
 
 

 
Abstract— Virtual Private Networks (VPN) provide a secure 
and reliable communication between customer sites over a 
shared network. Two models were proposed for the service 
provisioning in VPNs. The “hose model” for VPNs alleviates the 
scalability problem of the “pipe model” by reserving 
bandwidths for aggregate ingress and egress requirements 
instead of between every pair of VPN endpoints. In this work, 
VPN endpoints are connected using a tree structure and our 
algorithm optimizes the total bandwidth reserved on edges of 
the VPN tree. We introduce a fast and efficient algorithm in 
finding the shared VPN tree to reduce the total provisioning 
cost. Our simulation results indicate that the VPN trees 
constructed by our proposed algorithm reduce bandwidth 
requirements as compared to previously proposed algorithms 
while having a much smaller execution time. 

Keywords- Virtual Private Networks; Hose Model; Quality of 
Service; Provisioning Cost; Spanning Tree.   

I. INTRODUCTION 
A Virtual Private Network (VPN) is a group of computer 

systems connected as a private network that communicates 
over a public network. The aim is to provide the VPN 
endpoints with a service comparable to a dedicated private 
network established with leased lines. Thus, providers of VPN 
services need to address the QoS and security issues while 
deploying a VPN over a shared IP network. In recent years, 
substantial progress in the IP security technologies have 
enabled existing VPN service offerings to provide customers 
with a level of privacy comparable to that offered by a 
dedicated line [5]. The emergence of IP technologies such as 
MPLS and RSVP-TE [1] have made it possible to realize IP-
based VPNs that can provide the end customers with QoS 
guarantees. In this paper, we address the problem of resource 
allocation in VPN hose model with QoS guarantees while 
optimizing total provisioning cost.  

Two popular models have been proposed for providing 
QoS in the context of VPNs: the “pipe” model [1] and the 
“hose” model [2]. As depicted in Fig. 1, in the pipe model, a 
VPN customer buys a set of customer-pipes. In the “hose” 
model, as illustrated in Fig. 2, each VPN endpoint connects to 
the network by a hose, which is specified by its aggregate 
ingress and egress bandwidth requirements. The hose model 
has desirable characteristics such as ease of specification, 
flexibility, and multiplexing gain [2]. A number of 
provisioning algorithms for VPNs in the hose model have 
been proposed [2, 3, 5, 6, 10, 15]. Further, in [5], it has been 
shown that optimal bandwidth allocation problem in VPN 

hose model is NP-hard. The bandwidth efficiency of the hose 
model is studied in [3] where the over-provisioning factor of 
the model is evaluated in networks with various sizes and 
node densities. In [15], we proposed a new ranking approach 
to enhance the hose model to guarantee delay requirements 
between endpoints while optimizing the provisioning cost. In 
this paper, we present a new hierarchical approach, called 
HIST algorithm, for optimal resource provisioning in the VPN 
hose model. Our HIST algorithm is more efficient in terms of 
time complexity and provisioning cost than the one used in 
[15]. 

The rest of this paper is organized as follows. A short 
review of the previous works is presented in Section II. The 
Hierarchical Iterative Spanning Tree (HIST) algorithm that 
minimizes the provisioning cost is described in Section III. 
Section IV presents the discussion on time complexity of the 
algorithm. Simulation results studying the performance of the 
proposed algorithm are presented in Section V.  Finally, 
Section VI concludes the paper. 

II. MOTIVATION AND RELATED WORK 
Although the hose model provides customers with simpler 

and flexible Service Level Agreements (SLA), the model 
presents the provider with a challenging problem of resource 

 
Figure 1. VPN pipe model 

 
 

 
Figure 2. VPN hose model 
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management. The main problem of interest in this work is that 
of constructing a shared tree connecting all the VPN endpoints 
with the objective of minimizing the provisioning cost. 
Compared to the pipe and source-based tree approaches, the 
shared tree approach makes the best use of statistical 
multiplexing to reduce the provisioning cost. Thus, we 
consider tree structures to connect the VPN endpoints since 
trees are scalable and simplify routing and restoration. 
Furthermore, trees allow the bandwidth reserved on a link to 
be shared by the traffic between the two sets of VPN 
endpoints connected by the link [5].  

