network has 48 spanning trees in total, some of which
are shown in Fig. 11. Each spanning tree is a possible can-
didate for the hose model. However, as the number of
nodes in the network grows, the number of spanning trees
grows exponentially and investigating all the spanning
trees to find the hose tree would not be feasible.

Fig. 12 depicts the steps of performing the Itera-
tive_Spanning_Tree procedure. Fig. 123, ¢, e, and g illustrate
the virtual topologies G’ and Fig. 12b, d, f, and h depict the
trees T, in iterations 1-4, respectively.

Fig. 12a and b show the first iteration of Iterative_
Spanning_Tree procedure while there is only one node in
the virtual topology. In Fig. 12c node 2 is added to G’ during
the second iteration of the procedure. Only the spanning
tree connecting nodes 1 and 2 is shown in Fig. 12d. Fur-
thermore, Fig. 12e and g show the result of adding nodes
3 and 4 to G, respectively. Fig. 12f and h depict the result

Ingress: 3 Mbps Ingress: 12 Mbps

Egress: 12 Mbps Egress: 15 Mbps

1 2

3 4
Ingress: 5 Mbps
Egress: 8 Mbps

Ingress: 9 Mbps
Egress: 4 Mbps

Fig. 10. Sample network N,.

M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147 3139

| i DA
J\ 7 .

Fig. 11. Some spanning trees of N,.

a b
1 1
c d
1 2] messssssssmmmnnns 2
e f
1 2] "essssssssmmEnnn 2
3 3
g h
1 2 1 : ---------------- 2
E 0'.....
E 00.....
3———— 4 3 ‘4

Fig. 12. Steps of performing Iterative_Spanning_Tree procedure on N,.

of applying the Modified_Shioura procedure to find a span-
ning tree in Fig. 12e and g. The final result of Itera-
tive_Spanning_Tree procedure is the tree T, depicted in
Fig. 12h which is a virtual tree to connect the VPN end-
points in network N, according to their ingress and egress
bandwidths. Further, T; will be the input of Hierarchi-
cal_Extension procedure in which each edge in T, will be
replaced by a path in the network graph N,.

Note that the total number of spanning trees for the
graph in Fig. 12e is three and total number of spanning
trees for the graph in Fig. 12g is eight. Thus, a total of 11
spanning trees have to be constructed in the first step of
HIST algorithm, compared to 48 trees which is the total
number of spanning trees of graph N;.

The result of performing the Hierarchical_Extension pro-
cedure is depicted in Fig. 13. Fig. 13a shows the original
network graph with each link having weight equal to 1.
The procedure starts by selecting an edge from its input

(o]
2 1
1
5 1 1
6 1
4 3

e

Requlred\Mby/
Required BW: 27 Mbps
equired BW: 13 Mbps
Required BWf13 Mbps
Fig. 13. Steps of performing Hierarchical_Extension procedure on N,.

T¢. Let us assume that the edge (1, 3) is the first edge se-
lected from T . In Fig. 13b the bold links show a shortest
path between nodes (1, 3) considering the link weights.
These edges will be added to the finalTree and their weights
will be set to 0. Fig. 13c and d show the result of finding the
shortest path between nodes (1, 2) and nodes (1, 4),
respectively. The finalTree is shown in Fig. 13e with re-
quired bandwidth on each link and total provisioning cost
of 68 bandwidth units.

To compare our result with the optimum tree, we cal-
culated the cost of all the spanning trees of N, (some of
which are depicted in Fig. 11) and observed that the re-
sult of HIST algorithm is the optimum solution in our
example. As mentioned earlier, although the total number
of spanning trees of the network is 48, by using HIST
algorithm our hierarchical approach builds only 11 span-
ning trees to find the tree with minimum provisioning
cost.

6.3. Embedding the HIST algorithm in OBDST algorithm

To be able to perform the HIST algorithm on phase 3 of
our OBDST algorithm, explained in Section 5, we added an-
other step to the final iteration of procedure Iterative_
Spanning_Tree in Fig. 6. The aim is to select all trees T¢
with cost less than the bandwidth threshold obtained in
phase 2 of OBDST algorithm. As described earlier in Section
5, this set of trees is denoted as OBST set.

This is done by changing the minTree variable to a
linked list of trees (OBST set) and by modifying Modi-
fied_Shioura and Find_Children procedures to add trees with
cost less than the bandwidth threshold to this linked list.
Note that these modifications are only required for the fi-
nal iteration of Iterative_Spanning Tree procedure, i.e.,
when number of nodes in G’ is equal to number of VPN
endpoints.

In the next section we will prove the correctness of
OBDST and HIST algorithms.

3140 M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147

7. Correctness properties

In this section, we provide proof for several properties
of our algorithms. These properties are used to prove the
correctness of our algorithms. We start with explaining
how we satisfy the only assumption in the OBDST algo-
rithm (Assumption 1) followed by two lemmas (Lemmas
1 and 2) proving that OBDST algorithm will always have
a non-empty output. Furthermore, through Lemmas 3-6
we prove that the output of our HIST algorithm is in fact
a tree connecting all VPN endpoints.

Assumption 1. The Optimal Delay-constrained Shared
Tree (ODST) set is non-empty.