The primal-dual algorithm for computing VPN tree was 
developed by Kumar et al. [5]. Their approach finds the near 
optimal provisioning tree in which a 10- approximation is 
obtained by solving a linear program relaxation, and rounding 
the fractional solution. This approach can find a tree with cost 
less than a Steiner tree or BFS tree [5]. In that work, a VPN 
network is modeled as a graph G = (V, E) where V is the set of 
nodes and E is the set of bidirectional links connecting the 
nodes. The VPN specification in the hose model includes: A 
subset of end points P⊆ V corresponding to the VPN 
endpoints; and for each VPN endpoint i∈P, the associated 
ingress and egress bandwidths Bi

in and Bi
out, respectively. The 

problem of computing the optimal VPN tree is formulated as 
the following: 

Optimal Bandwidth-constrained Shared Tree Problem 
(OBSTP): Given a set of VPN endpoints P and their ingress 
and egress bandwidths, find a shared tree T connecting VPN 
endpoints for which the total bandwidth reserved on edges of 
T is minimum.  

It is proved in [5] that OBSTP is NP-hard and the authors 
suggested a primal-dual method to solve the problem. In the 
following section we explain our Hierarchical Iterative 
Spanning Tree (HIST) algorithm as a heuristic approach to 
find a near-optimal solution for the OBSTP. Our simulation 
results with synthetic network graphs as well as real Tier-1 
ISPs indicate that the VPN trees constructed by our proposed 
algorithm require less bandwidth compared to primal-dual 
algorithm. Furthermore, we implemented and executed both 
algorithms on the same platform and the HIST algorithm’s 
execution time is measured to be far less than that of primal-
dual algorithm. The simulation results are discussed in more 
detail in Section V. 

III. HIERARCHICAL ITERATIVE SPANNING TREE 
ALGORITHM  

In our approach, we considered a two level network 
hierarchy: the core of the network and the edge of the 
network. VPN endpoints are located in the edge network and 
are connected to the routers in the core network. The edge 
network representing VPN endpoints for a particular customer 
is essentially different branches of that VPN. Our algorithm 
consists of two steps: step one is executed on the edge 
network to find a possible minimum cost tree connecting all 
the VPN endpoints without considering any intermediate 
routers in between. The result of this step is independent of the 
underlying network topology and is only dependent on the 
VPN endpoints’ ingress and egress bandwidths. In step two 
we extend the result of step one to the core network and 
connect the VPN endpoints by intermediate routers in a way 

to reduce the provisioning cost.The idea of step one is to 
assume that all VPN endpoints are connected to each other as 
vertices of a graph G'. The graph G', which is constructed 
iteratively in this step, can be considered as a “virtual 
topology” in which VPN endpoints are connected by “virtual 
links”. Thus, in this step, we try to find minimum cost shared 
tree TG' connecting the vertices in graph G' (the VPN 
endpoints). Later, in the second step, we replace each virtual 
edge (u, v) in TG' by the appropriate physical path between 
VPN endpoints u and v trying to keep the provisioning cost 
minimum.  

Fig. 3 contains the ITERATIVE_SPANNING_TREE procedure 
which builds graph G' and outputs TG'. The input of this 
procedure is the set of VPN endpoints P and the output is TG' 
that is the tree connecting VPN endpoints by virtual links. 
Since only the ingress and egress bandwidths of the VPN 
endpoints contribute to the shared tree’s cost, this procedure 
only iterates on the VPN endpoints while the primal-dual 
algorithm iterates over all the nodes of the graph. As the 
number of VPN endpoints is normally 10 percent of the total 
number of nodes, this will reduce the execution time of our 
algorithm compared to primal-dual algorithm. Without loss of 
generality, assume that the VPN endpoints are indexed as p1, 
p2,…, p|P|. The procedure starts with empty G' and TG' 
topologies. At iteration k, there is a tree TG' with k vertices 
connecting k VPN endpoints. At iteration k+1, the (k+1)th 
VPN node will eventually join the tree by adding node pk+1 to 
G' and also k edges from pk+1 to nodes p1, p2…, pk in G'. To 
find the spanning tree TG' in G', we used a modification of the 
algorithm proposed by Shioura et al. in [12], recognized as the 
best algorithm in terms of the time complexity and memory 
requirements to compute all the spanning trees of a given 
graph.  

Fig. 4 contains the MODIFIED_SHIOURA and 
FIND_CHILDREN procedures based on Shioura et al.’s all-
spanning-trees and find-children procedures provided in [12]. 
The input of MODIFIED_SHIOURA procedure is graph G' and 
the output is minTree which is a spanning tree in G' with 
minimum provisioning cost over the enumerated spanning 
trees. Similar to find-children procedure in [12], calling 
FIND_CHILDREN procedure with arguments Tp, k, and minTree 
results in finding children of tree Tp not containing an edge ek 
and saving the child with minimum cost in minTree. Our 
modifications to Shioura et al.’s algorithm includes adding 
lines 4-6 to FIND_CHILDREN procedure in order to find 
minTree as the tree with minimum cost over the enumerated 
spanning trees in graph G'. Lines 4 and 5 keep track of the tree 
with minimum cost and line 6 is a pruning scheme in which 
we find the children of a tree provided that the tree diameter, 
which is the longest shortest path between tree endpoints 
based on the number of hops, is less than its parent’s diameter. 
As shown in [7], our pruning scheme helps in decreasing the 
number of enumerated spanning trees and hence the execution 
times, while it keeps the results close to the case without using 
the pruning scheme.  

Fig. 5 contains the HIERARCHICAL_EXTENSION procedure. 
The input to this procedure is G and tree TG' which is the 
output of the last iteration of ITERATIVE_SPANNING_TREE 
procedure. The main goal of this procedure is to extend TG' to 
the core of the network to contain the intermediate routers. At 
the beginning of the procedure, the final shared tree 
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connecting all the VPN endpoints in the network, finalTree, is 
empty and all edges in the network have weights equal to one. 
These weights will be used by the Dijkstra’s algorithm [13]. 
For each edge (u, v) in TG', if there is no path between u and v 
in the finalTree already, we use Dijkstra’s algorithm to find 
the shortest path between u and v in the graph G. The new 
edges will be added to the finalTree. Moreover, to increase the 
link sharing probability, we set the weights of all edges in G 
that were added to finalTree to zero. Thus, the edges that are 
already in finalTree have less weight and hence higher 

probability of being selected in Dijkstra’s algorithm over other 
edges. This is done to increase the probability of using the 
current edges in finalTree which increases the probability of 
having fewer edges in the finalTree and reducing the total 
provisioning cost. Finally, when all the VPN endpoints are 
connected to each other, the resulting finalTree is the shared 
tree connecting all the VPN endpoints. 

As an example, consider the network graph in Fig. 6(a). 
The four VPN endpoints 1, 2, 3, and 4 have ingress/egress 
bandwidth requirements of 3/12, 12/15, 5/8, 9/4 units 
respectively. Figures 6(b) to 6(f) depict the steps of 
performing the ITERATIVE_SPANNING_TREE procedure. Fig. 
6(b) is the result of first iteration of the procedure, as there are 
only two nodes in the virtual topology. Figures 6(c) and 6(e) 
show the result of adding node 3 and 4 to G' respectively. 
Figures 6(d) and 6(f) depict the result of MODIFIED_SHIOURA 
procedure. The final result of ITERATIVE_SPANNING_TREE 
procedure is the tree TG' depicted in Fig. 6(f) which shows the 
optimum virtual topology to connect the VPN endpoints.  

The results of performing the HIERARCHICAL_EXTENSION 
procedure are depicted in Figures 6(g) to 6(k). Fig. 6(g) shows 
the original network graph with each link having weight equal 
to 1. In Fig. 6(h) the bold links show the shortest path between 
nodes (1,3). These edges will be added to the finalTree and 
their weights will be set to 0. Figures 6(i) and 6(j) show the 
result of finding the shortest path between nodes (1,2) and 
nodes (1,4) respectively. The finalTree is shown in Fig. 6(k) 
with total provisioning cost of 68 bandwidth units. Although 
the total number of spanning trees of the network is 48, our 
hierarchical approach builds only 9 spanning trees to find the 
tree with minimum provisioning cost. 