ODST set is the set of Steiner trees in G with delay diam-
eter less than the maximum_allowable_delay. Thus, ODST
set is empty if and only if there is no Steiner tree with
diameter less than the maximum_allowable_delay. To pre-
vent this scenario, in our implementations, we set this va-
lue to be greater than the delay diameter of G, calculated
based on the algorithms for the absolute center problem
[10] explained in Section 3.

Lemma 1. Optimal Bandwidth-constrained Shared Tree
(OBST) set can be empty.

Proof. OBST set is the set of trees with provisioning cost
less than bandwidth_threshold. Since the bandwidth_thresh-
old is defined as the maximum provisioning cost of trees in
ODST set, such tree exists. However, it is possible that the
heuristic algorithms, such as our HIST algorithm or AsymT
algorithm [23], used to find ODST set do not find any of
these trees. Although this situation did not happen in our
simulations, this case does not affect the correctness of
our algorithm as the ranking scheme is not dependant on
the size of OBST set. [

Lemma 2. OBDST algorithm will return a non-empty tree

Proof. According to Assumption 1, the ODST set will have
at least one element and thus the OBDST algorithm will
always return a non-empty tree. O

The above lemmas prove the correctness of OBDST
algorithm.

Lemma 3. The “minTree” returned by Modified_Shioura
procedure in Fig. 7 is a non-empty spanning tree of graph G'.

Proof. Recall from Section 6.A. that graph G' = (V',E') is a
virtual topology in which V'=P={p,,...,pp} (set of
VPN endpoints) and E' is the set of virtual links. To prove
the above lemma, we consider two cases:

1. The number of VPN endpoints in the network is equal or
less than two: In this case since |V'| = |P|, the number of
nodes of graph G’ is one or two:

a. If|V|=1thenV' = {p;} and E =g,

b. and if |V'| =2 then V' = {p;,p,} and E' = {(p;,p,)},
In either of the above cases, Modified_Shioura procedure
will return graph G’ since it is obvious that the only
spanning tree in G is G itself.

2. The number of VPN endpoints is greater than two: In
this case, in Modified_Shioura procedure, the depth-first
spanning tree T° will be set as minTree and the in
Find_Children procedure is called with minTree as its
input. Since our modification to Shioura et al.’s algo-
rithm did not change the method of building the span-
ning trees, it is guaranteed that the trees constructed by
this procedure connects all the vertices of G'. Thus, the
Modified_Shioura procedure returns a non-empty span-
ning tree in G. O

Lemma 4. Ty returned by Iterative_Spanning_Tree proce-
dure in Fig. 6 is a spanning tree connecting all the VPN
endpoints.

Proof. Assume P = {p,,...,p,} is the set of VPN end-
points. To prove this lemma we use mathematical induc-
tion on m, number of VPN endpoints:

1. The basis, m = 1: This is the trivial case as there is only
one node in G’ and hence in Tg.

2. The basis, m = 2: For this case, in the first iteration of
Iterative_Spanning_Tree procedure, node p, is added to
G'. In the second iteration, node p, is added to set of ver-
tices of graph G’ and the edge (p,,p,) is added to set of
edges of G'. Further, calling the Modified_Shioura proce-
dure on G’ will result in T, having the same topology as
@, since the number of nodes of G’ is two. Thus in this
case T, connects all the VPN endpoints.

3. The inductive step: In this step we show that if the
above lemma holds for m =k, then it holds for m =
k+1: Our induction hypothesis implies that with k
VPN endpoints, T, is a spanning tree connecting VPN
endpoints p;, ..., p,. By adding node p,., to set of VPN
endpoints and assuming that ingress and egress band-
widths of nodes p,,...,p, are kept the same, T will
be the same in the first k iterations of Iterative_Span-
ning_Tree procedure. In the last iteration, node p,.; will
be added to graph G’ in which there is a path between
every VPN endpoints p; and p;, 1 <1i, j < k. By adding
edges (p.1,Di), 1 <i<kto G, there will also be a path
between p,,; and nodes p;, 1 <i < k and hence there is
a path between all vertices of G'. Further, we use the
Modified_Shioura procedure to find spanning tree Tq
in G'. According to Lemma 3 the minTree returned by
Modified_Shioura procedure is a non-empty spanning
tree in graph G’ and since there is a path between every
VPN endpoint in @, it is guaranteed that G’ is a con-
nected graph and the spanning tree returned by this
procedure, connects all the VPN endpoints.

This proves the induction hypothesis and hence proves
the Lemma. O

Lemma 5. The “finalTree” returned by Hierarchical_Exten-
sion procedure in Fig. 9 is loop-free.

Proof. Recall from Section 6.B. that finalTree is built using
T by finding the shortest paths between VPN endpoints
that are connected by an edge in T¢. Assume that (p;,p;)
is the first edge selected from T.. As there is no path

M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147 3141

between p; and p;, the set of edges in the shortest path
between p; and p; in G will be added to finalTree. Lets call
this set of edges as Path(p;, p;). Further, the weight of all
edges in Path(p;, p;) will be set to zero. Without loss of gen-
erality, assume that edge (p,,p,) is the second edge
selected from T. Moreover, assume that there is no path
between p,, and p,, and the shortest path between p,,
and p, is called Path(p,,,p,)- As illustrated in Fig. 13a-c
these two paths can have three cases of relative relations:

(Case a) Path(p;, p;) NnPath(p,,,p,) =@ as illustrated in
Fig. 14a.

(Case b) Path(p;, p;) NPath(p,,,p,) =u where u is a
vertex in the graph, as illustrated in Fig. 14b.

(Case c) Path(p;,p;) NPath(p,,p,) = U, where U is the
set of common vertices and |U| > 1. The case
where |U| = 2 is illustrated in Fig. 14 (c).

Both cases (a) and (b) are possible and as depicted in
Fig. 13a and b, no loop will be generated by adding edges
in Path(p,,,p,) to the finaiTree.

Case (c) is only possible if the set of edges between ver-
tices in Path(p;, p;) N Path(p,,, p,) coincide. This is because
the weight of edges between vertices in U that belong to
Path(p;, p;) is zero but the weight of edges between vertices
in U that belong to Path(p,,,p,) is one. For example in
Fig. 14c the weight of edges between u and v that belong
to Path(p;,p;) is zero but the weight of edges between u
and v in Path(p,,, p,) (depicted by dashed lines) is one. This
implies that the only possible situation is when the set of
edges between u and v coincide, as illustrated in Fig. 14d.

This proves that no loop will be added to finalTree while
replacing each edge of T, with a path in G. Thus the final-
Tree will be loop-free. [

Lemma 6. All VPN endpoints are connected in finalTree.

Proof. According to Lemma 4, T, connects all VPN end-
points. Thus there is a path between every VPN endpoint
in Tg. Let's call Path’(p,,,p,) to be the path between p,
and p, in T, denoted by set of edges e;j,€j,1,...,e € Tg.
In Hierarchical_Extension procedure every edge in Ty
including edges e; = (p,, p,) € Path (p,,, p,) will be replaced
by a path between p, and p,, thus there will be a path
between p,, and p, in finalTree by replacing each e; with
the path connecting e; endpoints. O

8. Time complexity analysis

In this section the time complexities of HIST and OBDST
algorithms are analyzed. Since the OBDST algorithm uses

a
Pi Pm
»
4
i
~
I
]
.
Py Pn

Fig. 14. Relative relation between paths.

the HIST algorithm, we provide the time complexity anal-
ysis of HIST algorithm first.

Our OBDST algorithm uses a modified version on LCLD
algorithm in [8] based on MDStT algorithm to find trees
with delay diameter less than the maximum allowable
end-to-end delay. The LCLD algorithm has a time complex-
ity equal to O(mp+nplogp) where m is the number of edges,
n is the number of nodes and p is the number of VPN end-
points in the network. As explained in Section 3, we imple-
mented the MDStT algorithm based on the algorithms for
the absolute center problem in [19]. The main idea is to
identify a local 1-center for each edge in the graph and
the global absolute center can be found by selecting the
optimal one from the m local centers. In the worst case
in OBDST algorithm, during phase 1, all trees constructed
by setting each local center as root of the tree might have
delays less than the maximum allowable end-to-end delay.
This will not change the time complexity of finding the glo-
bal center in the MDStT algorithm but the complexity of
tree construction will be affected. Thus the worst case time
complexity will be O(m(mp+nplogp)) for phase 1.

The time complexity of constructing the trees in ODST
set and finding the bandwidth threshold (phase 2) is O(c)
where c is the size of ODST set and 1 < c < m.

In phase 3, as explained in Section 6.C., we use HIST
algorithm to find trees with provisioning cost less than
the bandwidth threshold. As explained in the previous sec-
tion, time complexity of HIST algorithm is O(p> 4 pm +
pnlogn). To be able to use HIST algorithm in phase 3 of
OBDST algorithm, we keep the trees with bandwidth costs
less than the bandwidth threshold in a linked list for fur-
ther ranking which does not change the order of time com-
plexity of phase 3.

In phase 4, we rank the trees in ODST and OBDT sets. In
the worst case, the maximum size of ODST set is the num-
ber of edges in the network (m) since the candidate center
point can be on any edge of the graph. Recalling from Sec-
tion 6.C., we add trees with costs less than the bandwidth
threshold in the last iteration of Fig. 6 to OBST set. Thus,
the maximum size of OBST set is the maximum number
of enumerated spanning trees (Np) in the last iteration of
Fig. 6. As mentioned earlier, in our simulations, N, has been
observed to be O(k?), thus the maximum size of OBST set is
O(p?). Since the ranking is done over all trees in OBST and
ODST sets, the time complexity of ranking phase is
O(p? + m).

9. Simulations

We have designed a number of simulation experiments
to measure the performance of our proposed OBDST algo-
rithm, described in Section 5, and our proposed HIST algo-
rithm, described in Section 6.

The simulations are implemented in C++ and all simula-
tions were performed on a dual processor Intel Pentium D
CPU 3 GHz machine with 2 GB of RAM, running Microsoft
Windows XP Professional.

In our simulations, we used two sets of network topol-
ogies. The first set of topologies was selected from real
Tier-1 ISP topologies available from Rocketfuel project

3142 M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147

[4]. For the second set we implemented a random network
generator based on the work by Waxman [31].

Rocketfuel is an ISP topology mapping engine devel-
oped at University of Washington. In Rocketfuel project,
the routing information is used to understand an ISP’s
topology using “traceroutes” sourced from 800 vantage
points hosted by nearly 300 traceroute web servers.