IV. COMPLEXITY ANALYSIS 
In this section we will show that the time complexity of 

HIST algorithm is O(p3+ +pm+nplogn) where m is the number 
of edges, n is the number of nodes and p is the number of 
VPN endpoints in the network.  

The loop in line 2 of ITERATIVE_SPANNING_TREE 
procedure performs p iterations, one for each VPN node. 
Further, for each iteration k of the loop, the 
MODIFIED_SHIOURA procedure is executed on a graph with k 
vertices and 2k-3 edges. According to [12], the time 
complexity of MODIFIED_SHIOURA algorithm is O(Nk+k+2k-
3), where Nk is the number of spanning trees that the algorithm 
iterates for a graph with k vertices. Thus, the total time 
complexity of step 1 is O(∑p

k=1(Nk+3k-3))=O(∑p
k=1Nk+p2). We 

showed in [7] that using our pruning scheme will keep Nk to 
be O(k2) and hence the time complexity of step 1 is 
O(∑p

k=1k2+p2)=O(p3). The time complexity of 
HIERARCHICAL_EXTENSION procedure can be shown to be 
O(p(m + nlogn)).The reason being that the tree TG' would have 
p-1 edges and in the worst case the Dijkstra’s algorithm time 
complexity is O(m+nlogn) [13]. Thus our HIST algorithm has 
an over all time complexity of O(p3+pm+nplogn) which is far 
less than the time complexity of primal-dual algorithm that 
was given as O(n(m2p+mnp+n2logn)) [5].  

V. SIMULATION STUDY 
In our simulations, we used two sets of network 

topologies. The first set is taken from the Rocketfuel project 

MODIFIED_SHIOURA (G') 
 

1. n   number of nodes in G' 
2. if n ≤ 2  return G' 
3. minTree  ø 
4. T0

  A depth-first spanning tree in G' 
5. minTree  T0 
6. minTree FIND_CHILDREN(T0, n-1, minTree) 
7. return (minTree) 

 
FIND_CHILDREN (Tp, k, minTree) 
 

1. if k ≤ 0 return minTree 
2. for each edge g ∈ Entr(Tp, ek) as defined in [12]  
3. new tree Tc = Replace g with ek in Tp 
4.  if cost of Tc < cost of minTree 
5.  minTree  Tc 
6.  if diameter of Tc < diameter of Tp 
7.  FIND_CHILDREN(Tc, k-1, minTree) 
8. FIND_CHILDREN(Tp, k-1, minTree) 

 
Figure 4. Algorithms for computing the locally minimum diameter 
spanning tree 

 

ITERATIVE_SPANNING_TREE(P) 
 

1. TG' = ø, G' = ø 
2. for each vertex v ∈ P 
3. G'  TG'  
4. add new vertex v to G' 
5. add an edge from v to all other nodes in G' 
6. TG  MODIFIED_SHIOURA (G') 
7. return (TG')  

 
Figure 3. Algorithm for computing the virtual topology spanning 
trees 

HIERARCHICAL_EXTENSION (TG', G) 
1. finalTree = ø 
2. for each edge e ∈ G 
3.  weight(e)  1 
4. for each edge (u, v) ∈ TG' 
5. if (there is no path between u and v in finalTree) 
6.  pathuv  shortest path between u and v in 

  G based on edge weights  
7.  for each edge g ∈ pathuv and g ∉ finalTree 
8.    add g to finalTree 
9.   weight(g)   0 
10. return(finalTree) 

 
Figure 5. Algorithm for replacing the virtual links by appropriate 
physical paths 
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[9]. Among all the topologies, we selected two dominant Tier-
1 ISP topologies as listed in Table I.  