From the available data in Rocketfuel’s project website
[4], we used the “Backbone topologies annotated with in-
ferred weights and link latencies” file which contains the
topologies for six ISPs along with link weights and link
latencies. The provided latency of a link, as used in our sim-
ulations, is estimated based on the geographic distance of
link endpoints. Among all six provided topologies, we se-
lected two dominant tier-1 ISP topologies as listed in Table
1.

We also used Waxman model [31] to generate random
networks. In this model, nodes are placed on a plane and
the probability for two nodes to be connected by a link de-
creases exponentially with the Euclidean distance between
them. In our simulations we placed the nodes on a
3000 x 2400 KM? plane, roughly the size of the USA. The
probability function for two nodes to be connected by a
link is: P™" = ocexp(—I(u,v)/Lf) where L is the maximum
distance between any two nodes in the network and
I(u, v) is the distance between nodes u and v. The para-
meter f controls the ratio of short links to long links, while
the parameter o controls the average node degree of the
network. Large value of p increases the number of long
links, and a large value of « results in a large average node
degree. In the simulations, o and g were set at 2.2 and 0.15,
respectively. These values were selected to obtain random
networks with close resemblance to real networks. The
same parameters are also used in [8].

Since we can easily control the size of the topologies,
we use this model to study the effect of the network size.
Like the Rocketfuel topologies and topologies used in LCLD
algorithm'’s implementation in [8], the link delay values of
the random networks were calculated according to their
geographical distances.

A subset of the nodes in each network is chosen ran-
domly and uniformly as the VPN endpoints. The number
of VPN endpoints was set to 10% of the total number of net-
work nodes in the network unless explicitly specified. To
model asymmetric endpoint bandwidths, an “asymmetry
parameter” r is associated with each endpoint, represent-
ing the ratio between the ingress and egress bandwidths
at that endpoint. This ratio was selected randomly from 1
to 256 for each VPN endpoint. The ingress bandwidth of
an endpoint was uniformly chosen between 2 and
100 Mbps and the egress bandwidth was set to ingress
bandwidth multiplied by r.

In the following section we provide the simulation re-
sults. Each simulation result given below is the average

Table 1

Rocketfuel ISP topologies used in our simulations

AS number Name Tier No. links No. nodes
1239 Sprint (US) 1 168 52

7018 ATT (US) 1 296 115

of 5 rounds of simulation runs for each topology. Thus
for Waxman or real network topologies, we performed 5
runs over the same topology and averaged the results.
We calculated 95% confidence intervals as:

0 — ty2r6(0) < 0 <0+ t,,,6(0), where 0 is the average
value of simulations runs, 62(f) is the standard deviation
and t,,y is the quantile of the t distribution where f+1
is the degree of freedom and is equal to the number of
simulation runs.2 The results show that the confidence
intervals for provisioning costs are less than 0.5 Gbps
and confidence intervals for delay diameters are less than
5 ms.

As mentioned in Section 5, we implemented two ver-
sions of OBDST algorithm: One using AsymT algorithm
[23] and one using HIST algorithm in phase 3.

Let y be the ratio of bandwidth_preference to delay_pref-
erence parameters used in Formula (4). We define three
different scenarios for our OBDST algorithm:

(Scenario 1) bandwidth preference is equal to delay
preference (y = 1);

(Scenario 2) bandwidth preference is greater than delay
preference (y > 1);

(Scenario 3) bandwidth preference is smaller than delay
preference (y < 1).

The performance of different versions of OBDST algo-
rithm and LCLD algorithm in different scenarios are com-
pared in Figs. 15-21. As mentioned in Section 3, LCLD
algorithm is the proposed approach in [8] to enhance the
hose model to support the delay limit. Figs. 15-17 compare
provisioning cost of LCLD algorithm with OBDST using
AsymT algorithm, or OBDST using HIST algorithm for sce-
narios 1-3, respectively. The results show that OBDST
using HIST algorithm requires less provisioning cost in
most cases. Moreover, it can be observed from these fig-
ures that for each topology, the total provisioning cost of
OBDST algorithm in scenario 2 is less than the total provi-
sioning cost in scenarios 1 and 3 as the bandwidth prefer-
ence is higher than delay preference in scenario 2.

Figs. 18-20 compare the delay diameter of constructed
shared trees connecting VPN endpoints. This value can be
interpreted as the maximum allowable end-to-end delay
that can be ‘supported’ by each tree. The results show that
using OBDST algorithm with delay preference greater than
bandwidth preference (as in scenario 3) would result in
smaller delay diameter than LCLD algorithm. Note that
since the Sprint network is more a linear network than
the random networks generated by the Waxman model,
there is an increase in the delay diameter for Sprint net-
work in Figs. 18-20.

Fig. 21 illustrates the effect of increasing the number of
VPN endpoints from 15 to 45 on execution time for a 150
nodes network. The results show that OBDST using HIST
algorithm has an execution time comparable to LCLD algo-
rithm while OBDST using AsymT algorithm has an exceed-
ingly large execution time.

2 For 95% confidence interval, o = 0.05. Therefore, tg 5.4 is 2.78 accord-
ing to Table A.5 in [26].

M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147 3143

§ 8000 D OBDST using HIST algorithm (Scenario 1)
s 7000 W OBDST using AsymT algorithm (Scenario 1)
+ 6000 |1 OLCLD algorithm

7]
o
o
o 4000
c
‘s
(<}
o
>
[<
o
rand50 Sprint rand100 ATT rand150
Topologies
Fig. 15. The provisioning cost comparison: Scenario 1 (y = 1).
_§ 8000 1 0BDST using HIST algorithm (Scenario 2)
s 7000 M OBDST using AsymT algorithm (Scenario 2)
lg 6000 OLCLD Algorithm
8 5000
> 4000
E 3000
.S 2000
7]
21000
<
o rand50 Sprint rand100 ATT rand150
Topologies
Fig. 16. The provisioning cost comparison: Scenario 2 (y > 1).
- 9000 1 5 OBDST using HIST algorithm (Scenario 3)
-g. 8000 m OBDST using AsymT algorithm (Scenario 3)
E 7000 O LCLD Algorithm
g 6000
o 5000
'g 4000
‘® 3000
8 2000
2 1000
0
rand50 Sprint rand100 ATT rand150
Topologies
Fig. 17. The provisioning cost comparison: Scenario 3 (y < 1).
100 O OBDST using HIST algorithm (Scenario 1)
90{ mOBDST using AsymT algorithm (Scenario 1)
= 80 O LCLD Algorithm
E
]
®
£
8
T
>
]
°©
=}

rand50 ATT rand100 Sprint rand150

Topologies

Fig. 18. The delay diameter comparison: Scenario 1 (y =1).

Fig. 22 shows the effect of increasing the network size
on the execution time. As the results show, OBDST using
AsymT algorithm has a relatively high execution time for
large networks.

Fig. 23 studies the effect of changing the bandwidth
preference over delay preference in different scenarios
for a 150 nodes network based on Waxman model. In sce-
nario 1, y (the ratio of bandwidth preference to delay pref-

1007 woBDST using HIST algorithm (Scenario 2)
90 W OBDST using AsymT algorithm (Scenario 2)
801 OLCLD Algorithm
70
60
50
40
30
20
10

Delay diameter (ms)

rand50 ATT rand100 Sprint rand150
Topologies

Fig. 19. The delay diameter comparison: Scenario 2 (y > 1).

— 90 0 OBDST using HIST algorithm (Scenario 3)
g 80 m OBDST using AsymT algorithm (Scenario 3)
O LCLD Algorithm

rand50 ATT rand100 Sprint rand150
Topologies

Fig. 20. The delay diameter comparison: Scenario 3 (y < 1).

150 Nodes network based on Waxman model
—8—LCLD Algorithm —s— OBDST using AsymT Algorithm ——OBDST using HIST Algorithm

NN
N B
o o

Execution time (s)
o]
o

0+ = =
15 25 35 45

Number of VPN endpoints

Fig. 21. Effect of number of VPN endpoints on execution time.

—a-LCLD Algorithm —s—OBDST using AsymT Algorithm _s OBDST using HIST Algorithm

20

Execution time (s)

o o
o o w;m

10 25 50 75 100 125 150
Number of nodes

Fig. 22. Effect of number of nodes on execution time.

erence) is 1, 7 is 10 in scenario 2 and y is 0.1 in scenario 3.
As expected, based on the proposed ranking scheme, sce-
nario 2 with y equal to 10 finds the shared tree with small-
est cost. Also Fig. 24 illustrates the effect of changing y on
delay diameter of constructed shared trees. The results
show that scenario 3 with y equal to 10 supports the small-
est delay limit since the delay preference is greater than
bandwidth preference in this case.

3144 M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147

150 Node netowrk based on Waxman model

—~ —oLCLD Algorithm —s— OBDST using AsymT algorithm —x—OBDST using HIST algorithm
8000

7500 B = a

7000 \.\.

6500

6000
5500
5000
4500
4000 +

Provisioning cost (Mbps

0.1 1 10
Ratio of bandwidth preference to delay preference

Fig. 23. Effect of y on provisioning cost.

150 Nodes network based on Waxman model

—a-LCLD Algorithm —s— OBDST using AsymT algorittm —»—OBDST using HIST algorithm

- 45

'S
o

w
(3
0

S/_/

Delay diameter (m:
N W
o O

N
o

0.1 1 10
Ratio of bandwidth preference to delay preference

Fig. 24. Effect of y on delay diameter.

In this section, we compare the performance of HIST
algorithm and AsymT algorithm [23] with the optimal solu-
tion. The optimal solution is found by constructing all the
spanning trees of each network and finding the tree with
minimum cost. Moreover, the effect of varying the network
size and the number of VPN endpoints on performance is
also investigated. The provisioning cost (the total band-
width reserved on edges of the tree) is used as a perfor-
mance metric for the HIST algorithm.

Fig. 25 shows the required provisioning cost of HIST
algorithm with and without pruning scheme as well as
AsymT algorithm and optimal solution for some small ran-
dom networks. The name of the random topologies indi-
cates the number of nodes in the network, e.g., “rand15”
is a random topology with 15 nodes. In this case, the num-
ber of VPN endpoints in each network is fixed at 50% of the

—o—optimal —s—AsymT —»—HIST (With prunning) —.-.- HIST (Without prunning)
7000

o (2]
o o
o o
o o

4000

3000

Provisioning cost (Mbps)

2000

1000

rand10 rand12 rand15 rand17 rand20
Topologies

Fig. 25. Provisioning cost comparison between HIST, AsymT and Optimal
solution.

total number of nodes. The dashed line shows the provi-
sioning cost of the optimal reservation.