The second set was randomly generated using the 
Waxman Model [4]. Since we can easily control the size of 
the topologies, we use them to study the effect of the network 
size. In this model, the nodes are placed on a 3000×2400KM2 
plane, roughly the size of the USA. The probability for two 
nodes to be connected by a link decreases exponentially with 
the Euclidean distance between them according to the 
following probability function: )/),(exp(),( βα LvulP vu

e −=  
where L is the maximum distance between any two nodes in 
the network and l(u, v) is the distance between u and v. The 
parameter β controls the ratio of short links to long links, 
while the parameter α controls the average node degree of the 
network. In our simulations, α and β were set at 2.2 and 0.15 
respectively. These values were selected carefully to obtain 
random networks with close resemblance to real networks.  

For both sets of topologies, the VPN endpoints were 
randomly selected from the network nodes. The number of 
VPN endpoints was set to 10% of the total number of network 
nodes in the network unless explicitly specified. The 
bandwidth requirement of each VPN endpoint was uniformly 
chosen between 2 and 100 Mbps. An asymmetry parameter is 
associated with each endpoint, representing the ratio between 
the ingress and egress bandwidth requirements. This ratio 
varies from 1 to 256 in our simulations. Each simulation result 
given below is the average of five rounds of simulation run. 
We calculated the 95% confidence intervals as 

)ˆ(ˆˆ)ˆ(ˆˆ
,2/,2/ θσθθθσθ αα ff tt +≤≤−  where θ̂  is the average 

value of simulations runs, )ˆ(ˆ 2 θσ  is the standard deviation and 
t0.025,4 is 2.78 according to Table A.5 in [14]. The results show 
that the confidence intervals for provisioning costs are less 
than 0.5 Gbps. 

 Fig. 7 compares the provisioning cost of HIST algorithm 
and primal-dual algorithm [5] with the optimal solution. The 
optimal solution is found by constructing all the spanning 
trees of each network and finding the tree with minimum cost. 
The number of VPN endpoints in each network is fixed at 50 
% of the total number of nodes. It can be observed that the 
total provisioning cost of HIST algorithm is very close to that 

of the optimal solution. Moreover, Fig. 8 compares 
provisioning cost of primal-dual algorithm with HIST 
algorithm for large random networks and real ISP topologies. 
The results show that our HIST algorithm requires less 
provisioning cost over all considered topologies. Fig. 9 shows 
that the execution time of HIST algorithm is far less than that 

  
                                          Figure 6. The results of performing HIST algorithm on a six node network with four VPN endpoints 

TABLE I.  ROCKETFUEL ISP TOPOLOGIES USED IN 
THE SIMULATIONS 

AS 
Number 

Name Tier No.of 
Edges 

No.of 
Nodes 

1239 Sprint(US) 1 168 52 
7018 ATT(US) 1 296 115 
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of the primal-dual algorithm since the former iterates over 
VPN endpoints while the latter iterates over all network 
nodes. Figures 10 and 11 illustrate the effect of increasing 
number of VPN endpoints on total provisioning cost and 
execution time for a 100 node network based on Waxman 

model, respectively. The results show that the HIST algorithm 
finds a tree with smaller with low execution time than primal-
dual algorithm.  

Fig. 12 studies the effect of changing the bandwidth 
asymmetry ratio on provisioning cost for a 100 nodes network 
with 20 VPN endpoints. The ratio between ingress and egress 
bandwidth of VPN endpoints has been increased from 1 to 
256. The results show that our HIST algorithm would still 
perform better than the primal-dual algorithm. 

VI. CONCLUSIONS AND FUTURE WORK 
In this work, we introduced a new Hierarchical Iterative 

Spanning Tree (HIST) algorithm to optimize the provisioning 
cost in the VPN hose model. This scheme will result in lower 
provisioning costs than the previous work introduced in [5]. 
Our simulation results with synthetic network graphs as well 
as real Tier-1 ISPs indicate that the VPN trees constructed by 
HIST require lower bandwidth reservation when compared to 
primal-dual algorithm [5]. Furthermore, our HIST algorithm’s 
execution time is measured to be far less than that of the 
primal-dual algorithm.  