Table 2 summarizes the average number of spanning
trees that has been constructed in HIST algorithm and
the optimal solution. As shown in this Table, since the total
number of spanning trees to find the optimal solution in-
creases dramatically, we calculated the optimal solution
for networks up to 20 nodes.

From Fig. 25 and Table 2, the following observations can
be made:

e The provisioning cost of HIST algorithm is very close to
the optimal solution while it requires fewer spanning
trees to be constructed.

e There is not much difference between the provisioning
costs of HIST algorithm with the pruning scheme com-
pared to HIST without pruning scheme. Using the prun-
ing scheme decreases the total number of constructed
spanning trees by nearly 50%. Thus we implement the
pruning scheme and refer to HIST algorithm with prun-
ing scheme as HIST algorithm for the rest of this section.

e The AsymT algorithm requires higher provisioning cost
compared to HIST and optimal solutions.

The performance of AsymT algorithm and HIST algo-
rithm for larger networks are also compared in Figs. 26-
30. Fig. 26 compares the provisioning cost of AsymT
algorithm with HIST algorithm. The results show that our
HIST algorithm requires less bandwidth provisioning over
all considered topologies.

Fig. 27 shows that the execution time of HIST algorithm
is far less than that of the AsymT algorithm since the former
iterates over VPN endpoints while the latter iterates over
all network nodes.

Figs. 28 and 29 illustrate the effect of increasing the
number of VPN endpoints on total provisioning cost and

Table 2
Number of constructed spanning trees

Algorithm HIST HIST Optimal
ithout pruning ith pruning
(With ing) (With ing)

Topology
rand10 32 19 63
rand12 87 36 759
rand15 231 64 10501
rand17 577 100 553067
rand20 4179 269 7625186

g 10000+ W AsymT algorithm KHIST Algorithm

s

— 8000

7]

]

© 6000

o

£

.5 4000+

0

§ 20004

o

0+
rand50 Sprint rand100 ATT rand150

Topologies

Fig. 26. Provisioning cost comparison between AsymT and HIST
algorithms.

M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147 3145

50 —— AsymT algorithm —¢—HIST Algorithm
w
)
g 40
= 30
]
3 20
9]
X
w 10
0+ T T T T)
rand50 Sprint rand100 ATT rand150
Topologies

Fig. 27. Execution time comparison between AsymT and HIST.

100 node network based on Waxman model
16000 -

14000 A
12000 A
10000 A
8000 4
6000 -
4000 A
2000 A

B AsymT algorithm &l HIST algorithm

Provisioning Cost (Mbps)

5 10 15 20 25

Fig. 28. Effect of number of VPN endpoints on provisioning cost.

100 node network based on Waxman model

20 —M— AsymT algorithm —<— HIST algorithm

Execution time (s)
S

6<

4 -

21 e

0 . . 7 ; .
5 10 15 20 25

Number of VPN endpoints

Fig. 29. Effect of number of VPN endpoints on execution time.

100 node network with 20 VPN endpoints based on Waxman model

—— AsymT algorithm —<—HIST algorithm
100000

80000
60000
40000
20000

0+ T T T T T T T T |
1 2 4 8 16 32 64 128 256

Bandwidth asymmetry ratio

Provisioning cost (Mbps)

Fig. 30. Effect of asymmetry ratio on provisioning cost.

execution time for a 100 node network based on Waxman
model, respectively. The results show that the HIST algo-
rithm finds a tree with smaller cost with low execution
time than AsymT algorithm.

Fig. 30 studies the effect of changing the bandwidth
asymmetry ratio on provisioning cost for a 100 nodes

network with 20 VPN endpoints. The ratio between ingress
and egress bandwidth of all VPN endpoints has been
increased from 1 to 256. The results show that our HIST
algorithm would still perform better than the AsymT.

In summary, our simulation results with synthetic net-
work graphs as well as real Tier-1 ISPs indicate that:

e In most cases, the OBDST algorithm using HIST performs
better than OBDST algorithm using AsymT and LCLD
algorithm in terms of the provisioning cost, the delay
diameter, and the execution time.

e The ranking scheme in OBDST algorithm is an effective
way to reflect the user’s preference in meeting the
end-to-end delay limit or lowering the provisioning
cost.

e The execution time of OBDST algorithm using HIST is
very close to the execution time of LCLD algorithm.

e The VPN trees constructed by HIST require lower band-
width reservation when compared to AsymT algorithm.

e The provisioning cost of VPN trees constructed by HIST
is very close to that of the optimal solution for small
networks.

e The HIST algorithm’s execution time is measured to be
far less than that of the AsymT's algorithm.

10. Conclusions and future work

In this work, we introduced a new ranking scheme
based on user preferences to reduce the total provisioning
cost while meeting the maximum end-to-end delay limit
in the VPN hose model. We connect VPN endpoints using
a tree structure and our Optimal Bandwidth and Delay-
constrained Shared Tree (OBDST) algorithm attempts to
optimize the total bandwidth reserved on edges of the
VPN tree as well as supporting the delay limit. Our pro-
posed approach takes into account the user preferences
in meeting the delay limits and provisioning cost to find
the near-optimal solution of resource allocation problem.

Our OBDST algorithm combines our proposed HIST algo-
rithm and Least-Cost-Least-Delay (LCLD) algorithm [8] to
find a tree that satisfies the maximum allowable end-to-
end delay and provides less provisioning cost compared
to LCLD algorithm. Our extensive simulation results show
that OBDST algorithm is capable of finding trees with smal-
ler provisioning cost while meeting the end-to-end delay
constraints. Moreover, it is observed that with large band-
width preference, our scheme results in lowering the provi-
sioning costs and with large delay preference, our scheme
results in lowering the maximum end-to-end delay.

We have also proposed a new Hierarchical Iterative
Spanning Tree (HIST) algorithm as a solution to the provi-
sioning problem in the VPN hose model without consider-
ing delay limit. This algorithm is then used in our OBDST
algorithm. Our simulation results with synthetic network
graphs as well as real Tier-1 ISPs indicate that the VPN
trees constructed by HIST algorithm require less band-
width reservation when compared to AsymT algorithm
[23]. Furthermore, our HIST algorithm’s execution time is
measured to be far less than that of the AsymTs
algorithm.

3146 M. Ghobadi et al./ Computer Networks 52 (2008) 3130-3147

In summary, the major contributions of this work are:

o Introducing OBDST algorithm that uses user preferences
to rank trees and finds a VPN shared tree with efficient
bandwidth cost that satisfies maximum end-to-end
delay limit.

e Introducing HIST algorithm as a fast and efficient algo-
rithm to reduce the provisioning cost of shared trees
when only considering the bandwidth cost.

For future work, one could address the network
virtualization problem by providing a scheme to guarantee
quality of service on multiple networks, each customized
to a specific purpose, running at the same time over a
shared VPN tree. An interesting application of this work
would be devising tactics to tackle emerging challenges
in network management; such as dynamic resource provi-
sioning based on load balancing of the traffic over network
links to achieve a congestion free network

References

[1] B. Davie, Y. Rekhter, MPLS Technology and Applications, Morgan
Kaufmann, San Mateo, CA, 2000.

[2] N.G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K.K. Ramakrishnan,
J.E. van der Merwe, A flexible model for resource management in
virtual private networks, ACM SIGCOMM 29 (4) (1999) 95-108.
August.

[3] S. Fotedar, M. Gerla, P. Crocetti, L. Fratta, ATM virtual private
networks, Commun. ACM 38 (1995) 101-109.

[4] Rocketfuel project, Computer Science and Engineering, Univ. of
Washington [Online] Available: <http://www.cs.washington.edu/
research/networking/rocketfuel>.

[5] M. Ghobadi, S. Ganti, G.C. Shoja, Hierarchical provisioning algorithm
for virtual private networks using the hose model, in: Proceedings of
the IEEE Global Communications, Globecom 2007, Washington, DC,
2007, pp. 2467-2471 (November).

[6] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, A. Malis, RFC 2764: A
Framework for IP Based Virtual Private Networks, IETF. [Online]
Available: <http://www.ietf.org/rfc/rfc2764.txt>.

[7] J.T. Buckwalter, Frame Relay: Technology and Practice, Addison-
Wesley Professional, 1999.

[8] L.Zhang,]. Muppala, S. Chanson, Provisioning virtual private networks
in the hose model with delay limits, Hong Kong University,
International Conference on Parallel Processing, 2005, pp. 211-218.

[9] A. Kumar, R. Rastogi, A. Silberschatz, B. Yener, Algorithms for
provisioning virtual private networks in the hose model, IEEE/ACM
Transaction on Networking 10 (4) (2002) 565-578.

[10] S. Hakimi, Optimal locations of switching centers and medians of a
graph, Operat. Res. 12 (1964) 450-459.

[11] M. Ghobadi, M.Sc. Thesis, Resource Optimization Algorithms for
Virtual Private Networks Using the Hose Model, Department of
Computer Science, University of Victoria, BC, Canada, 2007.

[12] A. Shioura, A. Tamura, T. Uno, An optimal algorithm for scanning all
spanning trees of undirected graph, SIAM]. Comput. 26 (3) (1997)
678-692.

[13] E.W. Dijkstra, A note on two problems in connection with graphs,
Numerische Math. 1 (1995) 269-271.

[14] F.X. Hwang, D.S. Richards, P. Winter, The Steiner Tree Problem,
Elsevier, North-Holland, 1992.

[15] P.P. Mishra, H. Saran, Capacity management and routing policies for
voice over IP traffic, IEEE Network 14 (2) (2000) 20-27.

[16] S. Firestone, T. Ramalingam, S. Fry, Voice and Video Conferencing
Fundamentals, Cisco Press, 2007.

[17] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow, RSVP-
TE: Extensions to RSVP for LSP Tunnels, RFC 3209, 2001.

[18] M. Ghobadi, S. Ganti, G.C. Shoja, Resource optimization to provision
a virtual private network using the hose model, in: Proceedings of
the IEEE International Conference on Communications, 2007, pp.
512-517.

[19] S. Hakimi, A.F. Schmeichel, J.G. Pierce, On p-centers in networks,
Transportation Science 12 (1978) 1-15.