REFERENCES 
[1] B. Davie, Y. Rekhter. “MPLS Technology and Applications”, San 

Mateo, CA: Morgan Kaufmann, 2000. 
[2] N. G. Duffield, P. Goyal,A. Greenberg, P. Mishra, K. K Ramakrishnan, 

J. E. van der Merwe, “A flexible model for resource management in 
Virtual Private Networks”, In Proc. ACM SIGCOMM, vol 29(4), 1999, 
pp. 95-108. 

[3] A. Juttner, I. Szabo, A. Szentesi, “On bandwidth efficiency of the Hose 
resource management model in Virtual Private Networks”, In Proc. 
INFOCOM, vol. 1, 2003, pp. 386-395. 

[4] B. M. Waxman, “Routing of multipoint connections”, IEEE Journal on 
Selected Areas in Communications, vol. 6(9), 1988, pp. 1617-1622. 

[5] A. Kumar, R. Rastogi, A. Silberschatz, B. Yener, “Algorithms for 
provisioning Virtual Private Networks in the hose model”, IEEE/ACM 
Transaction on Networking, vol. 10(4), 2002, pp. 565-578. 

[6] G. de Veciana, S. Park, A. Sang, S. Weber. “Routing and provisioning 
VPNs based on hose traffic models and/or constraints”. In Proc. 40th 
Annual Allerton Conference on Communication Control and 
Computing, 2002, pp. 77-86. 

[7] M. Ghobadi, M.Sc. Thesis, “Resource Optimization Algorithms for 
Virtual Private Networks Using the Hose Model”, Department of 
Computer Science, University of Victoria, BC, Canada, 2007. 

[8] L. Zhang; J. Muppala, S. Chanson, “Provisioning virtual private 
networks in the hose model with delay requirements.” Hong Kong 
University, International Conference on Parallel Processing, 2005, 
pp.211 – 218. 

[9] Rocketfuel project, Computer Science and Engineering, Univ. of 
Washington. 
http://www.cs.washington.edu/research/networking/rocketfuel 

[10] A. Gupta, A. Kumar, Kleinberg, R. Rastogi, B.Yener, “Provisioning a 
Virtual Private Network: A network design problem for 
multicommodity flow”, In Proc. ACM STOC, 2001, pp. 389-398. 

[11] S. Hakimi. “Optimal locations of switching centers and medians of A 
graph”, Operations Research, vol. 12, 1964, pp. 450-459. 

[12] A. Shioura, A. Tamura, T. Uno, An Optimal Algorithm for Scanning 
All Spanning Trees of Undirected Graph, SIAM J .Comput. 26(3): 678-
692 (1997).  

[13] Dijkstra, E. W. "A Note on Two Problems in Connection with Graphs." 
Numerische Math. 1, 269-271, 1959. 

[14] J. Banks, J. S. Carson, B. L. Nelson, D. M. Nicol, “Discrete-Event 
System Simulation”, Fourth Edition, Prentice Hall, 2005. 

[15] M. Ghobadi, S. Ganti, G.C. Shoja, “Resource Optimization to 
Provision a Virtual Private Network Using the Hose Model”, In Proc. 
IEEE International Conference on Communications, 2007. 

  

0

10

20

30

40

50

rand50 Sprint rand100 ATT rand150

Topologies

Ex
ec

ut
io

n 
tim

e 
(s

)
primal-dual Algorithm HIST Algorithm

Figure 9. Execution time comparison between primal-dual 
algorithm and HIST algorithm 
 

100 node network based on Waxman model

0

2000

4000

6000

8000

10000

12000

14000

16000

5 10 15 20 25
Number of VPN nodes

Pr
ov

is
io

ni
ng

 C
os

t (
M

bp
s)

primal-dual algorithm HIST algorithm

Figure 10. Effect of number of VPN nodes on provisioning cost 
 
 

100 node network based on Waxman model

0

2

4

6

8

10

12

14

16

18

20

5 10 15 20 25
Number of VPN nodes

Ex
ec

ut
io

n 
tim

e 
(s

)

primal-dual algorithm HIST algorithm

 
Figure 11. Effect of number of VPN nodes on execution time 
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