[20] R. Yuan, W.T. Strayer, Virtual Private Networks: Technologies and
Solutions, Addison-Wesley, 2001.

[21] S. Raghunath, K.K. Ramakrishnan, Resource management for virtual
private networks, IEEE Commun. Magazine 45 (4) (2007) 38-44.

[22] A. Gupta, A. Kumar, T. Roughgarden, Simpler and better algorithms
for network design”, ACM Symp. Theory Comput. (2003).

[23] A. Gupta,]. Kleinberg, A. Kumar, R. Rastogi, B. Yener, Provisioning a
virtual private network: a network design problem for
multicommodity flow, in: Proceedings of the 33rd ACM
Symposium on Theory of Computing (STOC), 2001, pp. 389-398.

[24] G.F. Italiano, S. Leonardi, G. Oriolo, Design of networks in the hose
model, in: Proceedings of the Third Workshop on Approximation
and Randomization Algorithms in Communication Networks
(ARACNE), 2002, pp. 65-76.

[25] A. Juttner, I. Szabo, A. Szentesi, On bandwidth efficiency of the Hose
resource management model in Virtual Private Networks, in:
Proceedings of the INFOCOM, vol. 1, 2003, pp. 386-395.

[26] http://www.vpn-technology.com/.

[27] G.F. Italiano, R. Rastogi, B. Yener, Restoration algorithms for virtual
private networks in the hose model, in: Proceedings of the IEEE
INFOCOM, 2002, pp. 131-139.

[28] T. Erlebach, M. Ruegg, Optimal bandwidth reservation in hose model
VPNs with multi-path routing, in: Proceedings of the INFOCOM, vol.
4, 2004, pp. 2275-2282.

[29] ITU-T Recommendation H.323: Infrastructure of Audio-Visual
Services - Systems and Terminal Equipment for Audio-Visual
Services: Packet-based Multimedia Communications Systems. Draft
Version 4, 2000.

[30] L. Harte, Introduction to IP Television, Althos Publishing, 2005.

[31] B.M. Waxman, Routing of multipoint connections, IEEE]. Select.
Areas Commun. 6 (9) (1988) 1617-1622.

[32] A. Kumar, R. Rastogi, A. Silberschatz, B. Yener, Algorithms for
provisioning virtual private networks in the hose model, in:
Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications
SIGCOMM’01, vol. 31 (4), pp. 135-146.

[33] W.C. Tat, L. King-Shan, K.L. Yeung, P.W. Chi, Routing algorithm for
provisioning symmetric virtual private networks in the hose model,
IEEE Global Telecommun. Conf. 2 (2005) 1-5.

[34] D.S. Hochbaum, Approximation Algorithms for NP-Hard Problems,
Boston, MA, 1997.

Monia Ghobadi is currently a Ph.D. student in
the Computer Science Department of Univer-
sity of Toronto, Canada. She received her B.Sc.
degree from Sharif University of Technology,
Iran, and M.Sc. degree from University of
Victoria, Canada, in 2005 and 2007, respec-
tively. She was a research assistant in Parallel,
Networking and Distributed Applications
(PANDA) laboratory, University of Victoria
from 2005 to 2007. She has been a member of
High Performance Networking (HiPerNet)
Group, University of Toronto, since September
2007.

Sudhakar Ganti (S'89 M'96) is a faculty in the
department of Computer Science at Univer-
sity of Victoria, BC, Canada since 2004. Prior to
joining the university he worked in the tele-
com industry of Ottawa, Canada for 10+ years
in various positions with Nortel Networks,
Newbridge Networks, Tropic Networks and
Alcatel. His expertise and area of research is in
Traffic Management, Traffic Engineering and
Quality of Service of high speed networks. He
holds several patents, published several con-
ference, journal papers as well as a book on
Quality of Service in ATM networks. He
obtained his Ph.D. from University of Ottawa, Canada M.Tech from Indian
Institute of Technology Kanpur, India and B.Tech from College of Engi-
neering, JNT University, Kakinada, India.

http://www.cs.washington.edu/research/networking/rocketfuel
http://www.cs.washington.edu/research/networking/rocketfuel
http://www.ietf.org/rfc/rfc2764.txt
http://www.vpn-technology.com/

M. Ghobadi et al./Computer Networks 52 (2008) 3130-3147 3147

Gholamali C. Shoja is currently a Professor
Emeritus in the Department of Computer
Science, University of Victoria, Victoria, BC,
Canada. He received his BSEE from Kansas
State University, his MSEE from Northwestern
University and his Ph.D. from University of
Sussex in UK. His research area is QoS in
networks and multimedia systems. He is a
registered Professional Engineer in BC, a
Senior Member of IEEE and a voting member
of ACM.

	Resource optimization algorithms for virtual private networks using the hose model
	Introduction
	VPN network model
	Motivation and related work
	Problem statement, proposed solution and methodology
	OBDST algorithm
	Hierarchical iterative spanning tree algorithm
	Step 1: ITERATIVE_SPANNING_TREE procedure
	Modified_Shioura procedure

	Step 2: Hierarchical_Extension procedure
	Embedding the HIST algorithm in OBDST algorithm

	Correctness properties
	Time complexity analysis
	Simulations
	Conclusions and future work
	References

